习题解答(第2章)
第二章 自由能 化学势 习题解答

第二章 自由能、化学势和溶液2-1 判断下列过程的Q 、W 、△U 、△H 、△S 、△G 值的正负。
( 1)理想气体自由膨胀。
( 2)两种理想气体在绝热箱中混合。
解:2-2 说明下列各式的适用条件。
( 1) △G = △H 一T △S ;(2)dG =一SdT + Vdp (3)-△G = -W '答:公式(1):封闭体系的定温过程公式(2):不做其它功、均相、纯组分(或组成不变的多组分)的封闭体系 公式(3):封闭体系、定温、定压的可逆过程。
2-3 298K 时,1mol 理想气体从体积10dm 3膨胀到20dm 3,计算(1)定温可逆膨胀;(2)向真空膨胀两种情况下的 △G 解: (1)J V V nRT P P nRT G 3.17172010ln 298314.81ln ln2112-=⨯⨯===∆ (2) △G = -1717.3 J2-4 某蛋白质由天然折叠态变到张开状态的变性过程的焓变△H 和熵变△S 分别为251.04kJ·mol -1和753J·K -1·mol -1,计算(1)298K 时蛋白变性过程的△G ; (2) 发生变性过程的最低温度。
解:将△H 和△S 近似看作与温度无关(1)kJ S T H G 646.261075329804.2513=⨯⨯-=∆-∆=∆- (2)K S H T 4.333753251040==∆∆=2-5 298K ,P Ө 下,1mol 铅与乙酸铜在原电池内反应可得电功9183.87kJ ,吸热216.35kJ,计算△U 、△H 、△S 和△G解: △G = W ' = - 9183.87kJ △S = Q / T = 216.35 / 298 = 726 J/K△U = Q + W = - 9183.87 + 216.35 = -8967.52 kJ △H = △G + T △S = -8967.52 kJ2-6 广义化学势Z Z Z Z n V T Bn P S B n V S B n P T B B n F n H n U n G ,,,,,,,,)()()()(∂∂=∂∂=∂∂=∂∂=μ式中哪几项不是偏摩尔量? 答: Z n V S B n U ,,)(∂∂、Z n P S B n H ,,)(∂∂、Z n V T Bn F,,)(∂∂不是偏摩尔量2-7 由 2.0 mol A 和1.5 mol B 组成的二组分溶液的体积为425cm -3,已知V B , m 为250.0cm -3·mol -1,求V A,m 。
教材第二章习题解答

第二章原子结构和元素周期律习题解答1.指出下列各原子轨道相应的主量子数n及角量子数l的数值是多少?轨道数分别是多少?2p 3d 4s 4f 5s【解答】 2p 主量子数2,角量子数1,轨道数33d 主量子数3,角量子数2,轨道数54s 主量子数4,角量子数0,轨道数14f 主量子数4,角量子数3,轨道数75s 主量子数5,角量子数0,轨道数1 2.当主量子数n=4时,可能有多少条原子轨道?分别用Ψn,l,m 表示出来。
电子可能处于多少种运动状态?(考虑自旋在内)【解答】当n=4时,可能有n2=16条原子轨道。
n l M4 01230,±10,±1,±20,±1,±2,±3Ψ4,0,0,Ψ4,1,0,Ψ4,1,1,Ψ4,1,-1,Ψ4,2,0,Ψ4,2,1,Ψ4,2,-1,Ψ4,2,2,Ψ4,2,-2,Ψ4,3,0,Ψ4,3,1,Ψ4,3,-1,Ψ4,3,2,Ψ4,3,-2,Ψ4,3,3,Ψ4,3,-3 每条轨道上可以容纳两个自旋相反的电子,16条原子轨道,电子可能处于32种运动状态。
3.将下列轨道上的电子填上允许的量子数。
(1)n=,l=2,m=0,ms=±1/2(2)n=2,l= ,m=0,ms=±1/2(3)n=4,l=2,m= ,ms=-1/2(4)n=3,l=2,m=2,m=s=-1/2(5)n=2,l= ,m=-1,ms=+1/2(6)n=5,l=0,m= ,ms【解答】(1) 3,4,5,……,正整数;(2) 0,1(3) 0,±1,±2(4) +1/2,-1/2(5) 1(6) 04.填上n、l、m、m s等相应的量子数:量子数确定多电子原子轨道能量E的大小;Ψ的函数式则是由量子数所确定;确定核外电子运动状态的量子数是;原子轨道或电子云的角度分布图的不同情况取决于量子数。
【解答】主量子数n和角量子数l;主量子数n、角量子数l和磁量子数m;主量子数n、角量子数l、磁量子数m和自旋量子数m;s 角量子数l和磁量子数m。
第二章习题解答

第二章2-3 设系统传递函数为342)(2++=s s s G 初始条件0/)0(,1)0(=-=dt dc c 。
求单位阶跃输入r (t)=1(t)时,系统的输出响应c (t)。
【解】系统传递函数与微分方程是一一对应的,故通过传递函数先求出微分方程,然后通过拉氏变换的方法求解微分方程。
系统对应的微分方程为 4()3()2()c c t c t r t ++= 在给定的非零初始条件下,进行拉氏变换22(43)()(0)(0)4(0)s s C s sc c c s++---=整理后2221()(43)(43)s C s s s s s s +=-++++部分分式展开后,拉氏反变换111223242/35/25/6()[()][][](43)(43)13255326t t s c t L C s L L s s s s s s s s e e -----+==-=-+++++++=-+2-4 在图2-48中,已知G (s) 和H (s)两方框对应的微分方程分别为()2()5()4()3()6()c t c t e t b t b t c t +=+=图2-48 习题2-4系统结构框图且初始条件为零,试求传递函数C (s)/R (s)。
【解】求出每个方框的传递函数,利用反馈等效的方法求C(s)/R(s)。
根据定义可得 5()2G s s =+,6()43H s s =+ 255()5()25(43)10075(2)56()1()()(2)(43)30411361(2)(43)C s G s s s s R s G s H s s s s s s s +++====+++++++++2-5 图2-49是由电阻、电容和运算法放大器组成的无源网络和有源网络,试列写以V in (t)为输入量,V out (t)为输出量的传递函数。
(a) (b )(c) (d)图2-49 习题2-5电路图【解】(a) 1211211,1RZ R Z C s RC s C s===+ 22112121211()1()11Z C s RC s G s R Z Z R C C s RC s C s +===+++++(b ) 21122211R Z R Z R Cs R Cs ===+ 2222111211()1R Z R Cs R G s Z R R R Cs +=-==-+ (c) 32321123232321()(1)1()1()1R R R R Cs Cs Z R Z R R Cs R R Cs R R Cs++==+==++++ 323232211132(1)()11()()1R R Cs R R Cs R Z R Cs G s Z R R R R Cs ++++=-=-=-++ (d)本题和(b)、(c)做法图通,因为反馈通路有接地的部分。
第二章-第一定律习题及解答

(1)在空气压力为100 kPa时,体积胀大1dm3;
(2)在空气压力为100 kPa时,膨胀到气体压力也是100 kPa;
(3)等温可逆膨胀到气体压力为100 kPa。
解(1)属于等外压膨胀过程
W1=-p环ΔV=-100kPa×1dm3=-100J
(2)也是等外压膨胀过程
W2=-p环(V2-V1)=-nRT(1-p2/p1)
=-10mol×8.314J·K-1·mol-1×300K(1-100/1000)
=-22448J
(3)等温可逆膨胀过程
W3=-nRTln(p1/p2)
=-10mol×8.314J·K-1·mol-1×300K×ln(1000/100)
=-57431J
4.在291K和pӨ压力下,1mol Zn(s)溶于足量稀盐酸中,置换出1mol H2并放热152kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。
解Zn(s)+2HCl(aq) = ZnCl2(aq)+H2(g)
W = -pΔV = -p(V2-V1)≈-pV(H2) = -nRT
= -(1mol)×(8.314J·K-1·mol-1)×(291K)
= -2.42kJ
ΔU= Q+W = (-152-2.42)kJ =-154.4kJ
5.在298K时,有2mol N2(g),始态体积为15dm3,保持温度不变,经下列三个过程膨胀到终态体积为50 dm3,计算各过程的ΔU、ΔH、W和Q的值。设气体为理想气体。
=-5966J,
Q3=-W3=5966J。
7.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85kJ的功,体系的起始压力为202.65kPa。
第2章习题解答

第二章习题解答2.01 试给出数据通信系统的基本模型并说明其主要组成构件的作用。
答:1)信源和信宿信源就是信息的发送端,是发出待传送信息的设备;信宿就是信息的接收端,是接收所传送信息的设备,在实际应用中,大部分信源和信宿设备都是计算机或其他数据终端设备(data terminal equipment,DTE)。
2)信道信道是通信双方以传输媒体为基础的传输信息的通道,它是建立在通信线路及其附属设备(如收发设备)上的。
该定义似乎与传输媒体一样,但实际上两者并不完全相同。
一条通信介质构成的线路上往往可包含多个信道。
信道本身也可以是模拟的或数字方式的,用以传输模拟信号的信道叫做模拟信道,用以传输数字信号的信道叫做数字信道。
3)信号转换设备其作用是将信源发出的信息转换成适合于在信道上传输的信号,对应不同的信源和信道,信号转换设备有不同的组成和变换功能。
发送端的信号转换设备可以是编码器或调制器,接收端的信号转换设备相对应的就是译码器或解调器。
2.02 试解释以下名词:数据,信号,模拟数据,模拟信号,数字数据,数字信号。
答:数据:通常是指预先约定的具有某种含义的数字、符号和字母的组合。
信号:信号是数据在传输过程中的电磁波的表示形式。
模拟数据:取值是连续的数据。
模拟信号:是指幅度随时间连续变化的信号。
数字数据:取值是离散的数据。
数字信号:时间上是不连续的、离散性的信号2.03 什么叫传信速率?什么叫传码速率?说明两者的不同与关系。
答:传信速率又称为比特率,记作R b,是指在数据通信系统中,每秒钟传输二进制码元的个数,单位是比特/秒(bit/s,或kbit/s或Mbit/s)。
传码速率又称为调制速率、波特率,记作N Bd,是指在数据通信系统中,每秒钟传输信号码元的个数,单位是波特(Baud)。
若是二电平传输,则在一个信号码元中包含一个二进制码元,即二者在数值上是相等的;若是多电平(M电平)传输,则二者在数值上有R b=N Bd×log2 M的关系。
普通化学习题与解答第二章

题目:在等温、等压条件下自发反应总是向着 ΔH - TΔS < 0 的方向进行,因此,在等温、等压条件下,自发反 应总是向着 ΔH - TΔS < 0 的方向进行。
● 解答:K = [C][D] / ([A][B]^2) ● 题目:在一定温度下,向一个容积不变的容器中通入1mol N2和3mol H2及固体催化剂,使之反应:N2(g) + 3H2(g) ⇌ 2NH3(g);ΔH = -92.4kJ/mol,平衡时容器内气体压强为起始时的80%。此时,若向容器
中充入1mol N2、3mol H2和1mol NH3,则平衡移动的方向为____。 解答:向容器中充入$1molN_{2}$、$3molH_{2}$和$1molNH_{3}$,等效为开始充入$2molN_{2}$、$6molH_{2}$,与原起始量之比 相同,为等效平衡,平衡时各物质的浓度相等,则平衡不移动,故答案为:不移动。
● A.NH3的体积分数一定小于反应前混合气体的2v逆(NH3) ● C.平衡时体系中N2、H2、NH3的物质的量之比一定为1:3:2 ● D.平衡时体系中N2、H2、NH3的物质的量之和一定等于起始时体系的总物质的量
● 题目:请写出下列反应的平衡常数表达式:A + 2B → C + D 解答:K = [C][D] / ([A][B]^2)
添加标题
注意事项:在书写平衡常数表达式时,需要注意各组分的化学计量数,它反映了反应中各物质的计 量关系。在本题中,化学计量数分别是1、2、3、4。
题目:请写出下列反应的平衡常数表达式:A + 2B → 3C + 4D 解答:平衡常数表达式为 K = [C]^3[D]^4/[A][B]^2 解释:根据平衡常数的定义,平衡常数等于生成物浓度幂之积与反应物浓度幂之积的比值 注意事项:在书写平衡常数表达式时,需要注意反应物和生成物的浓度幂之积的次序和指数
高数习题解答(第2章)
第二章 导数与微分习题2.12.设f (x ) 在点x = x 0可导,把下面各题中的字母A 分别用一个关于f ' (x 0)的式子表示出来?(1) A =)()(lim00x f x f x x x x --→(假定f ' (x 0) ≠ 0);(2) A =xx f x x f x x ∆-∆-→)()2(lim000;(3) x 0 = 0,f (0) = 0且A =xx f x )(lim 0→.解:(1) A =0lim→x )()(00x f x f x x --=0lim →x 0)()(1x x x f x f --=)('10x f (2) A =0lim →∆x (-2)xx f x x f ∆--∆-2)()2(00=-2f '(x 0)(3) A =0lim→x x x f )(=0lim →x xx f x x f )()(00-+=f '(x 0) 3.求曲线y = f (x )在点M 处的切线方程: (3) f (x ) = x 2, M(0, 0).解: 因为f ' (x )=2x , 从而f '(0)=0,因此, 所求切线方程为y -0= f '(0)(x -0), 即y =0. 5. 求曲线y = x 3 + x 上的与直线y = 4x 平行的切线.解: 与直线y = 4x 平行的切线的斜率为4. 因此y ' = 3x 2+1 = 4, 从中求出切点的横坐标x =±1. 把它们代入曲线方程y = x 3 + x , 求出切点的纵坐标为2和 -2, 即切点为(1, 2) 和 (-1, -2). 因此, 所求切线方程为: 4x – y -2 = 0 和4x – y +7 = 0. 6.设()⎩⎨⎧≥+<=0,0,sin x b ax x x x f . 讨论a, b 取何值时,f (x )在点x = 0处可导. 解:因为f (x )在x = 0处可导,所以f (x )在x = 0处连续.从而0lim →x (f (x )-f (0))=0, 即lim →x [(ax +b )-b ]=0且 0lim →x [sin x -b ]=0.由此推出b = 0.又,由于f (x )在x = 0处可导,所以下面极限存在且相等lim→x 0)0()(--x f x f =+→0lim x 0)0()(--x f x f =-→0lim x 0)0()(--x f x f .因为+→0lim x 0)0()(--x f x f =+→0lim x xbb ax -+= a ,-→0lim x xb x -sin =-→0lim x x xsin =1(因为b =0) 所以a =1.总之, 当a =1, b =0时f (x )在x = 0处可导. 8. 讨论下列函数在x = 0处的连续性和可导性:(1)y = | sin x |; (2) y = 00,,01sin 2=≠⎪⎩⎪⎨⎧x x xx . 解:(1)因为0lim →x |sin x |-sin0| =0lim →x |sin x | = 0, 所以函数y = |sin x |在x =0处连续.又因为在x =0处的坐导数-→0lim x 0|0sin ||sin |--x x =-→0limx 0|sin |-x x = -1, 在x =0处的右导数 +→0l i m x 0|0s i n ||s i n |--x x =+→0limx 0|sin |-x x =1, 可见左右导数不相等, 所以函数y =|sin x |在x =0处的导数不存在, 即不可导.(2)因为0lim →x x 2sinx 1-0=0lim →x sin x1=0, 所以函数y 在x =0处连续. 又因为0lim →x 01sin 2--x x x =0lim →x x sin x 1=0,所以函数y 在x = 0处可导.习题2.22. 求下列函数的导数: (6) x x x y -=ln ; (8) 21arctan xxy +=. 解: (6) y = x ln x - xy '= ln x + x x1-1= ln x. (8) y =21arctan x x+y '=222222)1()1(2)1(arctan )1(11x x x x x ++--++=4222)1(arctan 2)1(x x x x +++.3. 求下列函数在给定点处的导数: (3) ()ttt f --=11,求()4f '; (4) ()5532x x x f +-=,求()0f '和()2f '. 解: 因为f '(t ) = (t +11) '=2)1(211t t +-=-2)1(21t t +,所以, f '(4) = -361. (4) 因为f '(x ) = 3⨯2)5(1x --+52x ,所以, f '(0) = -253, f '(2) = 157. 习题2.31. 求下列反函数的导数:(2) 22arctan ⎪⎭⎫ ⎝⎛=x y ; (4) 212arcsin t t y +=. 解: (2) y '= 2arctan2x 2)2(121x +=244x +arctan 2x (4) y ' =22)12(11t t +-·222)1(22)1(2t t t t +⋅-+ =2222222)1()1()1(22t t t t ++-- =|1|)1()1(2222t t t -+-= ⎪⎩⎪⎨⎧>+-<+1,121,122222t tt t 2. 求下列复合函数的导数:(2) x x y 22cos cos +=; (4) x y ln ln =; (6) ()22ln a x x y -+=;(8) xx y 2sin =; (10) ()x x y cot csc ln -=; (12) xx y cos =. 解: (2) y '= -sin x 2 2x + 2cos(sin x ) = -2x sin x 2 - sin2x.(4) y ' =x ln 1·x 1=xx ln 1. (6) y ' =221ax x -+·(1+2222ax x -).=222222a x x a x xa x -+-+-=221ax -.(8) y ' =22sin 2cos 2x x x x -⋅=22sin 2cos 2x xx x -.(10) y ' =xx cot csc 1-(-c o txc ss x +c s c 2x ) = csc x.(12) y ' = (e cos x ln x ) '= e cos x ln x (-sin x ln x + cos x ·x 1) = x c os x (-sin x ln x +xxcos ). 习题2.43. 若()x f ''存在,求下列函数y 的二阶导数22d d xy:(1) ()2x f y =; (2) ()[]x f y ln =. 解: (1) y = f (x 2)dxdy= f '(x 2)2x =2xf '(x 2), 22dxy d = 2f '(x 2) + 2xf ''(x 2)2x = 2f '(x 2)+4x 2f ''(x 2). (2) y = ln[f (x )]dx dy =)()('x f x f 22dx d y =)()(')(')()("2x f x f x f x x f -+=)()]('[)(")(22x f x f x f x f -.习题2.52. 求曲线323232a y x =+在点⎪⎪⎭⎫⎝⎛a a 42,42处的切线方程和法线方程. 解: x 32+ y 32= a 32 两端对x 求导得:32x 31-+32y 31-dxdy= 0,从中解出dx dy = - (xy )31, 所以dx dy|)42,42(a a = -1.故所求切线方程为: x + y -22a = 0, 所求法线方程为: x - y = 0. 7. 计算由⎪⎩⎪⎨⎧==ta y ta x 33sin cos 所确定的函数y = y (x )的二阶导数.解: dx dy =)sin (cos 3cos sin 322t t a t t a -⋅⋅= -t t cos sin = - ta n t ,22dx y d = -se c 2t ·)sin (cos 312t t a - =t t a sin cos 314 .习题2.61.x 的值从1=x 变到01.1=x ,试求函数x x y -=22的增量和微分. 解: ∆y = y (1.01) - y (1) = 2(1.01)2-1.01-(2-1) = 0.0302, d y = (4x -1)d x= (4⨯1.01-1) · (1.01-1) = 0.03035. 计算下列函数的近似值: (2) 01.1ln .解: 设f (x ) = ln x , 取x 0 =1, x =1.01. 则∆x = x - x 0 =1.01-1= 0.01. 因为 f '(x )=x1, 从而f '(x 0) =1. 故ln 1.01 = ln x 0 + f '(x 0)∆x = ln 1 + 1·(0.01) = 0.01.总习题21. 利用导数的定义求导数: (2) 设()()1ln ≥<⎩⎨⎧+=x x x xx f ,求()0f '. (3) 设()00>≤⎩⎨⎧+=x x bax e x f x,若函数f (x )在点x = 0处连续且可导,求系数a 和b .解:(2) 因为f -'(x ) =-→0lim x 00--x x = 1, f +'(0) = +→0lim x xx 0)1ln(-+= 1, 故f '(0) =1.(3)由f (x )在x =0处连续,得0lim →x f (x )-f (0) =0, 即+→0lim x (ax +b )-1=-→0lim x e x -1=0. 从中求得b =1.因为f (x )在点x = 0处且可导,所以在点x = 0处左右导数存在且相等, 而f -'(0) =-→0lim x xe x 1-=1, f +'(0) = +→0lim x x ax 1-= a , 故a =1. 总之a =1, b =1.5. 证明题:(1) 设()x f 是可导函数,试证: 若()x f 为偶函数时,则()x f '为奇函数;若()x f 为奇函数时,则()x f '为偶函数.(2) 验证函数22x x y -=满足关系式013=+''y y .证明: (1)因为f (x )为偶函数,所以f (-x ) = f (x ). 因为()x f 是可导函数,可上式两端对x 求导得 -f '(-x ) = f '(x ), 即f '(-x ) = -f '(x ), 这说明了f '(x )为奇函数.当f (x )为奇函数时, f (-x ) = -f (x ). 可上式两端对x 求导得 -f '(-x ) = -f '(x ), 即f '(-x ) = f '(x ), 这说明了f '(x )为为偶函数。
无机化学(周祖新)习题解答第二章
无机化学(周祖新)习题解答第二章第二章化学热力学初步思考题1.状态函数得性质之一就是:状态函数得变化值与体系得始态与终态有关;与过程无关。
在U、H、S、G、T、p、V、Q、W中,属于状态函数得就是U、S、G、T、p、V。
在上述状态函数中,属于广度性质得就是U、H、S、G、V,属于强度性质得就是T、p。
2.下列说法就是否正确:⑴状态函数都具有加与性。
⑵系统得状态发生改变时,状态函数均发生了变化。
⑶用盖斯定律计算反应热效应时,其热效应与过程无关。
这表明任何情况下,化学反应得热效应只与反应得起止状态有关,而与反应途径无关。
⑷因为物质得绝对熵随温度得升高而增大,故温度升高可使各种化学反应得△S大大增加。
⑸△H,△S受温度影响很小,所以△G受温度得影响不大。
2.⑴错误。
强度状态函数如T、p就不具有加与性。
⑵错误。
系统得状态发生改变时,肯定有状态函数发生了变化,但并非所有状态函数均发生变化。
如等温过程中温度,热力学能未发生变化。
⑶错误。
盖斯定律中所说得热效应,就是等容热效应ΔU或等压热效应ΔH。
前者就就是热力学能变,后者就是焓变,这两个都就是热力学函数变,都就是在过程确定下得热效应。
⑷错误。
物质得绝对熵确实随温度得升高而增大,但反应物与产物得绝对熵均增加。
化学反应△S得变化要瞧两者增加得多少程度。
一般在无相变得情况,变化同样得温度,产物与反应物得熵变值相近。
故在同温下,可认为△S不受温度影响。
⑸错误。
从公式△G=△H-T△S可见,△G受温度影响很大。
3.标准状况与标准态有何不同?3.标准状态就是指0℃,1atm。
标准态就是指压力为100kPa,温度不规定,但建议温度为25℃。
4.热力学能、热量、温度三者概念就是否相同?试说明之。
4.这三者得概念不同。
热力学能就是体系内所有能量得总与,由于对物质内部得研究没有穷尽,其绝对值还不可知。
热量就是指不同体系由于温差而传递得能量,可以测量出确定值。
温度就是体系内分子平均动能得标志,可以用温度计测量。
第二章习题解答.doc
8第二章 高频小信号放大器典型例题分析与计算例2-1 图2-18所示电路为一等效电路,其中L =0.8uH,Q 0=100,C =5pF,C 1 =20pF,C 2 =20pF,R =10k Ω,R L =5k Ω,试计算回路的谐振频率、谐振电阻。
题意分析 此题是基本等效电路的计算,其中L 为有损电感,应考虑损耗电阻0R (或电导0g )。
解由图2-18可画出图2-19所示的等效电路。
图2-18 等效电路 图2-19 等效电路(1)回路的谐振频率0f由等效电路可知L =0.8H μ,回路总电容C ∑为12122020515(pF)2020C C C C C C ∑⨯=+=+=++则0f ==45.97(MHz)=(2)R L 折合到回路两端时的接入系数p 为211212121112C C p C C C C C C ωω===++则9()2233110.50.0510s 510L P R -=⨯=⨯⨯ 电感L 的损耗电导0g 为0660011245.97100.810100g LQ ωπ-==⨯⨯⨯⨯⨯ ()643.3010s -=⨯总电导 23-3031110.0433100.05101010L g g P R R ∑-=++=+⨯+⨯⨯ ()30.193310s -=⨯谐振电阻 ()P 1 5.17k R g ∑==Ω例2-2 有一个RLC 并联谐振电路如图2-20所示,已知谐振频率f 0=10MHz,L =4μH ,Q 0=100,R =4k Ω。
试求(1)通频带20.7f ∆;(2)若要增大通频带为原来的2倍,还应并联一个多大电阻?题意分析 此题是一个RLC 并联谐振电路的基本计算,了解通频带的变化与回路电阻的关系。
解 (1)计算通频带电感L 的损耗电导0g 为 图2-20 RLC 并联谐振回路066001121010410100g LQ ωπ-==⨯⨯⨯⨯⨯()639.810s -=⨯回路总电导6031139.810410g g R ∑-=+=+⨯⨯ ()6289.810s -=⨯10回路的有载品质因数L Q 为666011g 21010410289.810L Q L ∑ωπ--==⨯⨯⨯⨯⨯⨯13.74=回路通频带()()6600.7101020.72810Hz 0.728MHz 13.74L f f Q ∆⨯===⨯= (2)若通带增大一倍,即20.71.456MHz f ∆=,计算应再并多大电阻R '根据题意要求通频带增大一倍,则回路的有载品质因数应减小一倍,即16.872LL Q Q '== 对应的'g ∑应该增大一倍,即 ()6'2579.610s g g ∑∑-==⨯ 因为0'11g g R R∑=++' 所以0''11g g g g R R ∑∑∑⎛⎫=-+=- ⎪'⎝⎭()6289.810s -=⨯则 3.45k R '=Ω图2-21 单调谐放大电路11例2-3 单调谐放大器如图2-21所示。
第2章习题解答
第2章习题解答一、填空1.进程在执行过程中有3种基本状态,它们是运行态、就绪态和阻塞态。
2.系统中一个进程由程序、数据集合和进程控制块(PCB)三部分组成。
3.在多道程序设计系统中,进程是一个动态概念,程序是一个静态概念。
4.在一个单CPU系统中,若有5个用户进程。
假设当前系统为用户态,则处于就绪状态的用户进程最多有4 个,最少有0 个。
注意,题目里给出的是假设当前系统为用户态,这表明现在有一个进程处于运行状态,因此最多有4个进程处于就绪态。
也可能除一个在运行外,其他4个都处于阻塞。
这时,处于就绪的进程一个也没有。
5.总的来说,进程调度有两种方式,即不可剥夺方式和剥夺方式。
6.进程调度程序具体负责中央处理机(CPU)的分配。
7.为了使系统的各种资源得到均衡使用,进行作业调度时,应该注意CPU忙碌作业和I/O忙碌作业的搭配。
8.所谓系统调用,就是用户程序要调用操作系统提供的一些子功能。
9.作业被系统接纳后到运行完毕,一般还需要经历后备、运行和完成三个阶段。
10.假定一个系统中的所有作业同时到达,那么使作业平均周转时间为最小的作业调度算法是短作业优先调度算法。
11.在引入线程的操作系统中,所谓“线程”,是指进程中实施处理机调度和分配的基本单位。
12.有了线程概念后,原来的进程就属于是单线程的进程情形。
二、选择1.在进程管理中,当C 时,进程从阻塞状态变为就绪状态。
A.进程被调度程序选中B.进程等待某一事件发生C.等待的事件出现D.时间片到2.在分时系统中,一个进程用完给它的时间片后,其状态变为A 。
A.就绪B.等待C.运行D.由用户设定3.下面对进程的描述中,错误的是D 。
A.进程是动态的概念B.进程的执行需要CPUC.进程具有生命周期D.进程是指令的集合4.操作系统通过B 对进程进行管理。
A.JCB B.PCB C.DCT D.FCB 5.一个进程被唤醒,意味着该进程D 。
A.重新占有CPU B.优先级变为最大C.移至等待队列之首D.变为就绪状态6.由各作业JCB形成的队列称为C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2一、填空题: 1. {}x X P ≤,)()(12x F x F -2.==}{k X P k n kk n p p C --)1(,k = 0,1,…,n3.0,!}{>==-λλλe k k X P k为参数,k = 0,1,…4.λ+115. ⎪⎩⎪⎨⎧<<-=其它,0 ,1)(b x a a b x f 6.+∞<<-∞=--x ex f x ,21)(222)(σμσπ7.+∞<<-∞=-x e x x ,21)(22πϕ8.)()(σμσμ-Φ--Φa b9.分析:由题意,该随机变量为离散型随机变量,根据离散型随机变量的分布函数求法,可观察出随机变量的取值及概率。
10.649分析:每次观察下基本结果“X ≤1/2”出现的概率为412)(2121-==⎰⎰∞xdx dx x f ,而本题对随机变量X 取值的观察可看作是3重伯努利实验,所以{}649)411()41(223223=-==-C Y P11.{}7257.0)212.2(212.2212.2=-Φ=⎭⎬⎫⎩⎨⎧-<-=<X P X P , {},8950.01)3.1()4.2()3.1()4.2()216.1()218.5(218.521216.15.86.1=-Φ+Φ=-Φ-Φ=--Φ--Φ=⎭⎬⎫⎩⎨⎧-<-<--=<<-X P X P 同理,P {| X | ≤ 3.5} =0.8822.12.{})31(3113)(-=⎭⎬⎫⎩⎨⎧-≤=≤+==y F y X P y X Y P y G . 13.4813,利用全概率公式来求解:{}{}{}{}{}{}{}{}{}.4813414141314121410 442332 2221122=⨯+⨯+⨯+⨯====+===+===+=====X P X Y P X P X Y P X P X Y P X P X Y P Y P 二、单项选择题:1. B ,由概率密度是偶函数即关于纵轴对称,容易推导F (-a)=dx x f dx x f dx x f dx x f dx x f a a⎰⎰⎰⎰⎰-===∞--∞-00a -0a-0)(21)(-21)(-)()(2. B ,只有B 的结果满足1)(lim )(==+∞+∞→x F F x 3. C ,根据分布函数和概率密度的性质容易验证 4. D ,⎩⎨⎧<≥=2,2,2X X X Y,可以看出Y 不超过2,所以{}{}0,2,12 ,12,12 ,12,2 ,1)(0>⎪⎩⎪⎨⎧<-≥=⎪⎩⎪⎨⎧<≥=⎩⎨⎧<≤≥=≤=--⎰θθθϑy e y y dx e y y y X P y y Y P y F y x y Y ,可以看出,分布函数只有一个间断点.5. C, 事件的概率可看作为事件A (前三次独立重复射击命中一次)与事件B (第四次命中)同时发生的概率,即p p p C B P A P AB P p ⋅-===-2313)1()()()(.三、解答题(A )1.(1)分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有1-612⨯C (这里12C 指任选某次点数为1,6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为612⨯C 多算了一次)或1512+⨯C 种,故{}36113615361-611212=+⨯=⨯==C C X P ,其他结果类似可得.(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤=+=+=+=+=<≤=+=+=+=<≤=+=+=<≤=+=<≤=<=6165}5{}4{}3{}2{}1{54 }4{}3{}2{}1{43 }3{}2{}1{32}2{}1{21}1{1 0 )(x x X P X P X P X P X P x X P X P X P X P x X P X P X P x X P X P x X P x x F ,,,,,,,⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=6 165363554 363243 36273236202136111 0 x x x x x x x ,,,,,,, 2.注意,这里X 指的是赢钱数,X 取0-1或100-1,显然{}1261299510===C X P. 3.1!0==-∞=∑λλae k a k k,所以λ-=e a .4.(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤-<=⎪⎪⎩⎪⎪⎨⎧≥<≤=+-=<≤--=<=3x 132432141-1x 03x 132}2{}1{21}1{-1x 0)(,,,,,,,,x x x X P X P x X P x f ,(2){}41121=-==⎭⎬⎫⎩⎨⎧≤X p X P 、 {}2122523===⎭⎬⎫⎩⎨⎧≤<X P X P 、{}{}{}{}{}{}43323232==+=====≤≤X P X P X X P X P ; 5.(1){}3121121121lim 212121222242=⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=++++==∞→ii i X P 偶数, (2){}{}16116151415=-=≤-=≥X P X P , (3){}7121121121lim 21333313=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-===∞→∞=∑ii i i X P 的倍数.6.(1) ()()5.15.0~P t P X = {}5.10-==e X P .(2)5.25.0=t {}{}5.21011--==-=≥e x P x P .7.解:设射击的次数为X ,由题意知().20400~,B X{}{}kk k kC X P X P -=∑-=≤-=≥4001040098.002.011129972.028.01!81810=-=-≈-=∑e k k K ,其中8=400×0.02.8.解:设X 为事件A 在5次独立重复实验中出现的次数,().305~,B X则指示灯发出信号的概率{}{})7.03.07.03.07.03.0(1313322541155005C C C X P X P p ++-=<-=≥=1631.08369.01=-=;9. 解:因为X 服从参数为5的指数分布,则51)(xex F --=,{}2)10(110-=-=>e F X P,()25~-e B Y ,则50,1,k ,)1()(}{5225 =-==---k k ke e C k YP0.516711}0{-1}1{52=--===≥-)(e Y P Y P10. (1)、由归一性知:⎰⎰-∞+∞-===222cos )(1ππa xdx a dx x f ,所以21=a .(2)、42|sin 21cos 21}40{4040===<<⎰πππx xdx X P .11. 解 (1)由F (x )在x =1的连续性可得)1()(lim )(lim11F x F x F x x ==-→+→,即A=1.(2){}=<<7.03.0X P4.0)3.0()7.0(=-F F .(3)X 的概率密度⎩⎨⎧<<='=,010,2)()(x x x F x f . 12. 解 因为X 服从(0,5)上的均匀分布,所以⎪⎩⎪⎨⎧<<=其他05051)(x x f若方程024422=+++X Xx x 有实根,则03216)4(2≥--=∆X X ,即12-≤≥X X ,所以有实根的概率为{}{}53510511252152==+=-≤+≥=⎰⎰-∞-x dx dx X P X P p 13. 解: (1) 因为4)(3~,N X 所以)2()5(}52{F F X P -=≤<5328.016915.08413.01)5.0()1(=-+=-Φ-Φ={})4()10(104--=≤<-F F X P996.01998.021)5.3(21)5.3()5.3(=-⨯=-Φ=--Φ-Φ={}{}212≤-=>X P X P {}221≤≤--=X P[])2()2(1---=F F [])5.2()5.0(1-Φ--Φ-=[])5.0()5.2(1Φ-Φ-=3023.01-=6977.0={}{}313≤-=>X P X P )3(1F -=)0(1Φ-=5.01-=5.0=(2){}{}c X P c X P ≤-=>1,则{}21=≤c X P 21)23()(=-Φ==c c F ,经查表得21)0(=Φ,即023=-c ,得3=c ;由概率密度关于x=3对称也容易看出。
(3) {}{}d X P d X P ≤-=>1)(1d F -=9.0)23(1≥-Φ-=d , 则1.0)23(≤-Φd ,即9.0)23-(≥-Φd ,经查表知8997.0)28.1(=Φ,故28.123-≥-d ,即44.0≤d ; 14. 解:{}{}k X P k X P ≤-=>1{}k X k P ≤≤--=1)()(1σσkk -Φ+Φ-=)(22σkΦ-=1.0=所以 95.0)(=Φσk,}{95.0)()(=Φ==<σk k F kX p ;由对称性更容易解出;15. 解),(~2σμN X 则 {}}{σμσμσμ+<<-=<-X P X P)()(σμσμ--+=F F )()(σμσμσμσμ--Φ--+Φ=)1()1(-Φ-Φ=0.68261)1(2=-Φ=上面结果与σ无关,即无论σ怎样改变,{}σμ<-X P 都不会改变;16. 解:由X 的分布律知所以Y 的分布律是Z 的分布律为17. 解 因为服从正态分布),(2σμN ,所以22)(21)(σμσπ--=x ex f ,则dx ex F xx ⎰∞---=222)(21)(σμσπ ,{}ye p y F x Y ≤=)(,当0≤y 时,0)(=y F Y ,则0)(=y f Y当0>y 时,{}{}y x p y e p y F x Y ln )(≤=≤=222)(ln '211))(ln ()()(σμσπ--='==y Y Y yy F y F y f e所以Y 的概率密度为e 211)(222)(ln ≤>⎪⎩⎪⎨⎧=--y y yy f y Y σμσπ;18. 解)1,0(~U X ,1001)(<<⎩⎨⎧=x x f , {}{}y x p y Y p y F Y ≤-=≤=1)()1(1y F --=,所以⎩⎨⎧<<=⎩⎨⎧<-<=-=其他其他)1()(0,101,0,1101,y y y f y f X Y 19. 解:)2,1(~U X ,则其他2101)(<<⎩⎨⎧=x x f{}{}ye P y Y P y F X Y ≤=≤=2)(当0≤y 时,{}0)(2=≤=y e P y F X Y ,当0>y 时,)(y F Y )ln 21(ln 21y F y X P X =⎭⎬⎫⎩⎨⎧≤=,其他其他4242'21)ln 21(021))ln 21(()()(e x e ye x e yf y F y F y f X Y Y <<⎪⎩⎪⎨⎧=<<⎪⎩⎪⎨⎧='==20. 解: (1){}{}y X P y Y P y F Y ≤=≤=3)(11⎭⎬⎫⎩⎨⎧≤=y X P 31)31(y F X =)31(31))31(()()('11y f y F y F y f X Y Y ='==因为其他11023)(2<<-⎪⎩⎪⎨⎧=x x x f X所以)31(31)(1y f y f X Y =其他,1311,01812<<-⎪⎩⎪⎨⎧=y y 其他,33,01812<<-⎪⎩⎪⎨⎧=y y (2){}{}{})3(133)(22y F y X P y X P y Y P y F X Y --=-≥=≤-=≤=, )3()]3(1[)()(''22y f y F x F y f X X Y Y -=--==因为其他11023)(2<<-⎪⎩⎪⎨⎧=x x x f X ,所以)3()(2y f y f X Y -=⎪⎩⎪⎨⎧<-<--=其他0,131,)3(232y y ⎪⎩⎪⎨⎧<<-=其他0,42,)3(232y y (3){}{}y X P y Y P y F Y≤=≤=23)(3当0≤y 时,{}0)(23=≤=y X P y F Y ,0)()('33==x F y f Y Y 当0>y 时,{}())()(3y Fy F y X y P y F XX Y --=≤≤-=,()())]([21)]([)()(''33y fy f yy F y F x F y f XXY Y -+=--==所以()0,0,)]([21)(3≤>⎪⎩⎪⎨⎧-+=y y y fy f yy f XX Y ,因为其他11023)(2<<-⎪⎩⎪⎨⎧=x x x f X , 所以其他,10,023)(3<<⎪⎩⎪⎨⎧=y y y f Y四.应用题1.解:设X 为同时打电话的用户数,由题意知().20,10~ B X设至少要有k 条电话线路才能使用户再用电话时能接通的概率为0.99,则99.0!8.02.0}{01010=≈=≤∑∑=-=-ki iki iii e i C k X P λλ,其中,2=λ查表得k=5.2.解:该问题可以看作为10重伯努利试验,每次试验下经过5个小时后组件不能正常工作这一基本结果的概率为1-4.0-e,记X 为10块组件中不能正常工作的个数,则)1,10(~4.0--e B X ,5小时后系统不能正常工作,即{}2≥X ,其概率为{}{}.8916.0 )()1()()1(1 1121104.014.0110104.004.0010=----=≤-=≥-----e e C e e C X P X P3.解:因为)40,20(~2N X ,所以)30()30(}3030{}30{--=≤≤-=≤F F X P X P3149.018944.05187.01)25.1()25.0()402030()402030(=-+=-Φ+Φ=--Φ--Φ= 设Y 表示三次测量中误差绝对值不超过30米的次数,则)4931.0,3(~B X ,(1)8698.00.5069-1)4931.01(4931.01}0{1}1{33003==--==-=≥C Y P Y P .(2)3801.05069.04931.0}1{2113=⨯==C Y P .4.解:当0<y 时,}{y Y ≤是不可能事件,知0)(=y F ,当20<≤y 时,Y 和X 同分布,服从参数为5的指数分布,知55151)(y yxe dx e y F ---==⎰,当2≥y 时,}{y Y ≤为必然事件,知1)(=y F ,因此,Y 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<=-2,120e -10 , 0)(5y y y y F y,;5.解:(1) 挑选成功的概率701148==C p ; (2) 设10随机挑选成功的次数为X ,则该⎪⎭⎫ ⎝⎛70110~,B X ,设10随机挑选成功三次的概率为:0.00036)7011()701(}3{7310≈-==k C X P , 以上概率为随机挑选下的概率,远远小于该人成功的概率3/10=0.3,因此,可以断定他确有区分能力。