高考全国卷三角函数、解三角形真题汇编(文科)

合集下载

专题20 三角函数及解三角形解答题丨十年高考数学真题分项汇编(解析版)(共62页)

专题20  三角函数及解三角形解答题丨十年高考数学真题分项汇编(解析版)(共62页)

十年(2014-2023)年高考真题分项汇编—三角函数解答题目录题型一:三角恒等变换...........................................................................1题型二:三角函数与向量综合...............................................................4题型三:三角函数的图像与性质...........................................................8题型四:正余弦定理的应用.................................................................20题型五:与三角形周长、面积有关问题..............................................38题型六:三角函数的建模应用.............................................................50题型七:结构不良型试题 (56)(1)求sin B 的值;(2)求c 的值;(3)求()sin B C -.【答案】(1)1313(2)5(3)26-解析:(1)由正弦定理可得,sin sin a b A B =,即2sin120sin B = ,解得:sin 13B =;(2)由余弦定理可得,2222cos a b c bc A =+-,即21394222c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,解得:5c =或7c =-(舍去).(3)由正弦定理可得,sin sin a c A C =,即5sin120sin C = ,解得:sin 26C =,而120A =o ,所以,B C 都为锐角,因此cos 26C ==,cos 13B ==,故()sin sin cos cos sin 1326132626B C B C B C -=-=⨯-⨯=-.2.(2023年新课标全国Ⅰ卷·第17题)已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010(2)6解析:(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,sin 10A ∴=.(2)由(1)知,10cos 10A ==,由sin sin()B A C =+23101025sin cos cos sin (210105A C A C =+=+=,由正弦定理,sin sin c bC B=,可得255522b ⨯==,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 610h b A ∴=⋅==.3.(2018年高考数学江苏卷·第16题)(本小题满分14分)已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos 2α的值;(2)求tan()αβ-的值.【答案】解析:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,29cos 25α=,因此27cos 22cos 125αα=-=-.(2)因为,αβ为锐角,所以(0,)αβπ+∈.又因为5cos()5αβ+=,所以25sin()5αβ+=,因此,tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--,因此,tan 2tan()2tan()tan[2()]1tan 2tan()11ααβαβααβααβ-+-=-+==-++.4.(2018年高考数学浙江卷·第18题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --.(1)求sin(π)α+的值;(2)若角β满足5sin()13αβ+=,求cos β值.【答案】(1)45;(2)5665-或1665.【解析】(1)由角α终边过点34(,55P --得4sin =5α-,所以4sin =sin =5απα+-().(2)由角α终边过点34(,55P --得3cos =5α-,由5sin()13αβ+=得12cos +=13αβ±().由()βαβα=+-得cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++当12cos()13αβ+=时,1235456cos 13513565β⎛⎫⎛⎫=⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭;当12cos()13αβ+=-时,1235416cos 13513565β⎛⎫⎛⎫⎛⎫=-⨯-+⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以56cos =65β-或1665.5.(2014高考数学广东理科·第16题)已知函数R x x A x f ∈+=),4sin()(π,且53122f π⎛⎫= ⎪⎝⎭,(1)求A 的值;(2)若23)()(=-+θθf f ,2,0(πθ∈,求)43(θπ-f .【答案】解:(1)依题意有55233sin sin 12124322f A A ππππ⎛⎫⎛⎫=+=== ⎪ ⎪⎝⎭⎝⎭,所以A =(2)由(1)得()),4f x x x Rπ=+∈,()()3sin sin 442f f ππθθθθθ⎤⎛⎫⎛⎫∴+-=++-+==⎪ ⎪⎥⎝⎭⎝⎭⎦cos 4θ∴=,(0,)sin 24πθθ∈∴=== 33304444f πππθθθ⎛⎫⎛⎫∴-=-+==⎪ ⎝⎭⎝⎭6.(2014高考数学江苏·第15题)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.【答案】(1)1010-;(2)43310+-解析:(1)因为α∈π,π2⎛⎫⎪⎝⎭,sin α=55,所以cos α=255=-.故sin π4α⎛⎫+ ⎪⎝⎭=sin π4cos α+cos π4sin α=252510⎛⎫⨯-+⨯= ⎪ ⎪⎝⎭.(2)由(1)知sin2α=2sin αcos α=42555⎛⨯⨯-=- ⎝⎭,cos2α=1-2sin 2α=1-2325⨯=⎝⎭,所以cos 5π5π5π2cos cos 2sin sin 2666ααα⎛⎫-=+ ⎪⎝⎭=314525⎛⎛⎫⨯+⨯-= ⎪ ⎝⎭⎝⎭题型二:三角函数与向量综合1.(2014高考数学山东理科·第16题)已知向量(,cos 2)a m x = ,(sin 2,)b x n = ,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-.(Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.【答案】(Ⅰ)⎩⎨⎧==13n m (Ⅱ)z k k k ∈+-],,2[πππ解析:(Ⅰ)已知x n x m b a x f 2cos 2sin )(+=⋅=,)(x f 过点)2,32(),3,12(-ππ36cos 6sin 12(=+=∴πππn m f 234cos 34sin )32(-=+=πππn mf 1221222m n m n ⎧+=⎪⎪∴⎨⎪--=-⎪⎩解得⎩⎨⎧==13n m .(Ⅱ))62sin(22cos 2sin 3)(π+=+=x x x x f )(x f 左移ϕ后得到622sin(2)(πϕ++=x x g 设)(x g 的对称轴为0x x =,1120=+=x d 解得00=x 2)0(=∴g ,解得6πϕ=x x x x g 2cos 222sin(2)632sin(2)(=+=++=∴πππ222,k x k k Zπππ∴-+≤≤∈,2k x k k Z πππ∴-+≤≤∈)(x f ∴的单调增区间为[,],2k k k Zπππ-+∈2.(2017年高考数学江苏文理科·第16题)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =(2)0x =时,()f x 取得最大值,为3;5π6x =时,()f x取得最小值,为-.解析:解:(1)因为 cos ,s n )i (x x = a,(3,= b ,a b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是3tan 3x =.又[0,]x π∈,所以5π6x =.(2)π(cos ,sin )(3,3cos s ()o (6f x x x x x x =⋅=⋅==+ a b .因为[0,]x π∈,所以ππ7π[,666x +∈,从而π1cos()62x -≤+≤.于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x取到最小值-.3.(2014高考数学辽宁理科·第17题)(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙= ,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.【答案】(1)a =3,c =2;(2)2327解析:(1)2BA BC ∙= ,1cos 3B =,cos 2BA BC B ∴∙= ,即6a c ⋅=①,由余弦定理可得2221cos 23a c b B ac +-==,化简整理得2213a c +=②,①②联立,解得,a =3,c =2;(2)12cos ,sin 33B B =∴== ,因为a =3,3b =,c =2,由余弦定理可得2227cos29a cb Cab -+==,42sin 9C ∴==,7123cos()cos cos sin sin 939327B C B C B C ∴-=+=⋅+⋅=.解析2:(2)在△ABC 中,1cos ,sin 33B B =∴==,根据正弦定理sin sin b cB C=可得sin 42sin 9c B C b ==,a b c => ,C ∴为锐角,7cos 9C ∴==,7142223cos()cos cos sin sin 939327B C B C B C ∴-=+=⋅+⋅=.4.(2015高考数学陕西理科·第17题)(本小题满分12分)C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量()m a =与()cos ,sin n =A B平行.(Ⅰ)求A ;(Ⅱ)若a =2b =求C ∆AB 的面积.【答案】(Ⅰ)3π;(Ⅱ)2.分析:(Ⅰ)先利用//m n可得sin sin 0a B -A =,再利用正弦定理可得tan A 的值,进而可得A 的值;(Ⅱ)由余弦定理可得c 的值,进而利用三角形的面积公式可得C ∆AB 的面积.解析:(Ⅰ)因为//m n,所以sin cos 0a B A =,由正弦定理,得sinA sinB A 0-=又sin 0B ≠,从而tan A =,由于0A π<<,所以3A π=(Ⅱ)解法一:由余弦定理,得2222cos a b c bc A=+-而2,a ==3πA =得2742c c =+-,即2230c c --=因为0c >,所以3c =.故C ∆AB的面积为1bcsinA 22=.解法二:由正弦定理,得72sin sin 3π=B,从而21sin 7B =,又由a b >,知A B >,所以cos 7B =.故()321sinC sin A B sin sin cos cos sin 33314B B πππ⎛⎫=+=B +=+=⎪⎝⎭所以C ∆AB的面积为133bcsinA22=.5.(2015高考数学广东理科·第16题)(本小题满分12分)在平面直角坐标系xOy 中,已知向量,22m ⎛⎫=- ⎪ ⎪⎝⎭ ,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x的值;(2)若m与n 的夹角为3π,求x 的值.【答案】解析:(1) ,22m ⎛⎫=- ⎪ ⎪⎝⎭ ,(sin,cos )n x x =,且m n ⊥ ,sin sin cos 0,sin cos ,tan 122cos x m nx x x x xx∴⋅=-=∴===(2)11sin cos ||||cos ,sin()223242m n x x m n x ππ⋅=-=⋅=∴-=5(0,,,,24444612x x x x πππππππ⎛⎫∈∴-∈-∴-== ⎪⎝⎭题型三:三角函数的图像与性质1.(2014高考数学江西理科·第17题)已知函数()sin()cos(2)f x x a x θθ=+++,其中,(,22a R ππθ∈∈-(1)当4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.【答案】(1最小值为-1.(2)1.6a πθ=-⎧⎪⎨=-⎪⎩分析:(1)求三角函数最值,首先将其化为基本三角函数形式:当4a πθ==时,22()sin(sin cos sin()42224f x x x x x x x πππ=+++=+=-,再结合基本三角函数性质求最值:因为[0,]x π∈,从而3[,]444x πππ-∈-,故()f x 在[0,]π上的最大值为2,2最小值为-1.(2)两个独立条件求两个未知数,联立方程组求解即可.由(02()1f f ππ⎧=⎪⎨⎪=⎩得2cos (12sin )02sin sin 1a a a θθθθ-=⎧⎨--=⎩,又(,22ππθ∈-知cos 0,θ≠解得1.6a πθ=-⎧⎪⎨=-⎪⎩解析:解(1)当4a πθ==时,22()sin())sin cos sin()42224f x x x x x x x πππ=+++=+-=-因为[0,]x π∈,从而3[,444x πππ-∈-故()f x 在[0,]π上的最大值为2,2最小值为-1.(2)由()02()1f f ππ⎧=⎪⎨⎪=⎩得2cos (12sin )02sin sin 1a a a θθθθ-=⎧⎨--=⎩,又(,)22ππθ∈-知cos 0,θ≠解得1.6a πθ=-⎧⎪⎨=-⎪⎩2.(2019·浙江·第18题)设函数()sin f x x =,x ∈R .(Ⅰ)已知[0,2)θπ∈,函数()f x θ+是偶函数,求θ的值;(Ⅱ)求函数22[([(124y f x f x ππ=+++的值域.【答案】【意图】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力。

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。

文科数学解三角形专题高考题练习附答案

文科数学解三角形专题高考题练习附答案

文科数学解三角形专题高考题练习附答案解三角形专题练习1、在b 、c ,向量()2sin ,3m B =-,2cos 2,2cos 12B n B ?=- ??,且//m n 。

(I )求锐角B 的大小;(II )如果2b =,求ABC ?的面积ABC S ?的最大值。

2、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值;(II )若2=?BC BA ,且22=b ,求c a 和b 的值. 3、在ABC ?中,5cos 5A =,10cos 10B =. (Ⅰ)求角C ;(Ⅱ)设2AB =,求ABC ?的面积.4、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =u r,(sin ,1cos ),//,3.n A A m n b c a =++=r u r r满足(I )求A 的大小;(II )求)sin(6π+B 的值.5、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。

6、在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知11tan ,tan 23A B ==,且最长边的边长为l.求:(I )角C 的大小;(II )△ABC 最短边的长.7、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且c o s c o s B C ba c=-+2. (I )求角B 的大小;(II )若b a c =+=134,,求△ABC 的面积. 8、(2009全国卷Ⅱ文)设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,23cos )cos(=+-B C A ,ac b =2,求B. 9、(2009天津卷文)在ABC ?中,A C AC BC sin 2sin ,3,5=== (Ⅰ)求AB 的值。

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8.三角函数、解三角形2011年—2018年新课标全国卷Ⅰ文科数学分类汇编7.三角函数、解三角形一、选择题2018年新课标Ⅰ文8题:已知函数$f(x)=2\cos x-\sin x+2$,则$f(x)$的最小正周期为$\pi$,最大值为3.2018年新课标Ⅰ文11题:已知角$\alpha$的顶点为坐标原点,始边与$x$轴的非负半轴重合,终边上有两点$A(1,0)$,$B(2,b)$,且$\cos2\alpha=\frac{1}{5}$,则$a-b=\frac{1}{5}$。

2018年新课标Ⅱ文7题:在$\triangle ABC$中,$\cos C=\frac{5}{\sqrt{26}}$,$BC=1$,$AC=5$,则$AB=5\sqrt{2}$。

2018年新课标Ⅱ文10题:若$f(x)=\cos x-\sin x$在$[0,a]$是减函数,则$a$的最大值是$\frac{3\pi}{4}$。

2018年新课标Ⅲ文4题:若$\sin \alpha=\frac{1}{\sqrt{8}}$,则$\cos 2\alpha=-\frac{7}{8}$。

2018年新课标Ⅲ文6题:函数$f(x)=\frac{\tan x}{1+\tan^2 x}$的最小正周期为$\pi$。

2018年新课标Ⅲ文11题:triangle ABC$的内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$。

若$\triangle ABC$的面积为$4$,则$\cosC=\frac{3}{4}$。

2017年新课标Ⅰ文11题:triangle ABC$的内角$A$、$B$、$C$的对边分别为$a$、$b$、$c$。

已知$\sin B+\sin A(\sin C-\cos C)=\frac{3}{2}$,$a=2$,$c=2$,则$C=\frac{\pi}{3}$。

全国卷文科数学试题汇编三角函数与解三角形

全国卷文科数学试题汇编三角函数与解三角形

全国卷文科数学试题集(3)——三角函数与解三角形一、选择题1.(2007全国卷)函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤⎢⎥⎣⎦,的简图是( )2.(2007全国卷)若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( ) A.72-B.12-C.12D.723.(2008全国卷)函数()cos22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32D. -2,324.(2009全国卷1)sin585°的值为(A) 22-(B)22 (C)32- (D) 325.(2009全国卷1)已知tan a =4,cot β=13,则tan(a+β)=(A)711 (B)711- (C) 713 (D) 713-6.(2009全国卷1)如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为(A)6π (B) 4π (C) 3π (D) 2π 7.(2009新课标2)已知△ABC 中,12cot 5A =-,则cos A =(A) 1213 (B) 513(C) 513- (D) 1213-yx11- 2π- 3π- O6π πy x11-2π- 3π- O 6π π yx11-2π-3π O 6π- πy xπ 2π-6π- 1 O1-3π A. B. C.D.8.(2009新课标2)若将函数)0)(4tan(>+=ωπωx y 的图像向右平移6π个单位长度后,与函数)6tan(πω+=x y 的图像重合,则ω的最小值为(A)61 (B)41 (C)31 (D)219.(2009全国卷1)有四个关于三角函数的命题:1p :∃x ∈R ,2sin 2x +2cos 2x =122p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π,1cos 2sin 2xx -= 4p : sin cos 2x y x y π=⇒+=其中假命题的是( )A .1p ,4pB .2p ,4pC .1p ,3pD .2p ,3p 10.(2010全国卷1)(1)cos300︒=(A)32-(B)-12 (C)12(D) 32 11.(2010全国卷1)已知α为第二象限的角,3sin 5a =,则tan 2α= . 12.(2010新课标.宁夏)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为13.(2010新课标宁夏卷)若sin a = -45,a 是第一象限的角,则sin()4a π+= (A )-7210 (B )7210 (C )2 -10 (D )21014.(2010新课标2)已知2sin 3α=,则cos(2)x α-= (A )53-(B )19- (C )19 (D )5315.(2011全国卷1)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9 16.(2011全国卷2)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A . 45-B .35-C .35D .4517.(2011全国卷2)设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称18.(2012全国卷1)(3)若函数()sin ([0,2])3x f x ϕϕπ+=∈是偶函数,则=ϕ(A )2π (B )32π(C )23π (D )35π19.(2012全国卷1)已知α为第二象限角,3sin 5α=,则sin 2α= (A )2524- (B )2512- (C )2512 (D )252420.(2013全国卷1)已知a 是第二象限角,5sin ,cos 13a a ==则(A )1213- (B )513- (C )513 (D )121321.(2013新课标1)若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 (A )5 (B )4 (C )3 (D )222.(2014全国卷1)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B. 35 C. -35 D. -4523.(2014新课标2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α24.(2014新课标2)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③25.(2015新课标1)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈二、填空题26.已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫= ⎪⎝⎭______.27.(2010新课标宁夏卷)在ABC 中,D 为BC 边上一点,3BC BD =,2AD =,135ADB ο∠=.若2AC AB =,则BD=_____28.(2010新课标2)已知α是第二象限的角,tan α=1/2,则cos α=__________ 29.(2011全国卷1)已知3(,)2παπ∈,tan 2α=,则cos α= . 30.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.31.(2012全国卷1)椭圆的中心在原点,焦距为4,一条准线为4x =-(15)当函数sin 3cos (02)y x x x π=-≤<取得最大值时,x =___________.32.(2014全国卷)函数cos22sin y x x =+的最大值为 .33.(2014新课标1)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .34.(2014新课标2)函数xx x f cos sin 2)sin()(ϕϕ-+=的最大值为________.三、解答题 35.(2007全国卷)(本小题满分12分)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个侧点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .36.(2008全国卷)(12分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形, ∠ACB=90°,BD 交AC 于E ,AB=2。

2024年高考数学真题分类汇编(三角函数篇,解析版)

2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

—高考全国卷Ⅰ文科数学三角函数、解三角形汇编

—高考全国卷Ⅰ文科数学三角函数、解三角形汇编

新课标全国卷Ⅰ文科数学汇编三角函数、解三角形一、选择题【2021,11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .sin sin (sin cos )0B A C C +-=,a=2,2那么C=( ) A .π12B .π6C .π4D .π3【2021,4】ABC △的内角A B C ,,的对边分别为a b c ,,.5a =2c =,2cos 3A =,那么b =〔 〕 A .2 B3 C .2 D .3【2021,6】假设将函数π2sin 26y x ⎛⎫=+⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函数为〔 〕. A .π2sin 24y x ⎛⎫=+⎪⎝⎭ B .π2sin 23y x ⎛⎫=+ ⎪⎝⎭ C .π2sin 24y x ⎛⎫=- ⎪⎝⎭ D .π2sin 23y x ⎛⎫=- ⎪⎝⎭【2021,8】函数f (x )=cos(ωx +φ)的局部图像如下列图,那么f (x )的单调递减区间为( ) A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈ D .13(2,2),44k k k Z -+∈ 【2021,7】在函数① y=cos|2x|,②y=|cos x |,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③【2021,2】假设tan 0α>,那么〔 〕A . sin 0α>B . cos 0α>C . sin 20α>D . cos 20α>【2021,10】锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,那么b =( )A .10B .9C .8D .5 【2021,9】9.0ω>,0ϕπ<<,直线4x π=和54x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,那么ϕ=〔 〕 A .4π B .3π C .2πD .34π【2021,7】角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,那么cos 2θ=〔 〕.A .45-B .35-C .35D .45【2021,11】设函数ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,那么 〔 〕 A .()f x 在π0,2⎛⎫⎪⎝⎭单调递增,其图象关于直线π4x =对称 B .()f x 在π0,2⎛⎫⎪⎝⎭单调递增,其图象关于直线π2x =对称 C .()f x 在π0,2⎛⎫⎪⎝⎭单调递减,其图象关于直线π4x =对称 D .()f x 在π0,2⎛⎫⎪⎝⎭单调递减,其图象关于直线π2x =对称 二、填空题【2021,15】0,2πα⎛⎫∈ ⎪⎝⎭,tan 2α=,那么cos 4πα⎛⎫-= ⎪⎝⎭________. 【2021,】14.θ是第四象限角,且π3sin 45θ⎛⎫+= ⎪⎝⎭,那么πtan 4θ⎛⎫-= ⎪⎝⎭. 【2021,16】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,那么cos θ=______.【2021,16】如下列图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角 45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒. 山高100BC m =,那么山高MN = m . 【2021,15】ABC △中,120B =,7AC =,5AB =,那么ABC △的面积为 . 三、解答题【2021,17】,,a b c 分别为ABC △内角,,A B C 的对边,2sin 2sin sin B A C =.〔1〕假设a b =,求cos B ;〔2〕设90B ∠=,且2a =ABC △的面积.【2021,17】a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,3sin cos c a C c A -.〔1〕求A ;〔2〕假设2a =,△ABC 3b ,c .解 析一、选择题【2021,11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .sin sin (sin cos )0B A C C +-=,a=2,2那么C=( ) A .π12B .π6C .π4D .π3【答案】B【解法】解法一:因为sin sin (sin cos )0B A C C +-=,sin sin()B A C =+,所以sin (sin cos )0C A A +=,又sin 0C >,所以sin cos A A =-,tan 1A =-,又0A π<<,所以34A π=,又a =2,c 222=即1sin 2C =.又02C π<<,所以6C π=,应选B .解法二:由解法一知sin cos 0A A +=2)04A π+=,又0A π<<,所以34A π=.下同解法一.【2021,4】ABC △的内角A B C ,,的对边分别为a b c ,,.5a =2c =,2cos 3A =,那么b =〔 〕 A .2 B3 C .2 D .3解析:选D .由余弦定理得222cos 2b c a A bc +-=,即245243b b +-=, 整理得()28113033b b b b ⎛⎫--=-+= ⎪⎝⎭,解得3b =.应选D . 【2021,6】假设将函数π2sin 26y x ⎛⎫=+⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函数为〔 〕. A .π2sin 24y x ⎛⎫=+⎪⎝⎭ B .π2sin 23y x ⎛⎫=+ ⎪⎝⎭ C .π2sin 24y x ⎛⎫=- ⎪⎝⎭ D .π2sin 23y x ⎛⎫=- ⎪⎝⎭解析:选D .将函数π2sin 26y x ⎛⎫=+⎪⎝⎭的图像向右平移14个周期,即向右平移π4个单位, 故所得图像对应的函数为ππ2sin 246y x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦π2sin 23x ⎛⎫=- ⎪⎝⎭.应选D . 【2021,8】函数f (x )=cos(ωx +φ)的局部图像如下列图,那么f (x )的单调递减区间为( ) A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈ D .13(2,2),44k k k Z -+∈ 解:选D .依图,153++4242ππωϕωϕ==且,解得ω=π,=4πϕ, ()cos()4f x x ππ∴=+,224k x k πππππ<+<+由,,解得132244k x k -<<+,应选D . 【2021,7】在函数① y=cos|2x|,②y=|cos x |,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解:选A .由cos y x =是偶函数可知①y=cos|2x|=cos2x ,最小正周期为π;②y=|cos x |的最小正周期也是π;③中函数最小正周期也是π;正确答案为①②③,应选A【2021,2】假设tan 0α>,那么〔 〕A . sin 0α>B . cos 0α>C . sin 20α>D . cos 20α>解:选C .tan α>0,α在一或三象限,所以sin α与cos α同号,应选C【2021,10】锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,那么b =( ).A .10B .9C .8D .5解析:选D .由23cos 2A +cos 2A =0,得cos 2A =125.∵A ∈π0,2⎛⎫⎪⎝⎭,∴cos A =15. ∵cos A =2364926b b+-⨯,∴b =5或135b =-(舍).【2021,9】9.0ω>,0ϕπ<<,直线4x π=和54x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,那么ϕ=〔 〕A .4πB .3πC .2πD .34π【解析】选A .由直线4x π=和54x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,得()sin()f x x ωϕ=+的最小正周期52()244T πππ=-=,从而1ω=. 由此()sin()f x x ϕ=+,由4x π=处()sin()f x x ϕ=+取得最值,所以sin()14πϕ+=±,结合选项,知ϕ=4π,应选择A .【2021,7】角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,那么cos 2θ=〔 〕.A .45-B .35-C .35D .45【解析】设(,2)(0)P t t t ≠为角θ终边上任意一点,那么cosθ=当0t >时,cos 5θ=;当0t <时,cos 5θ=-.因此223cos 22cos 1155θθ=-=-=-.应选B .【2021,11】设函数ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,那么 〔 〕 A .()f x 在π0,2⎛⎫⎪⎝⎭单调递增,其图象关于直线π4x =对称 B .()f x 在π0,2⎛⎫⎪⎝⎭单调递增,其图象关于直线π2x =对称 C .()f x 在π0,2⎛⎫⎪⎝⎭单调递减,其图象关于直线π4x =对称 D .()f x 在π0,2⎛⎫⎪⎝⎭单调递减,其图象关于直线π2x =对称【解析】因为ππππ()sin 2cos 2224444f x x x x x ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当π02x <<时,02πx <<,故()f x x =在π0,2⎛⎫⎪⎝⎭单调递减.又当π2x =π22⎛⎫⨯= ⎪⎝⎭π2x =是()y f x =的一条对称轴.应选D .二、填空题【2021,15】0,2πα⎛⎫∈ ⎪⎝⎭,tan 2α=,那么cos 4πα⎛⎫-= ⎪⎝⎭________..0,2πα⎛⎫∈ ⎪⎝⎭,sin tan 22sin 2cos cos ααααα=⇒=⇒=,又22sin cos 1αα+=,解得sin 5α=,cos 5α=,cos (cos sin )4210πααα⎛⎫∴-=+= ⎪⎝⎭.【根本解法2】0,2πα⎛⎫∈ ⎪⎝⎭,tan 2α=,∴角α的终边过(1,2)P ,故sin 5y r α==,5cos x r α==225r x y =+=,2310cos sin )4πααα⎛⎫∴-=+=⎪⎝⎭. 【2021,】14.θ是第四象限角,且π3sin 45θ⎛⎫+= ⎪⎝⎭,那么πtan 4θ⎛⎫-= ⎪⎝⎭ . 解析:43-.由题意sin sin 442θθπππ⎡⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 45θπ⎛⎫=-= ⎪⎝⎭. 因为2222k k θ3ππ+<<π+π()k ∈Z ,所以722444k k θ5ππππ+<-<π+()k ∈Z , 从而4sin 45θπ⎛⎫-=- ⎪⎝⎭,因此4tan 43θπ⎛⎫-=- ⎪⎝⎭.故填43-. 方法2:还可利用ππtan tan 144θθ⎛⎫⎛⎫-+=- ⎪ ⎪⎝⎭⎝⎭来进行处理,或者直接进行推演,即由题意4cos 45θπ⎛⎫+= ⎪⎝⎭,故3tan 44θπ⎛⎫+= ⎪⎝⎭,所以tan 4θπ⎛⎫-= ⎪⎝⎭143tan 4θ-=-π⎛⎫+ ⎪⎝⎭. 【2021,16】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,那么cos θ=______.答案:解析:255-. ∵f (x )=sin x -2cos x 5x -φ),其中sin φ=255cos φ=55.当x -φ=2k π+π2(k ∈Z)时,f (x )取最大值.即θ-φ=2k π+π2(k ∈Z),θ=2k π+π2+φ(k ∈Z).∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=25.【2021,16】16.如下列图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及 75MAC ∠=︒;从C 点测得60MCA ∠=︒.山高100BC m =,那么山高MN = m .解:在RtΔABC 中,由条件可得1002AC =,在ΔMAC 中,∠MAC=45°;由正弦定理可得sin 60sin 45AM AC =︒︒,故310032AM =,在直角RtΔMAN 中,MN=AM sin60°=150.【2021,15】ABC △中,120B =,7AC =,5AB =,那么ABC △的面积为 .【解析】由余弦定理知2222cos120AC AB BC AB BC =+-⋅,即249255BC BC =++,解得3BC =.故11sin120532224ABC S AB BC =⋅=⨯⨯⨯=△.故答案为4.三、解答题【2021,17】,,a b c 分别为ABC △内角,,A B C 的对边,2sin 2sin sin B A C =.〔1〕假设a b =,求cos B ;〔2〕设90B ∠=,且a =ABC △的面积.解析:〔1〕由正弦定理得,22b ac =.又a b =,所以22a ac =,即2a c =.那么22222212cos 2422a a a a cb B a ac a ⎛⎫+- ⎪+-⎝⎭===⋅. 〔2〕解法一:因为90B ∠=,所以()2sin 12sin sin 2sin sin 90B A C A A ===-,即2sin cos 1A A =,亦即sin 21A =.又因为在ABC △中,90B ∠=,所以090A <∠<,那么290A ∠=,得45A ∠=.所以ABC △为等腰直角三角形,得a c ==112ABC S ==△.解法二:由〔1〕可知22b ac =,①因为90B ∠=,所以222a cb +=,②将②代入①得()20a c -=,那么a c ==112ABC S ==△.解:(Ⅰ) 因为sin 2B =2sin A sin C . 由正弦定理可得b 2=2ac .又a =b ,可得a=2c , b=2c ,由余弦定理可得2221cos 24a cb Bac. (Ⅱ)由(Ⅰ)知b 2=2ac . 因为B=90°,所以a 2+c 2=b 2=2ac . 解得a = 所以ΔABC 的面积为1.【2021,17】a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,sin cos c C c A-.〔1〕求A ;〔2〕假设2a =,△ABC b ,c .【解析】〔1〕根据正弦定理2sin sin a cR A C==,得A R a sin 2=, C R c sin 2=,因为sin cos c C c A =-,所以2sin sin )sin 2sin cos R C R A C R C A =-⋅, 化简得C C A C A sin sin cos sin sin 3=-, 因为0sin ≠C ,所以1cos sin 3=-A A ,即21)6sin(=-πA , 而π<<A 0,6566πππ<-<-A ,从而66ππ=-A ,解得3π=A . 〔2〕假设2a =,△ABC1〕得3π=A ,那么⎪⎪⎩⎪⎪⎨⎧==-+=43cos 233sin 21222a bc c b bc ππ,化简得⎩⎨⎧=+=8422c b bc , 从而解得2=b ,2=c .。

新版高考数学真题分类汇编:专题(04)三角函数与解三角形(文科)及答案

新版高考数学真题分类汇编:专题(04)三角函数与解三角形(文科)及答案

3
12
平移 个单位,故选 B . 12
【考点定位】三角函数图象的变换 .
【名师点睛】本题考查三角函数图象的变换,解答本题的关键,是明确平移的方向和单位数,
这取决于 x 加或减的数据 . 本题属于基础题,是教科书例题的简单改造,易错点在于平移的方
向记混 .
4. 【 20xx 高考陕西,文 6】“ sin
【 名 师 点 睛】 1. 本 题考查 三 角 恒 等变 换 和 命题的 充 分 必 要性 , 采 用二倍 角 公 式 展开
cos2 0 ,求出 sin cos 或 sin
cos .2. 本题属于基础题,高考常考题型 .
【 20xx 高考上海, 文 17】已知点 A 的坐标为 (4 3,1) ,将 OA 绕坐标原点 O 逆时针旋转 至 3
【答案】
2
【解析】由题根据三角函数图像与性质可得交点坐标为
1 ( (k1
1 ,2),( ( k2 4
5 , 2), k1, k2 Z , 距离最短的两个交点一定在同
4
一个周期内,
2
23
15 2( 4
)2 ( 2 2)2, 4
.
2
【考点定位】三角函数图像与性质
【名师点睛】正、余弦函数的图像既是中心对称图形,又是轴对称图形

【答案】
3 ,
2
2
【解析】 f x sin 2 x sin x cos x 1 1 sin 2x 1 cos2x 1 1 sin 2x 1 cos2x 3
2
2
2
2
2
2
3
2
sin(2 x ) ,所 x)min 2
.
2
【考点定位】 1. 三角函数的图象与性质; 2. 三角恒等变换 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2017 高考全国卷三角函数、解三角形真题汇编(文科)学校:姓名:班级:考号:
一、选择题
1. [2017·全国新课标卷I(文)]函数y=sin2x
1-cosx
的部分图象大致为()
A. B. C.
D.
2. [2017·全国新课标卷I(文)]△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C= ()
A. π
12B. π
6
C. π
4
D. π
3
3. [2017·全国新课标卷II(文)]函数f(x)=sin(2x+π
3
)的最小正周期为 ()
A. 4π
B. 2π
C. π
D. π
2
4. [2017·全国新课标卷III (文)]已知sin α-cos α=4
3
,则sin 2α=()
A. -7
9B. -2
9
C. 2
9
D. 7
9
5. [2017·全国新课标卷III (文)]函数f(x)=1
5sin(x+π
3
)+cos(x-π
6
)的最大值为()
A. 6
5B. 1 C. 3
5
D. 1
5
6. [2017·全国新课标卷III (文)]函数y=1+x+sinx
x2
的部分图象大致为()
A. B.
C.
D.
7. [2016·高考全国新课标卷Ⅰ(文),4]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知
a =√5,c =2,cos A =23
,则b = ( )
A. √2
B. √3
C. 2
D. 3
8. [2016·高考全国新课标卷Ⅰ(文),6]将函数y =2sin (2x +π
6
)的图象向右平移14
个周期后,所得图
象对应的函数为 ( )
A. y =2sin (2x +π4)
B. y =2sin (2x +π3)
C. y =2sin (2x -π4
) D.
y =2sin (2x -π3
)
9. [2016·高考全国新课标卷Ⅰ(文),12]若函数f (x )=x -1
3
sin 2x +a sin x 在(-∞,+∞)单调递增,则
a 的取值范围是 ( )
A. [-1,1]
B. [-1,1
3] C. [-13,1
3] D. [-1,-1
3
]
10. [2016·高考全国新课标卷Ⅱ(文),3]函数y =A sin(ωx +φ)的部分图象如图所示,则 ( )
A. y =2sin (2x -π
6) B. y =2sin (2x -π
3) C. y =2sin (x +π
6) D. y =2sin (x +
π
3
) 11. [2016·高考全国新课标卷Ⅱ(文),11]函数f (x )=cos2x +6cos (π
2
-x)的最大值为( ) A. 4 B. 5 C. 6 D. 7
12. [2016·高考全国新课标卷Ⅲ(文),6]若tan θ=-1
3
,则cos 2θ= ( )
A. -4
5 B. -15 C. 15 D. 45
13. [2016·高考全国新课标卷Ⅲ(文),9]在△ABC 中,B =π
4,BC 边上的高等于1
3BC ,则sin A = ( ) A. 3
10 B. √10
10 C. √5
5 D.
3√10
10
14. [2015·高考全国新课标卷Ⅰ(文),8]函数f (x )=cos(ωx+φ)的部分图象如图所示,则f (x )的单调递减区间为( )
A. (kπ-1
4,kπ+3
4),k ∈Z B. (2kπ-1
4,2kπ+3
4),k ∈Z
C. (k -14,k +34),k ∈Z
D. (2k -14,2k +3
4),k ∈Z
15. [2014﹒高考全国新课标卷Ⅰ(文),7]在函数
①y =cos|2x |,②y =|cos x |,③y =cos(2x +π6
),④y =tan(2x -π4
)中,最小正周期为π的所有函数为( )
A. ②④
B. ①③④
C. ①②③
D. ①③
16. [2013·高考全国新课标卷I(文),9]函数f (x )=(1-cos x )sin x 在[-π,π]的图象大致为( )
A. B.
C. D.
17. [2013·高考全国新课标卷I(文),10]已知锐角△ABC 的内角A ,B ,C 的对边分别为
a ,
b ,
c ,23cos 2
A+cos2A=0,a=7,c=6,则b=( ) A. 10 B. 9 C. 8 D. 5
18. [2013·高考全国新课标卷II(文),4]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知
b=2,B=π
6
,C=π4
,则△ABC 的面积为( )
A. 2√3+2
B. √3+1
C. 2√3-2
D. √3-1
19. [2013·高考全国新课标卷II(文),6]已知sin2α=23,则cos 2
(α+π
4
)=( ) A. 1
6 B. 13 C. 12 D. 23
二、填空题
20. [2017·全国新课标卷I(文)]已知α∈(0,π
2),tan α=2,则cos (α-π
4)= . 21. [2017·全国新课标卷II(文)]函数f (x )=2cos x+sin x 的最大值为 . 22. [2017·全国新课标卷II(文)]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B=a cos C+c cos A ,则B= .
23. [2017·全国新课标卷III (文)]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知
C=60°,b=√6,c=3,则A= .
24. [2016·高考全国新课标卷Ⅰ(文),14]已知θ是第四象限角,且sin (θ+π4)=3
5
,则tan (θ-π4
)= .
25. [2016·高考全国新课标卷Ⅱ(文),15]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若
cos A =4
5
,cos C =513
,a =1,则b = .
26. [2016·高考全国新课标卷Ⅲ(文),14]函数y =sin x -√3cos x 的图象可由函数y =2sin x 的图象至少向右平移 个单位长度得到.
27. [2014﹒高考全国新课标卷Ⅰ(文),16]如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m,则山高MN =________m.
28. [2014﹒高考全国新课标Ⅱ(文),14]函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. 29. [2013·高考全国新课标卷I(文),16]设当x=θ时,函数f (x )=sin x-2cos x 取得最大值,则cos θ= .
30. [2013·高考全国新课标卷II(文),16]函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π
2
个单位后,与
函数y=sin(2x+π3
)的图象重合,则φ= .。

相关文档
最新文档