第3章静定梁和静定刚架的受力分析

合集下载

结构力学第三章静定结构受力分析

结构力学第三章静定结构受力分析

MA

0, FP

l 2
YB
l

0,YB

FP 2
()
Fy

0,YA
YB

0,YA

YB


Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA

0, ql
l 2

XC
l

0,
XC

1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30

第三章—静定梁和静定刚架

第三章—静定梁和静定刚架
q
图(1) 图(2)
M
N
Q
P P
P
M
N
Q
FBX FBY
FAX FAY
P
FN 3 FN 2 FN1
§3-1 静定梁的内力计算的回顾
三.荷载与内力之间的微分关系
qy
由平衡条件可导出 微分关系如下:
M
N
qx
O
Q dx y
M dM
N dN x
Q dQ
dN dx
qx
dQ dx
qy
dM dx
FQ
BC
Q C
MC 0 Y 0
MC 26KN m QC 9KN
M E 16KN m
G EF
QE
7kN
ME 0 Y 0
M E 30 KN m QE 7KN
§3-2 分段叠加法作弯矩图
MG 0 Y 0
MG 0 QG 7KN
MG
G
QG
7kN
Step3: 绘制内力图 A BC D E F G
§3-3 静定多跨梁
【例3.2】 试求图示梁的内力图
解: Step1: 分层求支反力
ABC部分:
MB 0 Y 0
RC 0.5P RB 1.5P
P
A BC
RB
RC
DE RD
CDE部分:
M D 0 RE 0.25 P Y 0 RD 0.75P
P
AB
a 2a
P
AB
RE
F MF
RF
C D EF
a 2a a
C D
E F
EF部分:
ME 0 Y 0
M F 0.25Pa RF 0.25P
§3-3 静定多跨梁

第三章3静定结构受力分析(平面刚架)

第三章3静定结构受力分析(平面刚架)

MA= qa2+2qa2-2aYB=0 (1)
2) 对中间铰C建立矩平衡方程 qa
MB=0.5qa2+2aXB -aYB=0 (2) 解方程(1)和(2)可得
a
XB=0.5qa YB=1.5qa 3) 再由整体平衡 X=0 解得 XA=-0.5qa Y=0 解得 YA=0.5qa
qa/X2 A YA
1/2qa2
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
C
1/2qa2
A
a
a
qa2 q
B XqBa/2 YB
2 绘制弯矩图
注意:三铰刚架绘制弯矩图往往只须求一水平反力,然后由 支座作起!!
画三铰刚架弯矩图
CM
O M
M/2
M/2
a
C
A
B
a
a
Mo=m-2a×XB=0, 得 XB=M/2a
注意:
A
RA
B
XB
YB
1、三铰刚架仅半边有荷载,另半边为二力体,其反力沿两铰连线,
§3-3 静定平面刚架
一. 刚架的受力特点

1 8
ql2
l
1 ql2 8
刚架
桁架
弯矩分布均匀 可利用空间大
§3-3 静定刚架受力分析
一. 刚架的受力特点 二. 刚架的支座反力计算
静定刚架的分类:
三铰刚架 (三铰结构)
简支刚架 悬臂刚架
单体刚架 (联合结构)
复合刚架 (主从结构)
1.单体刚架(联合结构)的支座反力(约束力)计算
三. 刚架指定截面内力计算
四.刚架的内力分析及内力图的绘制
①分段:根据荷载不连续点、结点分段。 ②定形:根据每段内的荷载情况,定出内力图的形状。 ③求值:由截面法或内力算式,求出各控制截面的内力值。

01-静定梁和超定结构知识点小结

01-静定梁和超定结构知识点小结

第3章 静定梁和静定刚架(知识点小结)一、杆件内力分析方法1、内力分量轴力N F 是横截面上的应力沿截面法线方向的合力,一般以拉力为正,压力为负。

剪力S F 是横截面上的应力沿截面切线方向的合力,以绕截面处微段隔离体顺时针方向转动为正,反之为负。

弯矩M 是横截面上的应力对截面形心取矩的代数和,一般不规定正负号。

有时按习惯也可规定,在水平杆件中弯矩使杆件截面的下侧纤维受拉时为正,上侧受拉时为负。

2、截面法截面法是计算指定截面内力的基本方法,即沿指定截面假想将结构截开,切开后截面内力暴露为外力,取截面左侧(或右侧)作为隔离体,作隔离体受力图,建立平衡方程,从而可确定指定截面的内力。

由截面法可得截面上三个内力分量的运算规则如下:(1)轴力N F 等于截面左侧(或右侧)的所有外力(包括支座反力)沿截面法线方向的投影代数和;(2)剪力S F 等于截面左侧(或右侧)的所有外力(包括支座反力)沿截面切线方向的投影代数和;(3)弯矩M 等于截面左侧(或右侧)的所有外力(包括支座反力)对截面形心取矩的代数和。

3、内力图内力图表示结构上各截面的内力随横截面位置变化规律的图形,包括M 图、S F 图和N F 图。

内力图用平行于杆轴线方向的坐标表示横截面位置(又称基线),用垂直于杆轴线的坐标(又称竖标)表示相应截面的内力值。

轴力图、剪力图中,竖标正、负值分别画在杆件基线的两侧,要标明正负号;弯矩图画在杆件的受拉侧,不标正负。

内力图要画上竖标,标注某些控制截面处的竖标值,并写明图名和单位。

4、内力图的形状特征直杆段上内力图的形状特征归纳如表3-1所示。

熟练掌握内力图的这些形状特征,对于以后正确、迅速地绘制内力图、校核内力图是非常有帮助的。

5、区段叠加法作M图对承受横向荷载作用的任意结构中直杆段,都可采用区段叠加法作其弯矩图:先采用截面法求出该段两个杆端截面弯矩值并将其连以一虚线,然后以此虚线为基线,叠加相应简支梁在跨间相应荷载作用下的弯矩图,如图3-1所示。

第3章 多跨静定梁和静定平面刚架

第3章  多跨静定梁和静定平面刚架

A
q
YB
MB
MA
O
YA

+
M
YB
M M

M

MA
MB
M M M
(二) 多跨静定梁的组成形式及分层关系图 单跨静定梁组成的多跨静定梁形式:
(三) 多跨静定梁的受力分析及内力图的绘制
多跨静定梁的受力分析要利用分层关系图。 从力的传递来看:荷载作用在基本部分时,附 属部分不受影响;荷载作用在附属部分时,则基本部 分产生内力。 多跨静定梁的计算是先计算附属部分,后计算 基本部分。将附属部分的支座反力反向,就得附属部 分作用于基本部分的载荷。 先利用分层关系拆成单跨梁,从附属程度最高 跨开始,向下逐跨计算。
dM Q dx d 2M q 2 dx
(2)增量关系
Q P
M m
(3)积分关系 由d Q = – q· dx
MA
q(x)
MB
QB QA q( x) dx
xA
xB
由d M = Q· dx
QA QB
M B M A Q( x) dx
xA
xB
弯矩和剪力的图形特征: 1. 在无荷载的梁段上,剪力为常量,Q图是一水平直线,M 图为一倾斜直线。 2. 在均布荷载的梁段上,Q图是一倾斜直线,弯矩图为二次 抛物线形,曲线的凸向与荷载指向相同。 3. 在集中荷载作用处,Q图有突变呈阶形变化,突变数值等 于集中力的大小,而M图有一转折点,其尖顶的突出方向 与荷载的指向相同。 4. 在集中力偶作用处,Q图无变化,而M图有阶形突变,突 变数值等于集中力偶的大小,集中力偶两侧M图的切线相 互平行。
Q 图没有变化。
Q 图为斜直线,荷载向

结构力学 第3章静 定梁、平面刚架受力分析

结构力学 第3章静 定梁、平面刚架受力分析
工程中,斜梁和 斜杆是常遇到的,如楼梯梁、刚架中的斜梁等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重、恒载),用 q’ 表示。
q 与 q’间的转换关系:
qdx qds q q
cos
第3章
[例题] 试绘制图示斜梁内力图。
q
B
C
A
α
D VB
HA
l/3 l/3
l/3
VA
(1)求支座反力:
解:
X 0 MB 0 MA 0
HA 0
VA
ql 6
()
VB
ql 6
()
校核:
Y
qj 6
qj 6
ql 3
0
第3章
(2)AC段受力图:
(3)AD段受力图:
HAcosα HAsinα
HA VAsinα
VA VAcosα
MC
C
NC
α QC
HAcosα
dx
d2M dx2
q(x)
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。其凹下去的曲 线象锅底一样兜住q(x)的箭头。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点两 侧,弯矩值突变、剪力值无变化。
解:
10KN/m A HA=0
4m VA=26.25kN
30KN.m
20KN
C
D
B
E
2m
2m
32.5 2.5
3m VB=33.75KN 60
(1)计算支座反力

《静定梁与静定刚架》课件

《静定梁与静定刚架》课件
优化材料分布
根据刚架的受力特点,合理分布材 料,使材料得到充分利用,降低成 本。
注意事项
注意梁的挠度和侧弯
根据载荷大小和分布,合理选择截面尺寸和材料,以控制梁的挠度和侧弯在允许 范围内。
考虑施工条件限制
在设计和施工过程中,应充分考虑施工条件限制,如施工空间、吊装能力等。
注意事项
• 注意载荷变化的影响:载荷的大小和分布可能会 发生变化,应在设计时充分考虑这些因素对梁的 影响。
静定刚架的应用实例
工业厂房
静定刚架在工业厂房中应用广泛,如厂房的柱、梁、支撑等 结构,能够承受较大的荷载,保证厂房的正常运行。
设备支撑
在大型设备或机械的支撑结构中,静定刚架也得到了广泛应 用,能够提供稳定可靠的支撑,确保设备的正常运行和使用 寿命。
静定梁与静定刚架的比较与选择
受力特点
静定梁和静定刚架在受力特点上有所不同。静定梁主要承受弯矩和剪力作用,而静定刚架 则主要承受轴力和弯矩作用。因此,在选择时需要根据实际需求和受力特点进行比较。
静定梁在受力时,其支座反力的 大小和方向可以通过截面的平衡
条件求出。
静定梁的内力计算
静定梁的内力计算可以通过截面的平衡条件进行,不需要引入未知数和求解方程组 。
静定梁的内力包括剪力和弯矩,可以通过截面的平衡条件求出剪力和弯矩的大小和 方向。
静定梁的内力计算可以通过手算或使用计算软件进行,手算需要掌握截面的平衡条 件和内力的计算方法。
BIG DATA EMPOWERS TO CREATE A NEW ERA
04
静定梁与静定刚架的应用实例
静定梁的应用实例
桥梁结构
静定梁广泛应用于桥梁设计中,如简 支梁桥、连续梁桥等,具有结构简单 、受力明确、施工方便等优点。

静定结构内力分析

静定结构内力分析

FQ图
FP
自由端无外力偶则自由端截面无弯矩.
例3-4 不求支反力,直接作图示
A
梁弯矩图、剪力图.
FPl/2 FP
B
B FPl/2
l
铰接杆端无外力偶则该截面无弯矩. FP/2
l/2
FP
练习 :不求支座反力,直接作弯矩图、剪力图。
3FPl
3FP
FPl
FP
l
l
2FP
l
FP
3FP
FPl
FP
FP
FPl
l
l
l
M图 FQ图
2ql 2
D FQDE
q
ql 2
11ql/4
E FQED
M D 0 2 q 2 4 q l 2 l l q 2 F Q E l 4 l D 0 FQED

11ql 4
F y 0F Q D F E Q E D 4 q 0 l
FQD E

5 4
2l
l
自由端有外力偶, 弯矩等于外力偶
练习: 不求支座反力,直接作弯矩图,剪力图
FPl
FP
M
l
l
l
M
l
M MБайду номын сангаас
M/l
2M
MM
l
l
练习: 不求支座反力,直接作弯矩图,剪力图
M
M
l
M
M
l
M
lM
M
l
5.叠加法作弯矩图
ql2/4
q
ql2/4
l
ql2/4
=
ql2/4
ql2/8 + q
ql2/8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面的内力;用区段叠加法绘弯矩图;根据弯矩图和所受荷载 绘出剪力图和轴力图。
All Rights Reserved
编辑ppt
1
第3章 静定梁和静定刚架的受力分析
● 本章内容简介:
3.1 单跨静定梁 3.2 多跨静定梁 3.3 静定平面刚架 3.4* 静定空间刚架
All Rights Reserved
编辑ppt
2
3.1 单跨静定梁
单跨静定梁的内力分析和内力图的绘制,是多跨梁和刚架受 力分析的基础,是本课程最重要的基本功之一。
常见的单跨静定梁
A
B
B
A
B
A
B
A
a) 简支梁
All Rights Reserved
b)简支斜梁
编辑ppt
c) 悬臂梁
d) 伸臂梁
3
3.1 单跨静定梁
3.1.1 用隔离体平衡法计算指定截面内力
All Rights Reserved
编辑ppt
C
D
A
B
FP
FQ图
11
3.1 单跨静定梁
2. 内力图的特征
(4) 在集中力偶作用处: 剪力图无变化。 弯矩图有突变(该处左右两边的弯矩图形的切线相互平行,即 切线的斜率相同),突变值等于该集中力偶值。
FP A
FPa B a M=FPaa C
FP
2FPa
第四,平——利用隔离体平衡条件,直接计算截面的内力。
All Rights Reserved
编辑ppt
6
3.1 单跨静定梁
A FAx
FAy
C MC FNC
FQC) 任意截面的轴力等于该截面一侧所有外力沿杆轴切线方向的
投影代数和。
2) 任意截面的剪力等于该截面一侧所有外力沿杆轴法线方向的
d FQ dx
q
dM dx
FQ
d2M d x2
q
M FN
FQ
以上微分关系的几何意义是:
q
M +dM
x
FN +dFN
y
FQ +dFQ
dx
剪力图在某点的切线斜率等于该点的荷载集度,但两者的正 负号相反。弯矩在某点的切线斜率等于该点的剪力。弯矩在某点 的曲率与该点的荷载集度成正比。
All Rights Reserved
●当杆端有外力偶作用时,可将表示力偶的圆弧箭头顺其原
指向绘于杆端外侧,则箭尾一侧受拉。
All Rights Reserved
编辑ppt
14
3.1 单跨静定梁
简单直梁在单一荷载作用下的弯矩图
FP
A
C
B
FP/2
l/2 FP l/4 l/2
FP/2
A M/l
M/2 C
M
M/2
l/2
l/2
B M/l
q
A C
FP
2FPa
D a
M图
C
D
A
B
FP
FQ图
All Rights Reserved
编辑ppt
10
3.1 单跨静定梁
2. 内力图的特征
(3) 在集中荷载作用处: 剪力有突变,其突变值等于该集中荷载值。弯矩图有尖角,尖角 突出方向与荷载指向相同。
FP A
FPa B a M=FPaa C
FP
2FPa
D a
M图
All Rights Reserved
编辑ppt
13
3.1 单跨静定梁
3.1.3 用区段叠加法绘直杆的弯矩图
1. 记住简单直梁在一些单一荷载作用下的弯矩图
●要求根据材料力学课程所介绍的方法,计算、绘制并熟记常见 几个最基本的弯矩图形。
●弯矩图绘在杆件受拉一侧,不标注正负号。
●可借用柔绳比拟的方法,定性地理解前面7个简支梁弯矩图的 轮廓图,即这些弯矩图就像一根两端绷紧的橡皮筋受图示力作用后的 形状。
FP
2FPa
D a
All Rights Reserved
M图
编辑ppt
C
D
A
B
FP
FQ图
9
3.1 单跨静定梁
2. 内力图的特征
2) 特殊情况之一——杆端无横向荷载(可有轴向荷载)作用(AB段): M =0,FQ =0。
3) 特殊情况之二——纯弯曲(BC段):M图为水平线,FQ =0。
FP A
FPa B a M=FPaa C
编辑ppt
8
3.1 单跨静定梁
2. 内力图的特征
(1) 在均布荷载区段:q=常数
FQ是x的一次式,FQ图是斜直线。
M是x的二次式,M图是二次抛物线,且其突出方向与荷载指向相 同。
(2) 无荷载区段:q=0
1) 一般情况下(CD段):M图为斜线,FQ图为水平线。
FP A
FPa B a M=FPaa C
D a
M图
All Rights Reserved
编辑ppt
C
D
A
B
FP
FQ图
12
3.1 单跨静定梁
2. 内力图的特征
(5) M图的最大值发生在FQ图中FQ =0点处。
利用内力图的上述特征,可不列出梁的内力方程,而只须算 出一些表示内力图特征的截面(称为控制截面)的内力值,就能迅 速地绘出梁的内力图。
第3章 静定梁和静定刚架的受力分析
● 本章教学的基本要求:灵活运用隔离体平衡法(截面法)
计算指定截面的内力;熟练掌握静定梁和静定平面刚架内力 图的作法;了解空间刚架内力图绘制的方法。
● 本章教学内容的重点:绘制静定梁和静定平面刚架的内
力图,这是本课程最重要的基本功之一。
● 本章教学内容的难点:用隔离体平衡法计算任一指定截
计算指定截面内力的基本方法是隔离体平衡法
FAx
A
C
B
FAy
FAx
All Rights Reserved
A FAy
MC
FNC C
FQC
MC FNC
FQC C
隔离体平衡法(截面法)
编辑ppt
FBy
B FBy
4
3.1 单跨静定梁
“切、取、力、平”
A FAx
FAy
C MC FNC
FQC
MC FNC
FQC C
B
ql/2
l/2 ql2/8 l/2
ql/2
M A
M
M/l l
All Rights Reserved
投影代数和。 3) 任意截面的弯矩等于该截面一侧所有外力对某点(例如该截
面形心)的力矩代数和。
【注意】如果截面内力计算结果为正(或负),则表示该指定截
面内力的实际方向与所假设的方向相同(或相反)。
All Rights Reserved
编辑ppt
7
3.1 单跨静定梁
3.1.2 内力图的特征
1. 荷载与内力之间的微分关系
All Rights Reserved
编辑ppt
B FBy
5
3.1 单跨静定梁
第一,切——设想将杆件沿指定截面切开。
第二,取——取截面任一侧部分为隔离体。
第三,力——这是该方法最关键的一步。一是勿忘在隔离体 上保留原有的全部外力(包括支反力);二是必须在切割面上添 加要求的未知内力。所求的轴力和剪力,按正方向添加(轴力以 拉力为正,剪力以绕隔离体顺时针方向转动者为正);而所求的 弯矩,其方向可任意假设,只需注意在计算后判断其实际方向, 并在绘弯矩图时,绘在杆件受拉一侧。
相关文档
最新文档