余角、补角的概念和 性质
七年级数学上册《余角、补角的概念和性质》PPT

同角(等角)的补角相等
1 2 180 1 3 180
2 3
பைடு நூலகம்
1 2 180 3 4 180
且 2 3 1 4
归纳 同角(等角)的余角相等. 同角(等角)的补角相等.
一、填空:
1、若 50,则它的余角是_4_0_,它的 补角是_1_3_0_。
2、若 110 ,则它的补角是7_0__,它 的补角的余角是_2_0__ 。
1 2 90 1 2 90
1 3 90 2 3
1
3 4 90
且 2 3
1 4
4
2
3
类比余角的性质,补角是不是也有 类似的性质呢?
(1)1 与 2 , 3 都互为补角,
2与 3 的大小有什么关系呢? (2)1 与 2 互补,3 与4互补 , 且2 3,那 1 与 4的大小有什
请你写出你的结论并说明理由。 E
D
A
O
B
C
2
43
1
小结
互余的角
互补的角
数量 关系
对应 图形
1+ 2=90°
C N
D
E
1+ 2=180°
M AO B
性质 同角(等角)的余角 同角(等角)的补角
相等
相等
1 20
3 一个角的余角比它的补角的 还少 求这个角的度数。
互为余角 ( ×)。
3、互余的两个角一定都是锐角,两个锐角
一定互余 ( ×)。
例题:如图,O是直线AB上的一点,
射线OD和射线OE分别是平分AOC
和 BOC
,图中互余补的角有几对?
D
1 A
C
23
E
4
O
人教版数学七年级上册余角、补角的概念和性质课件

学习目标
1、掌握余角与补角的概念和性质,并能熟 练应用性质进行求值运算。 2、会利用方位角来描述物体的方位。
观赏意大利名胜比萨斜塔
1和 2有什么关系?
1
2
1和 2有什么关系?
1
2
3和 4有什么关系?
43
3和 4有什么关系?
43
2 1
4 3
如果两个角的 和为9 0 ,就说这两个角互为余角。
1 2
3 4
等角的余角相等
例2 1 与 2 互 补 , 3 与 4 互 补 , 如 果 1 = 3 , 那 么 2 与 4 相 等 吗 ? 为 什 么 ?
2
1
3
4
等角的补角相等
小结
互余
互补
两角间 1290 12180
的数量 关系
(190 2) (1180 2)
对应 图形
性质
同角或等角的 余角相等
70 39'
45
19 21'
90
135
109 21'
180
练一练
如图两堵墙围一个角AOB ,但人不能进入围 墙,我们如何去测量这个角的大小呢?
A
动动脑
C
B O
练一练
1、一个角的补角是它的余角的4倍,求这个 角的余角是多少度?
解另:解设:这设个这角个的角度的数余为角x 的,度则数依为题x 意,得
一男个子人 千如年果志胸,无吾大生志未,有既涯使。再有壮丽的举动也称不上是伟人。
如让图自两 己堵的墙内围心一藏个着角一条巨龙,,但既人是不一能种进苦入刑围,墙也,是我一们种如乐何趣去。测量这个角的大小呢?
1立、志一是个事角业的的补大角门是,它工的作余是角登的门4入倍室,的求旅这程个。
人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)

-重点二:余角、补角的性质掌握。学生需要熟练掌握互为余角、补角的两个角之间的数量关系,并能运用这些关系进行计算。
-举例:如果∠A和∠B互为余角,且∠A=40°,求∠B的度数。
-重点三:运用余角、补角解决实际问题。培养学生将余角、补角知识应用于实际问题的能力,如平面几何图形的角的求解等。
3.重点难点解析:在讲授过程中,我会特别强调余角和补角的概念以及它们之间的数量关系。对于难点部分,比如两个角的和的关系,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与余角、补角相关的实际问题,如直角三角形中的角度关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过剪纸或使用量角器,学生可以直观地观察到余角和补角的形成。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解余角和补角的基本概念。余角是指两个角的和等于90°的两个角,补角是指两个角的和等于180°的两个角。它们在几何图形的求解和平面角度的计算中非常重要。
2.案例分析:接下来,我们来看一个具体的案例。在一个等腰直角三角形中,底角的度数如何求解?通过余角的概念,我们可以轻松找到答案。
人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)
一、教学内容
人教版数学七年级上册4.3.3余角、补角的概念和性质。本节课我们将学习以下内容:
1.余角的概念:两个角的和等于90°时,这两个角互为余角。
2.补角的概念:两个角的和等于180°时,这两个角互为补角。
3.余角、补角的性质:
a.互为余角的两个角的和为90°;
四、教学流程
(一)导入新课(用时5分钟)
人教版 七年级上册余角、补角的概念和性质 优质课课件

观察可得结论: 同一个锐角的补角比它的余角大___9_0_°___.
典例精析
例1. 若一个角的补角等于它的余角的4 倍, 求这个角的度数.
解:设这个角是x°,则它的补角是(180° -x°),余角是(90°-x°) .
根据题意,得 180°-x°= 4 (90°-x°) 解得 x=60
答:这个角的度数是60 °.
课后作业
见《学练优》本课时练习
A
O
B
解:因为点A,O,B在同一直线上,
所以∠AOC和∠BOC互为补角.
又因为射线OD和射线OE分别平分∠AOC和∠BOC,
所以∠COD+∠COE=1/2∠AOC+1/2∠BOC
=1/2(∠AOC+∠BOC)=90°.
所以∠COD和∠COE互为余角,
同理∠COD和∠BOE,∠AOD和∠COE,
∠AOD和∠BOE也互为余角.
图中给出的各角,那些互为补角?
10o
30o
60o
80o
100o
120o
150o
170o
做一做
∠α 5° 32° 45° 77° 62°23′ x°(x<90)
∠α的余角 85° 58° 45° 13° 27°37′ 90° x°
∠α的补角 175°
148° 135° 103° 117°37′ 180° x°
二 余角和补角的性质
思考: ∠1与∠2,∠3都互为补角, ∠2与∠3的大小有什么关系?
1
2
结论:
∠2=180°-∠1
同角(等角)的补角相等
类似的可以得到:
同角(等角)的余角相等
3 ∠3=180°-∠1
例2 如图,点A,O,B在同一直线 D
初中数学教学课件:4.3.3 余角和补角(人教版七年级上)

(抢答题1)图中给出的各角,哪些互为余角?
10o
30o
50
o
60o
40
o
80
o
再显身手
∠α ∠α的余角
55°
35°
22°
68°
62°5′
X°
27°55′
90°- X°
二、补角的概念
如果两个角的和等于180°(平角),就说这两个角互为 补角,简称两个角互为补角,即其中一个角是另一个角 的补角. 2
解:∠COD和∠COE, 同理,∠AOD和∠BOE, ∠AOD和∠COE, ∠COD和∠BOE也互余
C
D
B
O
A
1.识图填空: 如图所示,O是直线AB上的一点,
OC是∠AOB的平分线. ∠BOD (1)∠AOD的补角是_______.
(2)∠AOD的余角是_________. ∠COD
综 合 检 测
1 1
几何语言表示为: 如果∠1+∠2=180°,那么∠1与∠2互为补角.
∠1=180°-∠2
抢答题2
图中给出的各角,哪些互为补角?
10o 30o
60
o
80o
100o 120o 150o
170o
再显身手
∠α 10° 32°15′ 90° 105° 108° ∠α的补角
170° 锐角的补角是钝角 147°45′ 90° 75° 钝角补角是锐角 72° 180° - X° 直角的补角是直角
今天我们学了什么?
余角、补角的概念:
(1)如果∠1+∠2=90°,那么∠1与∠2互为余角
(2)如果∠1+∠2=180°,那么∠1与∠2互为补角.
余角、补角的性质:
余角与补角

探究
同角的补角相等吗?
1
2
3
同角的补角相等
探究
等角的补角相等吗?
4 3
2
1
等角的补角相等
补角性质:
同角(等角) 的补角相等。
因为∠1+∠2=180° ∠1+∠3=180° 所以∠2=∠3
因为∠1+∠2=180° ∠3+∠4=180° 又 ∠1=∠3 所以∠2=∠4
例3
如图,点A,O,B在同一条直线 上,射线OD和射线OE分别平分 ∠AOC和∠BOC
10o
30o
60
o
80o
100o 120o 150o
170o
填一填
∠α
2° 45° 62°23′ x°
∠α的余角
∠α的补角
88° 178° 135° 45° 27°37′ 117°37′ (90 –x) ° (180-x) °
同一锐角的补角一定比这个角的余角大90°。
3 2
1
同角的余角相等
等角的余角相等
练一练
(1)∠1+∠2=90°则∠1是余角.( 错 ) (2) ∠1 +∠2+ ∠3=90°,则∠1 、∠2、 ∠3、 互为余角.( 错 ) (3)钝角没有余角,但一定有补角.( 对
)
(4)如果一个角有补角,那么这个角一定是钝
角.( 错 ) (5)互补的两个角不可能相等.( 错
)
算一算: 65° 4、∠A=25°,则它的余角为_______,
155° 它的补角为________.
40 ° 5、已知∠A=50°,则∠A的余角是____, 130° 90° 补角是____ ,补角与余角的差是_____.
数学课件余角和补角

余角的性质包括角度和为90度、余角之间的角度差为90度等。余角的定理包括同 角或等角的余角相等、互补角的余角互为补角等。这些性质和定理是数学中关于 角度的基本规则,对于理解几何图形和解决几何问题具有重要意义。
补角的性质和定理
总结词
补角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何问题具有重要意义。
计算公式
如果角A和角B互为补角,则它们 的度数之和为180度,即A + B = 180度。
实例
如果一个角是60度,那么它的补角 就是120度;如果一个角是90度, 那么它的补角就是90度。
余角和补角的综合计算
综合计算公式
如果一个角的余角和补角之和等于 180度,则这个角的度数为90度。
实例
如果一个角的余角是30度,它的补角 是150度,那么这个角的度数就是90 度。
感谢您的观看
THANKS
详细描述
互补性和互余性是余角和补角的基本性质。如果两个角互为 余角或补角,则它们的角度互补或相等。此外,同角或等角 的余角或补角也相等。这些性质在几何学中非常重要,可用 于解决各种几何问题。
02
余角和补角的性质和定理
余角的性质和定理
总结词
余角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何 问题具有重要意义。
解析
设这个角为x度,根据补角和余角的定义, 我们可以列出方程:180° - x = 2(90° - x)。 解这个方程可以得到x的值为60°。
余角和补角的综合练习题及解析
题目
已知一个角的余角是这个角的补角的 1/3,求这个角的度数。
解析
设这个角为x度,根据余角和补角的定 义,我们可以列出方程:90° - x = 1/3(180° - x)。解这个方程可以得到x 的值为45°。
2024年新华师大版数学七年级上册 3.6.3 余角和补角 教学课件

新知探究
探究2:类比探究 1,∠1 与∠2,∠3 都互为补角 ,∠2 与∠3 的大小有什么关系? 因为∠1 与∠2,∠3 都互为补角, 所以∠2 = 180° - ∠1,∠3 = 180° - ∠1.
补角的性质 同角 (等角) 的补角相等.
新知探究
典型例题 例1 如图,点 A,O,B 在同一条直线上,射线 OD
∵∠DOE=90°,∴∠AOD+∠BOE=90°. D
∴∠COD+∠COE=90°.
∴∠AOD+∠BOE=∠COD+∠COE.
∵OD平分∠AOC,∴∠AOD=∠COD.
∴∠BOE=∠COE.∴OE是∠BOC的平分线.A
O
C E
B
课堂小结
互余
两角间的 ∠1 +∠2 = 90° 数量关系 或∠1 = 90°-∠2
和射线 OE 分别平分∠AOC 和∠BOC,图中哪些角互
为余角? 分析:互为余角的两个角的和是90°, D 而已知条件中隐含互为补角的条件,
C E
再利用角平分线的条件,便可以发现 A O B
互为余角的角.
解:因为点 A,O,B 在同一条直线上
, 所以∠AOC 和∠BOC 互为补角.
补角的定义
新知探究
x°
(20 - x)° 30° 70°
(0<x<90) (0<x<20)
(90 - x)° (70 + x)° 60° 20° (180 - x)° (160 + x)° 150° 110°
观察可得结论: 锐角的补角比 它的余角大 __9_0_°_.
新知探究
3.若一个角的补角等于它的余角的 4 倍,求这 个角的度数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余角、补角的概念和性质
教学目标 1、通过现实情境,掌握余角和补角的概念;
2、使学生能用简单的代数思想——方程思想来处理图形的数量关系;
3、培养学生的识图能力、发展空间观念和知识运用能力,进一步感受学习数学的意义。
教学重点
认识角的互余、互补关系
教学难点认识角的互余、互补关系
学情分析
本节内容是《4.3角》这一节中的第三节,在前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验。
具备了一定的图形认识能力和借助图形分析和解决问题的能力,同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
我校学生学习基础比较薄弱,识图能力较差,基于以上原因,为更好的使学生理解余角和补角的概念,并为下一节性质作铺垫,特制定此教学内容。
学法指导
通过学生动脑想,勤钻研,主动地学习,增加学生主动参与的机会,增加学生的参与意识,教给学生获取知识的途径,思考问题的方法。
教学过程
教学内容教师活动学生活动效果预测(可能出现的问题)补救措施w 修改意见
一、创设情境,引入新课:
二、新课:
三、巩固练习
四、课堂小结
五、作业布置
1、让学生观察意大利著名建筑比萨斜塔。
比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。
设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。
提出问题:图中∠1与∠2、∠3与∠4有什么关系?
2、引出课题并板书:余角与补角
(一)、探究互余的定义:
1、操作多媒体演示。
引导观察图形的运动,得出结果:∠1+∠2=90°
2、定义:如果两个角的和等于90°(直角),就说这两个角互为余角. 简称互余。
其中一个角是另一个角的余角。
(二)、探究互为补角的定义:
1、操作多媒体演示。
引导观察图形的运动,得出结果:∠3+∠4=180°。
2、定义:如果两个角的和等于180°(平角),就说这两个角互为补角. 简称互补。
其中一个角是另一个角的补角。
(三)、练习(课件出示)
1、帮∠α找朋友。
小结1:互为余角、互为补角主要反映两个角之间的数量关系,与角的位置无关。
2、一个角的补角是它的余角的4倍,求这个角的余角是多少度?
3、如图两堵墙围一个角∠AOB ,但人不能进入围墙,我们如何去测量这个角的大小呢?
(四)、延伸(课件演示)
1 、等角的余角之间的关系
2、等角的补角之间的关系
课件出示巩固练习3小题,引导学生完成。
学生完成后引导评议
1、这节课我们主要学习了什么?(课件展示,引导小结)
P139习题第6题学生观察意大利著名建筑比萨斜塔。
思考提出的问题。
观察图形的运动,得出结果:∠1+∠2=90°
引导观察图形的运动,得出结果:∠3+∠4=180°
完成老师课件出示的练习题:先独立思考后小组交流
引导观察图形,得出:
1、等角的余角相等
2、等角的补角之间的关系相等
完成老师课件出示巩固练习3小题。
后交流评价
板书设计 4.3.3余角与补角
参考书目及
推荐资料
教学反思
文章
来源莲山
课件w w w.5y K J.Co m
相关教案:
∙ 2.1余角与补角导学案
∙余角与补角导学案。