变电站在线检测系统
智能变电站在线监测系统

2 . 1 3 对局部放 电的在线监测 。变压器局部放 电是反映高压 电气 变 电站在线监测 系统实现 了信 息共享平 台化 、 系统 框架网络 设备状态 的一个重要标志。因为很多故障均产生局部放电。局部 化、 设 备状态 可视 化 、 监 测 目标全景化 、 全站 信息数字化 、 通 讯协 放电最能有效反映变压器内部的绝缘 状况 , 在 线监测变压器 内部 议标准化 、 监测功 能构件化 、 信息展现一体化 , 实时采集站 内设备 局部放电信号 能及时反映其绝缘状况和发展趋势。 的状态数据 , 进行综合 的诊断分析和全寿命评估 。一方面 , 变 电站 局部放 电是针对变压器 中的超 高频信号 和检测来 表征局放 在线监测系统 内部是一个 相对独立的 内部互联配变设备 网络 , 另 电电的状态及特性 。局部放 电过程 中产 生的电脉冲 、 电磁辐射 、 超 方面又是远方主站的一个节点 , 向 主站 发送 变 电 站 内部 设 备 的 声波 、 光 以及一些新的生成物 , 并 引起局部过热。超高频 ( U H F ) 方 监测诊断系统和 自身状态信息。 法 是 目前 最有 效 的检 测 方 法 。
2 变 电站 主 要设 备 的在 线 监 测 2 . 1 变压 器智 能 监 测模 块 电力 变 压 器 是 变 电站 最 主要 的设 备 , 所 以对 其 的 监 测 是 变 电 站监 测 系 统 最 为 关 键 的 一 环 。此模 块 对 变 压 器 进 行全 面监 测 及 质 量评估 。
构储 能时问结合采集的电流互感 器二 次电流波形 , 经断路器在线 监测终端 进行综合计算 , 得出断路器动作 的分 、 合闸时间 、 速度, 开断 故障电流及运行 电流状况 , 及机构储 能状态等 , 全站 设备状 态监测系统平 台分析评估断路器的运行状态和触 头磨损度 。 2 - 3 S F 6气体密度及微水在线监测 2 . 1 . 1 简述。通过 对反 映变 压器实时状况 的状态参数 ( 油 中溶解 S F 6气 体密度 及微水 在线监 测系统 主要 用于实 时路器 、 G I S 气体 、 局部放 电 、 套 管介质损耗及 电容量 、 铁芯接地 电流 、 油 中微 设备 、 变压 器等 内部 的 S F 6气体 的微 水 、 压力 、 密度 、 温度及其 变 水、 油 中温度 等 ) 的进 行实 时监测 , 对 变压器 的绝缘 状况做 出分 化趋势 。当 S F 6气体相关指标出现变化 时, 给出变化 曲线 ; 指标达
变电站温度在线监测系统的建设方案

THANKS
感谢观看
提高设备运行效率
通过对设备温度的监测,可以优化设备的运行条件,提高设备运行 效率,减少能源浪费。
增加供电可靠性
实时监测变电站设备的温度,可以及时发现并处理设备故障,减少 设备故障对供电的影响,提高供电可靠性。
社会效益
1 2 3
提高供电服务质量
通过对变电站设备温度的监测,可以及时发现并 处理设备故障,减少设备故障对用户用电的影响 ,提高供电服务质量。
数据分析与报警
数据分析
对处理后的温度数据进行统计分析,包括平均值、最大 值、最小值等指标的计算,以及趋势分析、异常检测等 方法的运用。
报警机制
根据数据分析结果,设定报警阈值,当监测温度超过预 设阈值时,系统自动触发报警,并将报警信息发送至相 关人员。
人机界面设计
用户登录与权限管理
设计用户登录界面,实现不同权限用 户的登录及系统操作功能。
系统架构与组成
01 感知层
由温度传感器、数据处理模块等组成,负责采集 和初步处理变电站温度数据。
02 网络层
通过物联网技术,将感知层数据传输至云平台。
03 应用层
展示监测数据、提供远程监控界面、实现智能报 警等功能。
系统工作原理
温度传感器采集变电站内的温度数据 ,通过无线传输技术将数据发送至数
据处理模块。
处理后的数据通过物联网技术上传至 云平台,进行存储和分析。
数据处理模块对接收到的数据进行初 步处理,如数据过滤、格式转换等。
管理人员可以通过远程监控界面随时 查看变电站的温度数据,系统也会根 据设定的规则自动报警,提醒相关人 员处理异常情况。
03
硬件设计
温度传感器选择
110kV智能变电站在线监测系统技术方案 (3)

目录(七)设备清单(建议配置,具体数量根据变电站实际情况确定)................................................2、电话支持服务 ...............................................................................................................................(一)概述电网安全运行是电力企业的首要任务,是建设和谐社会的基本保障。
随着智能电网工作全面展开,基于IEC61850的数字化变电站逐渐投入使用,在自动化领域,技术水平已经达到了国际水平。
但是对于非电气参数的监测手段仍然处于正在发展阶段。
目前,为电力系统状态检修提供数据的设备的监测项目分别进入到了电力的安全生产管理中。
以至于出现了一种监控“孤岛”现象,在电力系统主控室里摆满了各种计算机和服务器来监测:避雷器在线监测、SF6在线监测、高压接点测温监测、智能接地线管理、智能安全工器具柜管理、电缆温度在线监测、环境在线监测、图像监控、门禁系统等。
这种情况不仅浪费了空间资源和计算机资源,同时也增加了值班人员的工作量。
必须在不同的计算机之间进行大量的操作。
我公司在深刻的学习了国家电网公司SG186工程“建立一个信息平台”的理念之后,为了解决电力系统非电量监测的“孤岛”现象,研发了“智能变电站安全预警系统”。
该系统通过强大的数据库和计算机处理技术,能够将电力系统目前需要监测的各种设备参数通过一个共享的信息平台进行显示和处理,并可随时进行WEB浏览和数据共享,为电力系统状态检修提供一个可靠的数据监测信息平台。
(二)系统特点本系统中心思想,是把现有调度主站的功能与其它功能分开,让调度员专心进行调度工作。
将除综自以外的所有监测信息通过智能变电站安全预警终端进行整合并上传至YJ3000预警监控平台。
智能化变电站温度在线监测系统的设计与应用

高压电缆的在线温度监测及动态载流量的计算
2无 线 测 温 单 元
变 电站设备具有高 电压 、 强磁场 、 封 闭等特性 , 传
统 的信 号 传 输 方 式往 往不 能 起 到 良好 的效 果 无 线 测 温 单 元 由无 线 测 温 模 块 和 无 线 数 据 采 集 模块 组成 . 用于实 时测量物 体表面 的温度 . 通 过 无 线 网络 发 送 到 无 线 数 据 采 集 模 块 .并 通 过 R S 一 4 8 5或 无 线 方 式 将 信 息 送 往 后 台 变 电 站 设 备 空 间分 布 较 为 复 杂 .若 采 用 有 线 传
Ab s t r ac t : Co m mo n l y u s e d me t h o d s o f s u b s t a t i o n t e mp e r a t u r e mo ni t o in r g a r e i n ro t d u c e d . Ap p l i c a t i o n o f o n l i n e mo n i t o r - i n g s y s t e m i n h i g h - v o l t a g e c a b l e t e mp e r a t u r e mo n i t o in r g i s d i s c us s e d i n d e t a i l . Ke y wor ds: d i s t r i b u t e d t e mp e r a t u r e s e n s o r s ; t e mp e r a t u r e me a s u r e me n t ; o n - l i n e mo n i t o in r g s y s t e m; c a b l e c a p a c i t y
智能变电站在线监测系统

智能变电站在线监测系统在智能变电站监测系统的建设中,在线监测系统把各种监测设备联系到一起,在电网的安全建设与正常运行中起着重要作用。
文章主要对电网的智能监测系统进行了介绍,通过对变电所的前端信号采集与处理系统,网络传输系统和监控中心系统等三部分的设计,把系统从信号采集与处理经由信号传输到最后的监测与控制进行了介绍,阐明了智能变电站的工作方式。
最后对在线监测系统与周围环境之间的相容性进行了介绍,保证了智能变电站在线监测系统的正常运行。
标签:智能变电站;输变电设备;在线监测系统引言最近几年,电力系统的管理体制改革逐步加深,相应的自动化技术也在飞速的发展。
而伴随着自动化技术的发展,智能化又被提上了日程,现在智能监控技术正逐步渗透到各个岗位,但是现在智能化的程度不高,对于一些部位的检测难以达到准确、准时的效果,而各种相应信息难以快速准确的递达监测人员与部门领导。
为了直观、及时的了解和掌握各变电所安全情况,并对于发生的紧急情况作出应急处理方案,智能检测系统的建立和完善十分重要[1]。
现在智能变电站的研究与物联网的研究已经成为各个国家关注的焦点。
智能变电站监测系统的最大特点在于对电力流、信息流和业务流三方面实现了高度一体化建设[2]。
智能变电站的一个重要的核心是信息的无损采集、流畅传输和有序应用,这也是物联网所具有的优势,由此可见把二者结合到一起具有很高的工程价值和科学意义[3]。
文章拟将信息通信、基础设施资源的建设和通信资源的建设有效地结合到一起,使这些资源可以更好地为整个变电站系统服务。
1 系统总体设计1.1 智能监测系统结构整个智能变电站在线监测系统可分成三个部分:前端系统,网络传输系统和监控中心系统。
前端系统是指智能变电站在线监测系统对监控区域的图像采集,并对他们进行相应的处理,它采用的是传统的模拟信号处理方式。
工作过程是将前端摄像头采集到的信号经由模拟线缆接入到视频编码服务器中,再由视频编码服务器对相应的模拟信号进行编码和压缩,最后通过网络传输系统将压缩后的信号传往监控中心[4]。
变电站直流系统智能在线监测系统

变电站直流系统智能在线监测系统摘要:直流电源远程监控系统可以实现变电站在运行过程中对蓄电池组的运行状态及影响变电站安全运行的因素实时在线监控,使变电站直流系统实现"可控"、"在控"。
对蓄电池组进行远程核对性容量试验、在线测试单体蓄电池的性能参数、远程切换直流母线状态、充电机均充/浮充转换、设置充电机参数等。
远程实现需要耗费大量人力物力并且现场人工操作才能完成的工作,大大减轻维护人员的工作量,并且最大限度减少人工现场所带来的误操作,给系统安全运行提供有利保证。
基于此,直流电源远程监控系统的应用势在必行。
本文主要针对直流电源远程监控系统的实际应用展开论述。
关键词:直流电源系统嵌入式计算机实时以太网远程监控引言直流系统是是变电站的重要组成部分。
变电站直流系统主要是为了保证电力系统运行的稳定性和安全性。
直流系统主要为了保障自动装置、信号装置、开关控制、事故照明、系统监等。
作为独立操作电源的直流系统,不受一次设备电力使用的影响,若外部交流电突然中断,其后备电源——蓄电池也会继续供电,保证供电的持续稳定。
直流系统主要由电池屏和直流屏(直流充电屏)构成。
直流屏主要是由机柜、整流模块、降压单元、监控模块、电池巡检单元、绝缘监测单元、开关量检测单元和一系列的交流输入、直流输出等配电单元。
直流系统的可靠性、安全性直接影响到变电站的可靠安全[1]。
直流系统是变电站二次设备的生命线,直流系统故障直接影响到电网稳定和设备安全。
装设直流设备在线状态检测系统后,可以适时监控直流系统的运行参数,及时发现事故隐患,实现前瞻式管理,确保后备电源系统可靠、安全、高效运行,并且可以减少人工检测因误操作可能引起的设备。
损害直流设备在线状态检测系统的应用,将是未来直流设备的发展趋势,将大幅度提高直流设备的管理和维护和运行水平。
1直流电源远程监控系统的构成及原理直流电源远程监控系统由电压采集模块、内阻均衡模块、开关量采集模块、放电负载、监控终端装置、服务器软件、系统监控软件组成。
变电站及其变压器在线状态监测系统

第5期2024年3月无线互联科技Wireless Internet Science and TechnologyNo.5March,2024作者简介:郑月阳(2002 ),男,本科生;研究方向:电气自动化㊂变电站及其变压器在线状态监测系统郑月阳(攀枝花学院电气信息工程学院,四川攀枝花617000)摘要:变电站及其变压器在线状态监测系统的出现,为电力设备的运维管理提供了一种先进㊁高效的解决方案㊂文章提出了变电站及变压器在线状态监测系统(Onling Condition Monitoring System ,OCMS ),该系统有助于用预测性维护取代变压器的预防性维护㊂OCMS 是一种成本效益高㊁在线且准确的工具㊂通过实验结果分析,对所提出的系统效果进行了评价㊂OCMS 适用于正常或异常故障的变压器,如通过溶解气体分析检测到的异常故障㊂因此,OCMS 与市场上用于变压器状态监测的其他健康指数算法不同,性能更优异㊂关键词:变电站及变压器;在线状态监测;成本效益;准确性中图分类号:TM407㊀㊀文献标志码:A0㊀引言㊀㊀变电站及其变压器在线状态监测系统是一种基于现代信息技术和通信技术的综合应用系统㊂它通过安装传感器和监测设备对变电站及变压器进行实时监测,实现对变电站及变压器的运行状态㊁温度㊁振动㊁绝缘状态等参数的在线监测与分析,以帮助运维人员对电力设备的状态进行及时评估和故障预测,最大程度地提高变电站及变压器的安全性和可靠性㊂变电站及其变压器作为电力系统的重要组成部分,虽然承担着输变电任务和电能转换等重要功能,但是存在运行环境复杂㊁负荷变化大㊁工作时间长等特点,很容易出现故障或性能下降的情况㊂而传统的巡检方式往往无法对变电站及变压器做到全面㊁实时的监测,需要长时间停电和烦琐检修才能发现问题[1-2]㊂本文介绍了一种用于确定变电站及其变压器健康指数(Health Index,HI)的OCMS㊂OCMS 对配电网中连接的所有类型的变压器都适用,工作人员可以在偏远地区操作无人值守变电站㊂变压器工况数据以短消息业务的形式接收,并存储在计算机服务器上,维护成本大大降低㊂实时监测和预测能够最大程度地提高变电站及变压器的安全性和可靠性,保障电力系统的稳定运行㊂1㊀在线监测参数1.1㊀电压不平衡及谐波产生的热量㊀㊀电压不平衡的原因包括三相输配电线路的阻抗不相等,单相负载㊁相间负载和不平衡三相负载的分布不均匀㊂系统中出现的不平衡电压水平可以通过使用标准定义来指定,如式(1)所示㊂U v =λmax (U ab ,U bc ,U ca )/ε(U ab ,U bc ,U ca )(1)其中,λmax 为最大偏差;ε为线电压U ab ㊁U bc 和U ca 的平均值㊂电压中的不平衡及谐波会导致电流的不平衡与失真,造成铁心㊁铜心和涡流损耗增加㊂此类损耗是以热量的形式产生,使变压器的绝缘性能恶化㊂因此,电压不平衡被认为是评估变压器健康状况的参数之一,它表示为:HI =f (U v )(2)行业标准对变压器中发生的损耗进行了分类,此类损失的表达式如式(3)所示㊂P L =I 21R+P eL +P cL +P sL (3)其中,R 为直流绕组电阻;I 1为流过绕组的电流;I 21R 为绕组的损耗功率;P eL 为绕组涡流损耗;P cL 为核心损耗;P sL 为杂散损耗㊂过载条件下,正常额定电流I 1超过额定值,导致损耗增加㊂任何非正弦负载电流引起的绕组涡流损耗计算式如式(4)所示㊂P eY=P eL ðh maxh =1I h I 1éëêêùûúú2h 2(4)其中,h 为谐波的阶数;I h 为由第h 次谐波引起的电流㊂Y 表示由非正弦负载和电源不平衡引起的异常情况㊂连接负载的功率因数也与功率损耗有关㊂低功率因数会导致电压调节过度,如式(5)所示㊂ΔU =I 1(R cos φ+X sin φ)(5)其中,R 和X 分别为变压器每相的电阻和电抗;cos φ为功率因数㊂因此,较低的功率因数增加了损耗并降低了效率㊂损耗的增加导致产生的热量增加,从而导致绕组和油温变化㊂非线性负载引起谐波及功率损耗,因此,在非正弦负载和不平衡电压供应条件下的总损耗(P Y )被视为异常损耗,并表示为公式(6)㊂P Y =R ðh maxh =1I h I 1éëêêùûúú2+P eL ðh maxh =1I h I 1éëêêùûúú2h 2+P cY +P sY (6)从式(4) (6)可以看出,流经变压器的电流㊁功率因数和谐波含量是造成功率损耗的重要原因㊂这种功率损耗增加了变压器中的热量,影响了变压器的正常使用㊂因此,这些具有谐波含量和对应于特定负载cos φ的负载电流可用于评估变压器健康状况,表示为公式(7)㊂HI =f 2(I h ,cos φ)(7)1.2㊀效率偏差及健康指数㊀㊀电子式电能表(Electronic Energy Meter,EEM)是一种多功能电能表,连接到变电站变压器的高压侧和低压侧,可以监测电气参数,如电压㊁电流㊁功率㊁功率因数㊁每相的谐波含量和累计谐波含量㊂因此,变电站变压器的效率由EEM 测量的低压侧功率P LV 与高压侧功率P HV 的比值来确定,功率表达式如下㊂k =P LV P HV(8)特定负载条件下的效率偏差,即k 0=k 1-k 2,表明损耗变化可被视为变压器HI 评估的参数,表示为公式(9)㊂HI =f 3(k 0)(9)绕组温度指示器广泛应用于电力企业,旨在模拟绕组最热部分的热行为㊂电力变压器的负载能力主要受绕组温度的限制,绕组温度传感器固定在变电站变压器上,提供有关变压器负载和绝缘退化动态评估的信息㊂因此,绕组温度(t w )被认为是评估变压器寿命的参数之一,表示为公式(10)㊂HI =f 4(t w )(10)1.3㊀HI 计算㊀㊀据研究,35%的变压器故障是由老化和过载引起的㊂老化效应被认为是变压器使用年限和变压器负载历史的综合效应,称为脱机参数㊂李军浩等[3-5]研究了关于25%故障的类似观察结果,老化和其他因素对故障的影响率小于28%㊂本文运用脱机参数来计算变压器的整体HI ㊂此外,试验现场数据表明,29.45%的变压器故障是由脱机参数引起的,它通常代表OCMS 连接到变压器之前的变压器历史状态㊂将脱机参数与在线参数相结合分析有助于计算可靠的HI ㊂每个参数的权重分配基于现场观测㊂不同的站点可能有不同的维护间隔和政策,导致有不同的HI ㊂由于脱机参数的贡献为25%~35%,本文设定脱机参数30%的权重,为在线参数设定了70%的权重㊂因此,变压器的整体HI 表示为公式(11)㊂HI =0.3HI OFP +0.7HI ONP (11)上式HI 值从 良好 到 非常差 进行分组,通过这种方式的HI 用于判断变电站或厂用变压器的状况㊂由设计缺陷导致的变压器故障也是变压器故障的一个原因㊂本研究考虑的在线参数包括所有情况,这些参数反映了由变压器设计问题而对异常故障产生的影响㊂本研究提出的算法考虑了此种情况㊂2 实验结果与分析2.1㊀正常情况㊀㊀本文在实验室中通过创建正常和异常条件,测试了所提出的OCMS,用于HI 计算的方法㊂变压器上的负载在单位功率因数下保持在50%㊂电压由三相自耦变压器调节为220V,即电压不平衡为0㊂储油柜中的油位约为42%㊂当环境温度为30.1ħ时,顶部油温为40.1ħ,且规定负载循环的效率偏差小于0.21%㊂图1显示了不同时间段的实验结果,图1(a)表示输出功率波形(瞬时);图1(b)表示功率输入和输出(平均值);图1(c)表示效率;图1(d)表示不同负载下的顶部油温㊂OCMS 每隔5min 对每个参数的数据进行采样㊂此后30min 即对6个样本进行采样,取这些样本的平均值,为平均样本选择分数和权重㊂对这些数据进行处理并计算变压器的HI ㊂对于这种正常情况,OCMS 计算的HI 为100%㊂图1㊀正常状态实验结果2.2㊀异常情况㊀㊀本文实验创建了异常条件,测试了所提出的用于HI 计算的OCMS㊂产生的异常情况有:电源电压不平衡㊁变压器负载百分比上升到额定值以上㊁功率因数低以及油位下降㊂在其中一种情况下,电压不平衡为6.7%,负载和油位保持正常,在此过电压条件下,电流增加到10.93A㊂顶部油温略有上升,达到42.4ħ㊂此外,规定负载循环的效率偏差小于0.006p.u.,参数的得分和权重发生了变化,OCMS 计算的变压器HI 为94.4%㊂变压器不过载实验中,认为如果变压器超过90%的负载条件,则将其视为过载条件㊂电源电压不平衡保持在其公差范围内,油位保持与正常条件下相同,即50%㊂逐渐地,负载从0增加到110%,因此在过载条件下,油温上升到55.7ħ㊂对于这个定义的负载循环,效率的偏差为0.98%㊂HI也随着负载的变化而变化,对于过载条件,计算HI为86.11%㊂储油柜中的油位以10%的步长从50%逐渐降低到0㊂在此期间,变压器的供电电压保持在220V,负载为40%,可以观察到,随着冷却剂的逐渐减少,顶部油温已升高至40.9ħ,如图2所示,图2(a)表示顶部油温和油位,图2(b)表示油位和效率㊂当储油柜中有2%的油时,效率偏差为0.37%,在此情况下获得的HI为87.5%㊂实验是在这些异常条件的组合下进行的㊂HI随着异常的增加而逐渐降低㊂对于在线参数的连续监测可提供有关干扰和故障的信息,如油位降低㊁过载㊁电压差㊁功率因数差㊁断路状况等㊂3 结语㊀㊀本文基于脱机参数和在线参数的组合应用研究了变压器HI检测系统的开发与实现㊂利用该技术,可以分析变压器的油位㊁油温㊁电压不平衡损耗㊁功率因数㊁谐波电流等情况,计算变压器的在线HI㊂在出现异常情况时,系统将信息传达给现场人员㊂当与其他现有的保护和控制技术相结合使用时,可以实现有效的优先状态监测㊁控制和保护㊂为了分析性能,本文使用三相变压器进行验证,测试结果证明了所提出系统的有效性㊂系统利用现有的仪表传感器和通信网络,OCMS的开发成本约为变压器成本的2%㊂因此,本文开发的系统有助于变压器的预测性维护㊂实施变电站及其变压器在线状态监测系统可能需要投入一定的成本,包括设备采购㊁系统集成和数据㊀㊀图2㊀异常条件实验结果分析等㊂然而,通过减少维修成本和提高设备可靠性,这种投资可以获得长期收益㊂变电站及其变压器在线状态监测系统可以提供预警功能,预测可能出现的故障并提前采取措施,有助于提高设备的可靠性和安全性㊂参考文献[1]宋斌.基于油中溶解气体分析的变压器故障诊断方法的研究[D].武汉:武汉大学,2003.[2]张深逢.变压器状态监测与异常诊断系统的开发应用[D].河南:华北水利水电大学,2014.[3]李军浩,韩旭涛,刘泽辉,等.电气设备局部放电检测技术述评[J].高电压技术,2015(8):2583-2601. [4]樊皓,李航,王国锋.变压器运行过程综合误差数学模型[J].河南科技大学学报(自然科学版),2013 (1):16-20.[5]张庆,周璠,华成,等.基于信息模型的变压器可靠性系统构建[J].计算机工程,2012(13):224-227.(编辑㊀王雪芬)Online status monitoring system for substations and their transformersZheng YueyangElectrical and Information Engineering School Panzhihua University Panzhihua617000 ChinaAbstract The emergence of online status monitoring systems for substations and their transformers provides an advanced and efficient solution for the operation and maintenance management of power equipment.This article proposes an online condition monitoring system OCMS for substations and transformers which helps to replace preventive maintenance of transformers with predictive maintenance.The designed OCMS is a cost-effective online and accurate tool.The proposed system results were evaluated through experimental analysis.The designed OCMS is suitable for transformers with normal or abnormal faults such as abnormal faults detected through dissolved gas analysis.Therefore it is very different from other health index algorithms used for transformer condition monitoring in the market and has better performance.Key words substations and transformers online status monitoring cost effectiveness accuracy。
变电站电力设备综合状态在线监测系统

变电站电力设备综合状态在线监测系统变电站电力设备综合状态在线监测系统一、应用范围及特点变电站电力设备综合在线监测系统主要针对110kV及以上电压等级变电站内关键电力设备(变压器、GIS、断路器、容性设备、避雷器、电力电缆等)进行在线监测,并通过对不同电力设备多种运行参量的综合分析为全面评估设备的运行状态和寿命预测提供准确的现场运行数据。
系统主要特点:采用分层次监测的系统结构,将电力局管辖区域内的多个变电站内的多种电力设备在线监测作为一个整体进行规划和设计,在统一的硬件平台、统一的软件平台和统一的数据库上实现变电站多种电力设备、多个状态参量的集成监测,避免了在线监测简单拼凑带来的弊端,使监测系统具有良好的兼容性、可扩展性和可维护性。
采用目前国际上最先进的数据采集硬件和PXI测控总线结构,不同设备和数据中间之间的通讯采用IEC61850标准,能够保证监测数据的准确性和可靠性。
超高频局部放电监测采用外置的微带天线传感器(带宽:3000MHz)进行测量,并对采集到的单次放电波形进行多种分析,从真正意义上实现了超高频局部放电的在线监测。
所有传感器的安装不改变变压器的本体结构,不影响设备的正常运行。
现场前置机机柜、智能采集单元和所有外置传感器的结构设计均符合高海拔、大温差户外长期使用的要求,系统具备定期自检和故障自恢复功能,能在规定的工作条件下长期可靠工作。
远程数据监控中心采用双机热备+磁盘阵列的结构保证数据长期存储的可靠性,采用电力局区域互联网通信的方式,通过浏览器方式可以远程监控管理终端和监控中心连接,实现电力局办公桌面查看现场数据,并提供无线接入方式。
系统软件采用模块化结构设计和图元设计,同时具备自动监测和手动监测功能,具有良好人机界面,易操作,易升级。
二、技术参数1. 电容性设备:介质损耗角正切分辨率达1‰。
长期检测稳定性小于5‰。
检测单元测量误差小于5‰智能监测单元电磁兼容满足相关技术标准,同时支持现场通讯协议;2.避雷器电流测量精度小于2%(现场干扰条件下测量);能够对测量结果进行温湿度修正;长期监测稳定性小于1%;电磁兼容应足相关技术标准,同时支持现场通讯协议;3.断路器:a) 电寿命诊断分合闸过程电流波形正常工作和分合闸过程电流幅值电弧持续时间(准确性≤±10%)分合闸动作次数、时间及日期主触头累计电磨损(以I2T 或IT 表征)(受燃弧时间判断的影响,测量精度≤±15%)b) 机械系统诊断线圈分合闸时间分合闸线圈电流波形断路器分/合状态c) 控制回路状态监测辅助触点动作时间d) 储能机构状态监测储能电机工作电流波形储能电机启动次数4 变压器:a)射频局部放电监测单元传感器频带:100kHz~15MHz实时采样带宽:15MHz相位分析窗口数:4000放电统计参量分析功能,包括:基本放电参量:最大放电量、平均放电量、放电次数二次统计参量:偏斜度、峭度二维谱图显示:最大放电量相位分布Hqmax(φ)、平均放电量相位分布Hqn(φ)、放电次数相位分布Hn(φ)二维放电谱图三维放电谱图:放电次数-放电量-相位b)超高频局部放电监测单元传感器频带:10MHz~3000MHz实时采样带宽:300MHz实时采样速率:2000MS/s等效采样速率:2000MS/s纳秒单次放电分析功能,包括:时域指纹分析、频域指纹分析、联合时频分析、基于小波提取的分形分析c)油中气体色谱在线监测最小分析周期: ≤4小时;工作环境温度:-30℃~45℃;安装接口位置:油路循环范围内;测量精度:气体组分灵敏度测量范围检测精度H2 ≤1μL/L 1-2000μL/L ≤10%CO ≤1μL/L 1-5000μL/L ≤10%CH4 ≤1μL/L 0.1-2000μL/L ≤10%C2H6 ≤1μL/L 0.1-2000μL/L ≤10%C2H4 ≤1μL/L 0.1-2000μL/L ≤10%C2H2 ≤1μL/L 0.1-500μL/L ≤10%总烃≤1μL/L 1-8000μL/L ≤10%d)套管介质损耗角正切在线监测(可选)介质损耗角正切分辨率达10-3长期检测稳定性小于5×10-3检测单元测量误差小于±1%读数+0.0005e)油中温度在线监测温度检测范围:-30℃~+125℃温度测量精度:0.5℃f) 铁芯接地故障在线监测最小电流分辨率1mA最大可测量电流范围应达到100A5 环境参数监测:环境参数环境温度 -50~80℃ ±0.5% 环境湿度 0~98%RH ±2%三、系统构成采用分层次在线监测的方式,将需要在线监测的电力设备按照区域划分为多个单元(通常将一回出线上的所有电力设备划分为一个单元)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变电站在线检测系统1 总则1.1 一般规定1.1.1 投标人及所投产品制造商必须有权威机关颁发的ISO9001 系列的认证书或等同的质量保证体系认证证书。
投标人应具备计算机系统集成一级资质。
投标人及制造商应已设计、制造和提供过同类设备,且使用条件应与本工程相类似,或比规定的条件更严格。
如发现有失实情况,招标方有权拒绝该投标(详见招标文件商务部分)。
1.1.2 本规范提出的是基本技术要求,未尽的相关技术细节可在技术谈判中商定。
1.1.3 投标人必须逐项响应本技术规范中的要求,如有与本技术规范要求不一致的地方,必须逐项在技术规范专用部分的“技术偏差表” 中列出。
1.1.4 本规范经买卖双方确认后,作为合同的附件,与合同正文具有同等的法律效力。
1.1.5 本规范中涉及有关商务方面的内容,如与招标文件的《商务部分》有矛盾时,以《商务部分》为准。
1.1.6 本规范未尽事宜,由招标人或买方和中标人在合同技术谈判时双方协商确定。
1.1.7 如果卖方没有以书面形式对本规范书的条文提出异议,则意味着卖方提供的设备(或系统)完全符合本规范书的要求。
如有异议,不管是多么微小,都应在报价书中以“对规范书的意见和同规范书的差异”为标题的专门章节中加以详细描述。
1.1.8 投标产品应具备国家或电力行业检验检测机构颁发的合格证书,并在投标文件中提供。
1.1.9 本招标文件技术规范中通用部分各条款如与技术规范专用部分有冲突,以专用部分为准。
1.1.10 投标文件应对招标文件进行逐条应答,还应包含以下内容:系统型号、总体技术方案、系统结构图、性能指标、试验报告(有效期内)、产品说明书、质量承诺书等。
1.2 标准和规范1.2.1 合同中所有设备、备品备件,包括卖方从第三方获得的所有附件和设备,除本规范中规定的技术参数和要求外,其余均应遵照最新版本的电力行业标准(DL )、国家标准(GB )和IEC标准及国际单位制(SI ),这是对设备的最低要求。
投标人如果采用自己的标准或规范,必须向买方提供中文和英文(若有)复印件并经买方同意后方可采用,但不能低于DL 、GB 和IEC 的有关规定。
1.2.2 执行的标准表1 卖方提供的设备和附件需要满足的主要标准* 本技术规范使用的电力术语定义及中英文解释见GB/T14429;1.3 投标人必须提交的技术参数和信息1.3.1 技术参数响应表、技术参数偏差表及相关技术资料。
1.3.2 投标产品的特性参数和特点。
1.3.3 与其它设备配合所需的相关技术文件和信息。
1.4 安装、调试、性能试验、试运行和验收1.4.1 合同设备的安装、调试将主要由卖方负责,买方配合。
1.4.2 合同设备的性能试验、试运行和验收根据本规范规定的标准、规程规范进行。
1.4.3 完成合同设备安装后,买方和卖方应检查和确认安装工作,并签署安装工作证明书,共两份、双方各执一份。
1.4.4 设备安装、调试和性能试验合格后方可投入试运行。
试运行后买卖双方应签署合同设备的验收证明书(试运行时间在合同谈判中商定)。
该证明书共两份,双方各执一份。
1.4.5 如果安装、调试、性能试验、试运行及质保期内技术指标一项或多项不能满足合同技术部分要求,买卖双方共同分析原因,分清责任,如属制造方面的原因,或涉及索赔部分,按商务部分有关条款执行。
2 技术要求2.1 工程概况2.1.1 工程规模:电缆隧道起点为新建的西关什字110kV 变电站,终点为新建小西湖110kV 变电站出线终端塔。
新建电缆隧道全长 5.1kM ,110kV 电力电缆共分为8 个完整交叉互联设计,电力电缆中间接头共计60 个。
2.1.2 交通、运输:汽运至现场,运费由卖方承担。
2.2 环境条件使用环境条件安装位置及环境:智能监控系统站端设备安装在110kV 变电站内,监控其它设备安装在电缆隧道内相应位置。
2.3 基本技术条件卖方提供的智能监控系统的产品,必须能在环境、抗干扰等方面满足在强电磁场干扰环境下使用的要求,投标文件中应提供国家或电力行业检验检测机构颁发的合格证书。
卖方应根据本技术规范书中的各项要求及招标文件所附平面布置图完成电缆隧道智能监控系统(含视频监控、井盖防盗系统、环境检测系统及电缆运行监测系统)的组态设计,并在投标书中提出相应的系统图,投标书中的供货清册应包括电缆隧道智能监控系统(含视频监控、防盗系统、环境检测系统及电缆运行监测系统)所需的所有软、硬件及安装材料。
为最大程度保证系统的监控效果,整个系统不得采用二次及以上压缩。
即从电缆隧道监控前端压缩编码到各级终端解压回显,中间过程不得再有其他任何形式的压缩编码。
视音频图像设备及信号格式应严格符合国家、国际有关标准。
视频信号制式采用符合国家标准的视频制式( PAL )。
同时在电缆隧道智能监控系统显示功能中,各种菜单、说明都应为中文显示。
系统采用的视频编解码标准应采用最有效的国际标准进行视频压缩( MPEG或H264), 采用国际通用的图像存储格式进行图像记录和存储,音频压缩标准采用ITU-T G.711 或OggVorbis 标准。
2.3.1 系统先进性要求机柜、站端视频处理单元、电源、外围监控设备等设备应采用具有国内先进水平的产品,并出示国际认证和国内检验机构的合格证书,系统应充分考虑可升级性。
2.3.2 系统可靠性要求为保证系统正常运行,系统设备必须具备如下可靠性保证:(1) 系统的使用不能影响被监控设备的正常运行;(2) 系统的局部故障不能影响整个电缆隧道智能监控系统的正常工作。
(3) 系统设备采用模块化结构,便于故障排除和替换;(4) 系统要有具备处理同时发生的多个事件的能力;(5) 系统具备抗强电磁干扰能力。
2.3.3 系统扩展性要求由于电力系统建设阶段性特点,电缆隧道遥视系统要求具备良好的可扩展性。
(1) 系统主要设备的配置按照终期规模设计,当需上送监控数据及图像时,遥视系统的软硬件勿须改变;(2) 系统各项功能和运行状态不受扩建影响;(3) 系统具备多级组网能力以便组建更大的监控网络。
2.3.4 系统运行、安全性要求(1) 系统实行操作权限管理,按工作性质对每个操作人员赋予不同权限,系统登录、操作进行权限查验;(2) 系统所有重要操作, 如登录、控制、退出等,均应有操作记录,系统可对操作记录进行查询和统计,所有操作记录具有不可删除和不可更改性;(3) 网络安全保护,保证系统数据和信息不被窃取和破坏;(4) 系统保存的重要数据,具有不可删除和不可更改性。
(5) 系统具有较强的容错性,不会因误操作等原因而导致系统出错和崩溃;(6) 系统应具有自诊断功能,对设备、网络和软件运行进行在线诊断,发现故障,能显示告警信息;(7) 系统应具有数据备份与恢复功能;(8) 系统应具有远程配置的能力;(9) 系统可接入多种智能设备,通信协议为标准的远动标准协议;(10) 应采用全中文图形化界面;(11) 提供对系统操作的在线中文帮助;(12) 自动生成系统运行日志,可查询及以报表方式打印输出。
2.4 技术性能要求2.4.1 主要功能要求电缆隧道智能监控系统主要包括电力隧道防盗监控系统、电缆隧道视频监控系统、电缆运行实时数据监视系统,电缆隧道环境监控系统,电缆隧道指定灯光、空调、排风监控系统,所有的监控业务功能整合于监控中心平台。
电缆运行实时数据监控又包括隧道电缆护层接地电流监视系统、电缆运行电流监视系统。
电缆隧道环境监控系统包括电缆隧道内02浓度监视系统、C02浓度监视系统、CO浓度监视系统、特定点甲烷浓度监视系统、隧道水位监控系统。
电缆隧道内的监控对象并可以根据需要不断扩充。
电缆监控系统可以与生产管理系统以及调度中心进行信息交互与共享。
通过与生产管理系统的交互,实现设备信息共享,共同完成电缆巡检管理、故障缺陷管理等功能,并为生产管理系统提供数据监控接口。
电缆隧道智能监控系统必须支持IEC61850 网络通信协议,隧道内环境数据、电缆运行信息、井盖开合状态、灯光、空调、排风设备状态等均可以IEC61850 网络通信协议远传到监控中心或调度中心。
在视频系统中应采用智能视频分析技术,从而完成对现场特定监视对象的状态分析,并可以把分析的结果(标准信息、图片或视频图像)上送到统一信息平台。
监控中心平台要求所有监控系统,电力隧道防盗监控系统、电缆隧道视频监控系统、电缆运行实时数据监视系统,电缆隧道环境监控系统,电缆隧道指定灯光、空调、排风监控系统的所有业务功能必须整合于统一的组态软件系统,以方便监控和管理。
2.4.1.1 视频显示功能(1) 实时图像监视,彩色图像以不少于4 通道、每通道以每秒25 帧的速率实时传送和播放。
视频图像大小随意可调。
(2) 支持VGA/HDMI主辅音视频及辅助视频端口的本地输出;VGA最高分辨率可达1280*1024 ,HDMI 分辨率最高可达1920*1080 ;(3) 支持1/4/9/16 画面预览,预览通道顺序可调;(4) 支持预览分组切换、手动切换或自动轮巡预览,自动轮巡周期可设置;(5) 支持预览的电子放大;(6) 可屏蔽指定的预览通道;(7) 支持视频移动侦测、视频丢失检测、视频遮挡检测、视频输入异常检测;2.4.1.2 图像储存回放功能(1) 支持循环写入和非循环写入两种模式;(2) 支持定时和事件两套压缩参数;(3) 录像触发模式包括手动、定时、报警、移动侦测、动测或报警、动测和报警等;(4) 每天可设定8 个录像时间段,不同时间段的录像触发模式可独立设置;(5) 支持移动侦测录像、报警录像、动测和报警录像、动测或报警录像的预录及延时;(6) 定时和手动录像的预录;(7) 支持按事件查询录像文件;2.4.1.3 摄像灯光联动功能(1) 要求视频系统具有灯光联动功能,当运行人员启动某一摄像头监视特定区域时, 此摄像头监视处的灯光系统自动启动,为摄像头提供照明;(2) 当运行人员关闭某一摄像头监视特定区域时, 此摄像头监视处的灯光系统自动关闭。
(3) 作为可摄像联动的灯光系统,也应具有就地控制开关, 远动控制开启关闭功能,且此控制功能优先与摄像联动控制。
2.4.1.4 视频报警功能(1) 报警类别:防盗报警、画面变化报警。
报警可根据需要进行分级,报警信号、报警内容可在任何画面自动显示。
当发生报警时,监控主机硬盘或相应录像装置能自动进行存盘录像,同时传送报警信息和相关图像,并自动在电子地图上提示报警位置及类型。
(2) 系统应具备处理多事件多点报警的能力,多点报警时采用覆盖方式,报警信息不得丢失和误报。
(3) 报警信息储存管理,实现报警联动录像,具备长延时录像和慢速回放功能。
可以多种方式查询报警信息。
(4) 所有报警信息均可查询,有需要时可打印输出。