生物电测量技术
生物电测量技术

V1、V2、V3、V4、V5、V6
胸前导联系统—反映心脏横截面情况
心电图机从功能上可大至分为以下几种 : ⑴单道手动心电图机。 ⑵单道自动心电图机 。 ⑶多道全自动心电图机 。 ⑷具有自动分析诊断功能的智能型心电图机 。
(3)高频滤波器 ◦ 作用:隔离高频干扰。 ◦ 组成:RC低通网络,截止频率:10KHz。
22k
220p
(4)缓冲放大器
◦ 作用:提高电路的输入阻抗,减少心电信号的衰减和匹配 失真。
◦ 组成:电压跟随器。
(5)导联选择器
◦ 作用:将同时接触人体各部位的电极的导联线按需要切换 组合成某种导联方式。
AB-针电极:测量EMG,用不锈钢制作。
C-丝电极:用注射针将它插到待测部位,慢慢抽出针管,使 它能长期留在体内。将倒钩拉直后即可取出。可能会移位, 折断等。
D-螺线管电极:能克服丝电极的缺点.
心电电极----连接到人体体表,用来监测心电信号 的传感器。
心电导联----连接到人体体表的任意两个心电电极 所组成的回路。
单极标准导联-3
心电图的导联(标准12导联)
◦ 加压导联:在单极导联的基础上,当记录某一肢体单极导联 心电波形时,将该肢体与中心电端之间所接的平衡电阻断开, 改进成增加电压幅度的导联形式,称为单极皮肤加压导联, 简称加压导联。可增加电压信号幅度50%
aVR aVL aVF
心电图的导联(标准12导联)
极化状态( polarization ):在生理学中,将静息状态下细胞 膜跨膜电位内负外正的状态。超极化( hyperpolarization): 膜内负电位增大(例如从-70mv变为-90mv)。
生物电测量课件

contents
目录
• 生物电测量概述 • 生物电测量原理 • 生物电测量的方法 • 生物电测量的应用实例 • 生物电测量的挑战与展望
01
生物电测量概述
生物电的产生
生物电的产生
生物电是生物体内产生的微弱电流,主要来源于细胞膜内外离子的分布和运动。例如,神 经细胞和肌肉细胞的电兴奋就是通过生物电来实现的。
学和心血管研究中广泛应用。
肌电信号测量
要点一
总结词
肌电信号测量是生物电测量的重要应用之一,用于研究肌 肉功能和运动控制。
要点二
详细描述
肌电信号测量通过记录肌肉收缩产生的电活动,可以揭示 肌肉的功能状态、运动控制和损伤情况等信息。在运动生 理学、康复医学和假肢控制等领域有广泛应用。
眼电信号测量
总结词
眼电信号测量是生物电测量的重要应用之一,用于研究视觉系统和眼疾诊断。
详细描述
眼电信号测量通过记录眼球表面的电活动,可以揭示视觉系统的生理机制和眼疾的病理 变化。在眼科、神经科学和视觉研究中广泛应用。
05
生
02
03
信号噪声来源
生物电信号通常很微弱, 容易受到环境噪声、仪器 噪声和体内其他生理信号 的干扰。
详细描述
神经电信号测量通过记录和测量神经元放电 的电活动,可以揭示神经系统的信息传递、 学习和记忆等过程。在神经科学、生理学和 医学等领域有广泛应用。
心电信号测量
总结词
心电信号测量是生物电测量的重要应用之一 ,用于诊断心脏疾病和监测心脏功能。
详细描述
心电信号测量通过记录心脏电活动的变化, 可以检测心律失常、心肌缺血等心脏疾病, 并用于评估心脏功能和治疗效果。在临床医
测量方法直接节段多频率生物电阻抗测试法(DSM-BIA法)

人体成分分析仪技术参数测量方法:生物电阻抗测试法生物电阻抗(BIA):阻抗(Z),通过3种不同频率( 5kHz, 50kHz, 250kHz) 分别在6个节段部分(右上肢、左上肢、躯干、右下肢、左下肢、两脚间)进行18种阻抗测量电抗(X) :通过3种不同频率(5kHz, 50kHz, 250kHz)分别在6个节段部分(右上肢、左上肢、躯干、右下肢、左下肢、两脚间)进行18种电抗测量电阻(R):通过3种不同频率(5kHz, 50kHz, 250kHz)分别在6个节段部分(右上肢、左上肢、躯干、右下肢、左下肢、两脚间)进行18种电阻测量测量系统:多频8-电极测量频率:5 kHz /50 kHz /250 kHz测量电流:90 μA或以下综合测试结果,自动生成测试意见和建议,特别适合体检中心测量部分:左上肢、右上肢、躯干、右下肢、左下肢阻抗测量范围:75.0~1500.00Ω(0.1Ω单位)体重测量系统:电阻应变式体重最大称量:270kg具有预置皮重功能。
体重最小刻度(最小显示值):0~270 kg: 0.05 kg脂肪率测量范围:1.0~75.0%(0.1% 单位)体脂肪率判定标准分年龄段说明。
体型分析:九种体形判定,根据人体内脂肪率和肌肉量可提供九种身体类型评价;软件配置:配置电脑后,只要是兼容Windows系统的打印机均可输出测试结果,由电脑向设备发送数据和指令,进行自动化操作。
兼容打印机:激光/喷墨打印机,普通打印机即可测量速度:30秒钟的时间能完成全部测量,并立即得出各项测量值指标,并根据不同受试者的各项测试指标指数得出个性化的分析评定报告。
电源电压:220V AC (50Hz ∕60Hz)额定功率:25W最大测试时间:30秒工作温度范围(储存温度范围):5℃~35℃(-10℃~+60℃)测试年龄范围:5~99岁;测试身高范围:95-249.9cm输出值(成人报告):体重、体脂肪率、脂肪量、除脂肪重、肌肉量、骨量、体水分率、身体成分构成图显示、BMI、细胞外液、细胞内液、细胞外液率、细胞外液率平均值、内脏脂肪等级、基础代谢量、基础代谢年龄、腿部肌肉点数、、各部位肌肉综合评价(图表显示)、各部位脂肪综合评价、推定骨量、肌肉平衡分析(图表显示)、体型判定(根据肌肉量与体脂肪率来的判定体型)、目标体重、体重控制、肌肉控制、脂肪控制、显示直流电阻抗/交流电阻抗信息(科研基础数据)输出值(儿童报告):体重、体脂肪率、脂肪量、除脂肪重、肌肉量、体水分率、身体成分构成图显示、儿童肥胖指数、基础代谢量、各部位肌肉综合评价、各部位脂肪综合评价、健康指数评价:目标体重、体重控制、目标脂肪、脂肪控制、显示直流电阻抗/交流电阻抗信息(科研基础数据)、肌肉量及骨量分析图、成长曲线图。
bioelectric impedance analysis

bioelectric impedance analysis bioelectric impedance analysis(生物电阻抗分析)是一种测量人体组织中电流通过的方法。
它是一种常见的非侵入性技术,用于评估人体组织中的脂肪含量、肌肉质量和身体液体等。
第一步:简单介绍生物电阻抗分析生物电阻抗分析是一种通过在人体中施加微弱电流来测量电流通过的技术。
这种电流通过电极放置在人体上的特定位置,从而测量组织对电流的阻抗。
根据电流通过的难易程度,可以推断出组织的脂肪含量、水分含量和肌肉质量。
第二步:生物电阻抗分析的原理和方法生物电阻抗分析是基于人体组织对电流的阻抗属性来测量的。
人体组织主要由细胞、水分和脂肪组成,而这些成分对电流的通过有不同的阻抗。
生物电阻抗分析经常使用双频率或多频率电流,在人体上的特定位置放置电极。
通常在脚掌和手掌间测量电流的通过,因为这两个部位的身体组织含水量较高,可以提供更精确的测量结果。
测量过程中,电流经过人体组织后,根据电流通过的难易程度,测量仪器可以计算出脂肪含量和肌肉质量的估算值。
这是因为脂肪组织对电流的阻抗较低,而肌肉组织对电流的阻抗较高。
第三步:生物电阻抗分析的应用生物电阻抗分析广泛应用于健康领域,例如体重管理、营养评估和运动训练等。
1. 体重管理:通过测量体脂含量,生物电阻抗分析可以帮助人们了解自己的体脂百分比。
对于想要减重或控制体重的人来说,这些信息可以指导饮食和运动计划。
2. 营养评估:生物电阻抗分析可以测量人体的瘦体重和水分含量,从而评估人体的营养状况。
通过监测这些指标,医生和营养师可以为个体制定个性化的饮食计划。
3. 运动训练:生物电阻抗分析可以帮助运动员和健身爱好者监测肌肉质量的变化。
通过定期测量肌肉质量的变化,运动员可以了解自己的训练效果,并相应地调整训练计划。
第四步:生物电阻抗分析的优缺点尽管生物电阻抗分析是一种便捷且非侵入性的技术,但它也有一些优缺点。
物理实验技术中的生物电学测量方法与技巧

物理实验技术中的生物电学测量方法与技巧引言:生物电学是研究生物器官和生物组织内外部产生的电现象的学科,它在生物医学领域有着广泛的应用。
在物理实验技术中,生物电学测量方法和技巧是进行生物电信号记录和分析的关键。
下面将介绍一些常用的生物电学测量方法和技巧,供广大研究者参考。
一、脑电图(EEG)的测量方法与技巧脑电图是测量大脑电活动的一种方法,广泛应用于神经科学和临床医学研究中。
进行脑电图测量时,需要注意以下几个关键步骤和技巧:1. 电极的选择和定位:选择合适的电极类型和布局方式,并进行准确的电极定位,以保证信号的准确性和可靠性。
2. 避免干扰信号:在进行脑电图测量时,应尽量避免测量环境中存在的干扰信号,如电磁辐射、电源干扰等。
3. 信号放大和滤波:为了放大和记录脑电信号,需要使用合适的放大器,并设置合适的滤波器以去除噪音和干扰。
4. 数据分析和解释:对记录的脑电信号进行数据分析和解释,可以采用时频分析、相关性分析、特征提取等方法,以获取有用的信息。
二、心电图(ECG)的测量方法与技巧心电图是测量心脏电活动的一种方法,广泛应用于心血管疾病的诊断和监测。
进行心电图测量时,需要注意以下几个关键步骤和技巧:1. 导联的选择和安装:根据需要选择合适的心电图导联方式,并正确安装导联电极,保证信号采集的准确性。
2. 信号放大和滤波:使用合适的心电图放大器,设置适当的滤波器,去除噪音和干扰,增强信号质量。
3. R波检测与分析:对心电图信号进行R波检测,可以使用峰值检测和相关算法等方法,再对R-R间期、心率等进行分析和解释。
4. 心电图的分类和诊断:通过对心电图信号进行分类和诊断,可以判断心脏的功能和病理状态,为临床医学提供支持。
三、肌电图(EMG)的测量方法与技巧肌电图是测量肌肉电活动的一种方法,被广泛应用于运动生理学和康复医学领域。
进行肌电图测量时,需要注意以下几个关键步骤和技巧:1. 电极选择和安装:选择合适的肌电图电极类型,并正确安装电极,使其与肌肉充分接触,减小信号采集过程中的噪音和干扰。
如何测量人体生物电

如何测量人体生物电一、认识人体生物电“电”对大家来说是最熟悉的,现代生活谁都离不开它,它每天都给我们带来无尽的方更和欢乐,“人体生物电”对一些人可能有点陌生,其实是我们不太注意它的存在,不了解它的特性,尤其不了解它对我们的生命和健康的重要性。
大家知道;植物有植物电、动物有动物电、人体有生物电,一切事物的变化都有电产生,宇宙间除了星球还有宇宙线、宇宙场、宇宙光、微波、电磁波、灵波(生物波)。
正如马克思所说“世界上几乎没有一件事物的发生、变化不伴随着电现象的产生”。
仿生学研究发现,最小的细菌消耗葡萄糖而产生电,这就是所谓“生物电”原理,人体生命过程中的新陈代谢及一切活动都产生电,“心电图”是心脏跳动产生的电波、“脑电图”是大脑活动是产生的脑电波。
电生理学发现“人体横膈肌及其动作神经能产生较大的肌电,这就是人体内的发电机。
加拿大多伦多大学的马科伯克博士的实验证明:哺乳类动物的脑内,有神经细胞传递电信号的结构,并且不是单传而是互传。
当脑部生长肿瘤时,脑电波就受到不同程度的破坏、这说明肿瘤细胞没有发电能力,那么,正常体细胞是怎样产生电的?细胞浸浴在细胞液中,细胞膜的内外存在许多带电离子(钾离子、钠离子、氯离子等),钾离子主要在细胞内,钠离子主要在细胞外,在安静状态时,这些离子相对稳定,当受到刺激时,细胞膜的通透力发生变化,各种离子便活跃起来,在细胞膜内外川流不息,出现钾钠离子交换,便产生了生物电。
现代生理学研究发现,人体所有器官都会产生生物电现象,并且以电的形式——动作电位,通过相应的神经纤维把兴奋传导到大脑中枢,大脑中枢以动作电位的方式,把神经冲动信号通过相应的神经纤维传到效应器,从而产生器官或组织的功能活动。
人体各部的电位不同,表现为电压梯度,这些不同的电位形成了人体电场。
这个包括了各器官电场的人体电场,不仅与人的心理因素有关(情绪激动时强、低落时弱)。
而且与生理现象有关。
人体生物电在现代医学上早已广泛应用,如大家所熟悉的心电图、脑电图、肌电图、胃电图、……等这些“生命的足迹”就是医生诊断疾病的科学依据。
生物电阻抗法八电极阻抗测量-概述说明以及解释

生物电阻抗法八电极阻抗测量-概述说明以及解释1.引言1.1 概述生物电阻抗法是一种用来测量生物体组织内部电阻抗的方法。
通过施加一定频率的电流,观察生物组织对电流的阻抗变化,可以得到有关生物体内部结构和功能的信息。
而八电极阻抗测量是一种先进的生物电阻抗法技术,它采用了八个电极,相比传统的四电极方法,八电极测量更加准确和可靠。
本文将介绍生物电阻抗法及其在医学、运动科学、康复和生理学等领域的应用。
我们将重点探讨八电极阻抗测量的原理和技术特点,以及其在不同领域中的优势和前景。
通过深入了解生物电阻抗法和八电极阻抗测量,我们可以更好地认识和理解生物体组织的结构和功能,为医疗诊断和疾病预防提供更多的参考信息。
json"1.2 文章结构": {"本文将首先介绍生物电阻抗法的基本概念和原理,以便读者能够对这一测量技术有一个清晰的了解。
接着,将详细阐述八电极阻抗测量的原理及其在生物医学领域的应用。
最后,将总结本文的主要观点,并展望生物电阻抗法在未来的发展方向。
通过本文的分析和讨论,读者将能够深入了解生物电阻抗法八电极阻抗测量的重要性和优势,为相关领域的研究和实践提供有益的参考。
"}1.3 目的本文旨在深入探讨生物电阻抗法中的八电极阻抗测量方法,介绍其原理、应用领域和优势。
通过详细分析和解释,旨在使读者更加了解生物电阻抗法及其在医疗、健康管理等领域的重要性和实用性。
同时,通过本文的介绍,可以帮助读者进一步认识生物电阻抗法在生物医学领域中的潜在应用和挖掘价值。
希望读者通过阅读本文,能够对生物电阻抗法八电极阻抗测量有清晰的认识和理解,促进其在相关领域的应用和推广。
2.正文2.1 生物电阻抗法概述:生物电阻抗法是一种非侵入性的生物医学测量技术,通过测量人体组织对电流的阻抗来获取关于组织结构和功能的信息。
这种技术利用生物体内电导率、电阻率和介质常数等特性,结合电路理论和生物医学工程原理,进而实现对人体内部信息的获取和分析。
第四章 生物电测量

二、电
电极: 金属片,金属丝
极
直接测量两点电位差
Cl-为导电膏,保证接触良好
将人体离子导电变为体外电子导电,相当于传感器
电极电位(接触电位)
• 金属离子扩散溶液,金属带负电 • 吸引离子沉淀,离子分布在电极附近,抑制扩散, • 当扩散与沉淀平衡时形成双电层(电容),产生电极电位
电离过程
金属离子扩散,溶液中负离子在电极上还原,都释放电子 体外电路为电子导电
局部电流产生刺激
•
在膜外侧,电流从静息膜流向兴奋膜;
• 在膜内侧,电流由兴奋膜流向静息膜。
• • • 结果使静息膜膜内侧电位升高而膜外侧降低,即发生了去极化。 当去极化使静息膜的膜电位达到阈电位水平时,大量钠通道被激活,引 起动作电位。 在末端复极化,局部电流使内膜电位低,外膜电位高,
3 心电测量基础
• 1903发明,1924年获得诺贝尔奖金
• 肢体导联(导线连接方式) • 标准导联,I,II,III,规定的测量方式
+,- 指接放大器的输入端
•4肢电位等于该连接点电位是近似的 •矩形内任意一点的电位,与A,B近似相等 •A,B间距离较近,近似等电位 •上下肢内两点ECG近似为0,包括头中的ECG也近似与上锁骨相同 •一个在手,一个在头,有无ECG •测量EMG不要在胸部,在肢体间(ECG小) •EEG要在脑部两点间
加压导联
• • • • aVR=VR-VC VC=-(VF+VL)/2,可用分压简单计算 VF+VR+VL=0,相当于0点从O到C aVR=VR+1/2VR=3/2VR
VC
C
O点,电位0 VC=(VF+VL)/2= -VR/2
aVL=3/2VL, aVF=3/2VF
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物电信号的信号源内阻很高,提 高放大器的输入阻抗可以提高信号 拾取的比例。 高输入阻抗也能减少因各电极阻抗 不一致造成的共模干扰。因此,提 高输入阻抗也能提高信噪比。
合适的通频带
通常是利用滤波器来完成。 高通滤波器可以用来消除电极电位漂移。 低通滤波器可以用来消除各种高频噪声, 尤其是工频噪声及其谐波,也能用于限制 信号的频宽以防采样时造成信号混叠。 不同生物电信号的频率范围不同,放大器 的频率响应范围也是不同的。
电气隔离和保护
现代生物电放大器都采用隔离放大 器,使得连接病人的放大器输入级 (应用部分)与放大器后级完全电 器隔离的。 电器隔离的主要目的是防止病人受 到电击,同时,该技术对抑制电源 干扰的影响也有一定的作用。
生物电放大器框图
前置放大器
隔离放大器
10-15倍
10-1000倍 高 通 滤 波 器 低 通 滤 波 器
共模干扰形成原因
位移电流
位移电流idb会 造成共模电位 Vc=idbZG
Z in Z in V V Vc Z in Z 2 Z in Z1
除了提高共模抑制比以外, 提高放大器的输入阻抗对减 小共模干扰很有帮助。另外, 尽可能的减少电极阻抗,减 小各电极阻抗之间的差别也 对减少共模干扰有好处。
信号微弱: 0.1μv~5mv; 信号的频率低:直流~几百赫兹以下 强噪声背景(信噪比小):如50HZ干扰,其他 生物电信号的干扰和测量设备本身的电子元器 件噪声的干扰。
电极电位影响:电极之间的电位差可达300mv, 不稳定,会形成基线漂移。(电极电位与电极 材料有关,也与电极安放、电极面积、电流密 度等有关系)
第二章 生物电测量技术
2.1 生物电信号
生物电信号
名称 心电 脑电 肌电 胃电 视网膜电 幅值 0.18mv 550μv 20μv30mv 50μv2mv 50μv200μv 频率范围 0100Hz 0.560Hz 103000Hz 0.00120Hz DC20Hz
生物电信号的测量特点
生物电放大器技术特点
采用差分放大器 高增益 低噪声 高输入阻抗 合适的通频带 电气隔离和保护
采用差分放大器
只能测得两个电极之间的生物电的电位差 值; 差分放大器仅对差模信号作正常放大,对 共模信号有抑制作用。由于生物电信号在 两个电极上是不同的,是差模信号,工频 干扰信号在两个电极上的幅度和相位基本 上是相同的,是共模信号。差分放大器可 以对差模信号放大而对共模信号抑制。
降低电极阻抗Z2 和Z1 降低id,将各引线屏蔽接地。
屏蔽线驱动
对于共模信号而言,分布 电容两端等电位,流过电 容的电流Ic=0,相当于阻抗 为无穷大,从而消除了屏 蔽线分布电容的影响。这 种方法称为屏蔽驱动。
右腿驱动电路
,D1和D2组成 的电路的共模增 益为1,在a、b 处的共模信号 V’c与被测体上 的共模信号Vc相 等,Vc=V’c。 Vc=idbRo+Vo,, 那么就有:
电 极 极 化 电 压 问 题
生物电放大器的滤波电路
高通滤波器:低频截止频率为fL=1/(2πRLCL)。 D4为RLCL电路提供了所需要的高输入阻抗,也有 增益Gd4=1+RH/R5,而且还组成了一阶有源低通滤 波器,高频截止频率为fH=1/(2πRHCH)。
共模干扰的消除方法
在进行生物电测量时,被测体(通常是 人体)受到电网形成的交流电场的作用, 会在人体上产生交流电位,这个电位在 体表各部分是相同的,是一个共模干扰
噪声
2 2 2 E rms en df Rs2 in df 4kTR s B f1 f1
f2
f2
噪声能量与温度、频带宽度、放大器的电流和 电压噪声有关 采用低噪声的前置放大器芯片,已有芯片可以 做到噪声电压小于 10nV / Hz 和噪声电流小 于 10 pA / Hz 。通常场效应管的运放的电压噪声较 双极型晶体管的运放大,但电流噪声远远小于 双极型晶体管的运放。 有限的频带宽度:使用滤波器限制频带宽度。 前级电路的噪声会被后级放大,这样就要求前 级输出噪声小于后级的输入噪声,所以第一级 元器件的噪声必须很低,而且增益足够大。
50Hz噪声干扰:电磁场干扰或仪器电源电压的干扰。 其它信号的干扰:如测量诱发脑电时自发脑电的干扰, 测量胎儿心电时的母体心电的干扰等。 电子元器件噪声干扰:热噪声和PC结噪声干扰。
第二章 生物电测量技术
2.2 生物电放大器
生物电放大器基本要求
不影响所检测部位的生理功能; 测得的信号不能有畸变; 必须能将有用信号和干扰分离开来; 必须对可能的电击伤害提供有效的防护; 放大器本身应能经受得起除颤器、电刀 等产生的大电流的冲击。
电极电位
前置放大器的增益实际上受到电极电位的限制, 一般允许两个电极之间的电位差达到300mV, 如果放大器电源采用6V,那么放大20倍基线就 处在饱和位置了。通常是采用隔直电容来解决 这个问题 由于生物电信号中的一些成分接近直流或本身 就是直流,如心电图的s-t段,所以这个高通滤 波器的截止频率很低,如心电图机的低频端截 止频率为0.05Hz。
-
+
Vout
前置放大器
差模增益: Gd1=1+2R2/R1 Gd2=R4/R3 共模增益: Gc1=1 总增益: Gd=Gd1Gd2
总的共模增益Gc为D3组成的差模放大器的共 模增益,共模抑制比CMRR=Gd/Gc。 电路中的R1常被用来调节增益
仪器放大器
有很多这样的集成电路芯片如AD620, INA118等,可以直接用来作为前置放大 器。
Z1 Z 2 V V Vc Z in
Vout
Z1 Z 2 Gd Vc Gd Vd Gd Vc CMRR Z in 电极引线中也会感 Nhomakorabea工频干扰
假定: 引线1中的电流是id1, 引线2中的电流是id2, 接地回路的电流=id1+ id2 因Z1和Z2的不一致而转 变为差模电位: V+ –V- = id1 Z2 – id2 Z1 = id (Z2 –Z1)
高增益
生物电信号非常弱小:通常放大 器的增益达500倍至1000000倍左 右,针对不同的信号应选择不同 的增益。
低噪声
由于信号弱小,放大器本身的噪声 幅度必须远低于信号幅度,尤其是 放大器的前置级噪声,它会与信号 一起经后级放大器放大,因此,前 置放大器的元件必须采用低噪声的。
高输入阻抗
EASY TO USE Gain Set with One External Resistor (Gain Range 1 to 1000) Wide Power Supply Range (±2.3 V to ±18 V) Higher Performance than Three Op Amp IA Designs Low Power, 1.3 mA max Supply Current
2R f Vc idb R Vc o Ra
思考题
生物电信号有哪些,他们的信号特征是 什么? 生物电放大器的基本要求和技术特点是 什么? 生物电放大器应有哪些部分组成? 请考虑设计一个用于心电放大的生物电 放大器。(先写出设计要求和技术指标)