一次函数图象的应用(二)演示文稿
合集下载
一次函数图象的应用(二)演示文稿

s/海里 海里 12 10 8 6 4 2 O 2 4 6 8 10 12 14 16
l2 l1
P
t/分 分
(5)当A逃到离海岸12海里的公海时,B将无法对其进行 检查。照此速度,B能否在A逃入公海前将其拦截? 从图中可以看出,l1与l1交点P的纵坐标小于12, 这说明在A逃入公海前,我边防快艇B能够追上A。 上 述 想 问 一 s/海里 海里 题 想 吗 你 12 ? 能 10 用 P l2 其 8 他 6 l1 方 法 4 解 2 决
4. 请你根据另一幅图表,充分发挥你的想象,自编 请你根据另一幅图表,充分发挥你的想象, 一则新的“龟免赛跑”的寓言故事,要求如下: 一则新的“龟免赛跑”的寓言故事,要求如下: (1)用简洁明快的语言概括大意,不能超过 )用简洁明快的语言概括大意,不能超过200字; 字 (2)图表中能确定的数值,在故事叙述中不得少于 )图表中能确定的数值, 3个,且要分别涉及时间、路和速度这三个量。 个 且要分别涉及时间、路和速度这三个量。
6000 5000 4000 3000 2000 1000
l2
O
1
2
3
4
5
6
x/ 吨
(2)当销售量为6吨时,销售收入= 6000 元, 销售成本= 5000 元; (3)当销售量为 4吨 时,销售收入等于销售成本;
y/元 元
6000 5000 4000 3000 2000 1000
l1 l2
O
1
2
=45km,此时S ⑵当小聪到达“飞瀑”时,即S1=45km,此时S2=42.5km。 当小聪到达“飞瀑” 所以小慧离“飞瀑”还有45-42.5=2.5(km) 所以小慧离“飞瀑”还有45-42.5=2.5( 45
l2 l1
P
t/分 分
(5)当A逃到离海岸12海里的公海时,B将无法对其进行 检查。照此速度,B能否在A逃入公海前将其拦截? 从图中可以看出,l1与l1交点P的纵坐标小于12, 这说明在A逃入公海前,我边防快艇B能够追上A。 上 述 想 问 一 s/海里 海里 题 想 吗 你 12 ? 能 10 用 P l2 其 8 他 6 l1 方 法 4 解 2 决
4. 请你根据另一幅图表,充分发挥你的想象,自编 请你根据另一幅图表,充分发挥你的想象, 一则新的“龟免赛跑”的寓言故事,要求如下: 一则新的“龟免赛跑”的寓言故事,要求如下: (1)用简洁明快的语言概括大意,不能超过 )用简洁明快的语言概括大意,不能超过200字; 字 (2)图表中能确定的数值,在故事叙述中不得少于 )图表中能确定的数值, 3个,且要分别涉及时间、路和速度这三个量。 个 且要分别涉及时间、路和速度这三个量。
6000 5000 4000 3000 2000 1000
l2
O
1
2
3
4
5
6
x/ 吨
(2)当销售量为6吨时,销售收入= 6000 元, 销售成本= 5000 元; (3)当销售量为 4吨 时,销售收入等于销售成本;
y/元 元
6000 5000 4000 3000 2000 1000
l1 l2
O
1
2
=45km,此时S ⑵当小聪到达“飞瀑”时,即S1=45km,此时S2=42.5km。 当小聪到达“飞瀑” 所以小慧离“飞瀑”还有45-42.5=2.5(km) 所以小慧离“飞瀑”还有45-42.5=2.5( 45
一次函数图象的应用课件

一次函数图象的应 用ppt课件
目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况
。
02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述
目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况
。
02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述
《一次函数图象的应用》一次函数PPT课件

由于持续高温和连日无雨,某水库的蓄水量随着时间的增加
探索分析?而减少.干旱持续时间 t( 天)与蓄水量3V(万米 ) 的关系如图所示,
V/万米3
(1).干旱持续10天,蓄水量为多少?(答:1000)
回答下列问题: 连续干旱23天呢?
1200
分析:干旱10天求蓄水量
1000
(10,1000) 就是已知自变量t=10求对应的
⑵超过30千克后,每千克需 付多少元?
议一议 一元一次方程0.5x+1=0与一 次函数y=0.5x+1有什么联系?
从上面的例题和练习不难得出下
面y 的答案:
1、从“数”的方面看,当一 次函数y=0.5x+1的因变量的
3
值为0时,相应的自变量的值
2 1
即为方程0.5x+1=0的解。
-3
-2 -1 0 1 -1 -2
回答下列问题: (1).连续干旱23天,储水量为:750 万米3
1200
(2).蓄水量小于400 万米3时,将发生
1000
严重的干旱 警报.干旱 40天 天后将
发出干旱警报?
800
(3).按照这个规律,预计持续干旱
(23,750)
60天 天水库将干涸?
600
(40,400)
400
200
(60,0)
0
应用与延伸 (1)
中考点击
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量y(升)和
摩托车行驶路程x(千米)之间 的关系变为图1:
(400,6)
(600,2)
(400,2)
图1
原图
⑵加油前每100千米耗油多少升? 加油后每100千米耗油多少升?
一次函数应用经典课件pptPPT课件

在牛顿第二定律中,力和加速度之间的关系是一次函数。通过测量力和加速度,我们可以确定物体的 质量。此外,在分析物体的运动时,我们也需要用到一次函数来描述力和加速度随时间的变化关系。
在实际应用中,一次函数在解决车辆动力学问题、航空航天器设计等领域中具有广泛的应用。
03
一次函数的实际案例
人口增长模型
总结词
练习题
某股票价格在过去一年内从10元上涨到20元,如果市场环境发生 变化,股票价格可能会如何变化?
THANKS
感谢观看
在实际应用中,线性回归分析被广泛应用于经济、金融、医 学、农业等领域,例如预测股票价格、评估广告效果、研究 疾病与年龄之间的关系等。
速度和加速度的计算
速度和加速度是一次函数在物理学中的重要概念。速度是 描述物体位置变化快慢的物理量,而加速度是描述速度变 化快慢的物理量。
通过一次函数,我们可以表示物体在直线运动中的速度和 加速度随时间的变化关系。这对于理解运动学的基本原理 以及解决相关问题具有重要意义。
一次函数应用经典课件pptppt课 件
• 一次函数的基本概念 • 一次函数的应用场景 • 一次函数的实际案例 • 一次函数与其他数学知识的结合 • 一次函数在实际问题中的应用练习
01
一次函数的基本概念
一次函数的定义
一次函数是形如$y = ax + b$的函数,其 中$a$和$b$是常数, 且$a neq 0$。
Hale Waihona Puke 经济学中的成本和收益问题在经济学中,成本和收益是核心概念之一。通过一次函数,我们可以表示成本和 收益与生产量之间的关系。例如,固定成本、可变成本与总成本之间的关系,以 及总收入与销售量之间的关系。
了解成本和收益的变化规律对于企业制定生产计划、进行市场预测以及制定价格 策略等具有重要意义。
在实际应用中,一次函数在解决车辆动力学问题、航空航天器设计等领域中具有广泛的应用。
03
一次函数的实际案例
人口增长模型
总结词
练习题
某股票价格在过去一年内从10元上涨到20元,如果市场环境发生 变化,股票价格可能会如何变化?
THANKS
感谢观看
在实际应用中,线性回归分析被广泛应用于经济、金融、医 学、农业等领域,例如预测股票价格、评估广告效果、研究 疾病与年龄之间的关系等。
速度和加速度的计算
速度和加速度是一次函数在物理学中的重要概念。速度是 描述物体位置变化快慢的物理量,而加速度是描述速度变 化快慢的物理量。
通过一次函数,我们可以表示物体在直线运动中的速度和 加速度随时间的变化关系。这对于理解运动学的基本原理 以及解决相关问题具有重要意义。
一次函数应用经典课件pptppt课 件
• 一次函数的基本概念 • 一次函数的应用场景 • 一次函数的实际案例 • 一次函数与其他数学知识的结合 • 一次函数在实际问题中的应用练习
01
一次函数的基本概念
一次函数的定义
一次函数是形如$y = ax + b$的函数,其 中$a$和$b$是常数, 且$a neq 0$。
Hale Waihona Puke 经济学中的成本和收益问题在经济学中,成本和收益是核心概念之一。通过一次函数,我们可以表示成本和 收益与生产量之间的关系。例如,固定成本、可变成本与总成本之间的关系,以 及总收入与销售量之间的关系。
了解成本和收益的变化规律对于企业制定生产计划、进行市场预测以及制定价格 策略等具有重要意义。
一次函数的应用(2)精品PPT教学课件

(2) yΒιβλιοθήκη 1 2x1
2020/12/6
10
1,一次招聘会上,A,B两公司都在招聘销 售人员。A公司给出的工资待遇是:每月1000 元基本工资,另加销售额的2﹪作为奖金;B 公司给出的工资待遇是:每月600元基本工资, 另加销售额的4%作为奖金。如果你去应聘, 那么你将怎样选择?
2020/12/6
11
2020/12/6
1
2020/12/6
2
用一次函数解决实际问题的基本步骤是:
(1)先判断问题中的两个变量之间是不 是一次函数关系。
(2)求得函数解析式。
(3)利用函数解析式或其图象解决实际 问题。
2020/12/6
3
确定两个变量是否构成一次函数的关系 的方法有:
1.图象法: ●通过实验、测量获得数量足够多的两 个变量的对应值;
(2)当小聪到达“飞瀑“时,小慧离“飞瀑”还有多少km?
解:设经过t小时,小聪与小慧离“古刹”的路程分别为s1,s2,由题意得 S1=36t,s2=26t+10.
在直角坐标系中画出直线
55
50
S1=36t和直线s2=26t+10.
45
观察图象,得
42.5 40
36
(1)两条直线S1=36t,
35 30
2,某商场要印制商品宣传材料,甲印刷厂的 收费标准是:每份材料收1元印刷费,另收 1500元制版费;乙印刷厂的收费标准是:每份 材料收2.5元印制费,不收制版费。 (1)分别写出两厂的收费y(元)与印制数量x (份)之间的关系式;
(2)在同一直角坐标系中画出它们的图象。 (3)根据图象回答下列问题: 印制800份宣传材料时,选择哪一家印刷厂比较 合算?商场计划花费3000元用于印刷宣传材料, 找哪一家印刷厂能印刷宣传材料多一些?
一次函数的应用课件(共31张PPT)

(0,b)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
一次函数图象的应用(2)精选教学PPT课件
1200 1000 800 600 400 200
干旱持续10天,储 水量约为1000立方
米
干旱持续30天, 储水量约为600
立方米
O
10 20 30 40 50
t/天
V/万立方米(2)储水量小于400万立
方米时,将发出严重干旱
警报,干旱多少天后,将
1200
发出干旱警报?
1000
800 600 400 200
(1)一箱汽油可供摩托车行驶多少千米?
•
(2)摩托车每行驶100千米消耗多少升汽油?
10 •
9•
(3)油箱中的剩余油量小于1升
8•
时,摩托车将自动报警。行驶多少 千米后,摩托车将自动报警?
7•
6• 5• 4• 3•
2•
1•
O
10•0 20•0 30• 0 40• 0 50•0
练习:一农民带了若干千克自产的土豆进城销售,为了方便,他 带了一些零钱备用,按照市场价售出一些后,又降价销售,售出 的土豆千克数x与他手中持有的钱数y(含备用零钱)的关系如图 所示,根据图象回答下列问题:
假如你喜欢的人突然销声匿迹,你没有必要寻死觅活地断言他一定洒脱地离去;假如你的朋友不幸,你没有必要怨天尤人;假如你认为张曼玉艳美绝俗,你没有必要眼馋肚饱虐待老婆;假如你已经身心交病,那就去教堂忏悔,没有必要仇视别人的平庸;坦然面对心融神会,快乐就在你 心里。我怜悯一个有点荣誉的人,就旁若无人而因此失 去快乐的人。能把名利得失置之度外,而凡事都能以诚相待的人一生将是快乐的。我们应从平谈的生活中去提炼体会,如:赤城待人的那种快乐。低待遇下一如既往工作的快乐,助人为乐一介不取的快乐,一片至诚去感化恶人的快乐,热心被人误解依然如故的快乐,信实可靠的服务态 度为目的的快乐,尽责任吃苦耐劳的快乐,因为这些 “快乐”能保持住人内心的快乐,使人的容貌永远那么牵挂,一句亲切的问候。甚至一个关切的眼神,快乐无处不有,唯有胸襟开阔的人,才能体会到。形单影只的人仍然可以享受着闲情逸致的快乐。乐山乐水各不相同。爱静的人可以看书、听音乐、上网、写作、画画、搜集各种收藏 品。爱动的人则不妨练习舞蹈、慢跑、爬山、游泳。看 电影、上健身房。做编织、陶艺。练瑜枷、潜心发明、闭门创作,摄影、观鸟,我们仍然兴复不浅,乐不可支。人生苦短,岁月如流,乐天知命,为什么不乐乐陶陶的。为什么要疾首蹙额,为眼前一时的顿挫心胆俱碎?为什么要对那些你看不惯的人和事心烦率乱?岂不知我们都是尘世 间相映成趣的战友。人世一切冤天屈地,无妄之灾,荣 华富贵,香娇玉嫩……都将随身亡命殒。而人生长着百年,短则数十寒暑,又有何值得耀武扬威的,不过是烟云过眼矣?人生如月,月满则亏,凡事岂能尽人意,但求于心无愧。无愧我心,则恩同再造,那些得失又算不了甚么。世界上没有完美无缺得事物。奉劝多愁善感的朋友。饮醇自醉,快乐起来吧!芸 芸众生,绿水青山,名胜古迹, 敞开心胸,便会云蒸霞蔚,快乐将永远伴随着你!
《一次函数图象的应用》一次函数PPT精选教学课件2
P
t/分
(5)当A逃到离海岸12海里的公海时,B将无法对其进行 检查。照此速度,B能否在A逃入公海前将其拦截? 从图中可以看出,l1与l1交点P的纵坐标小于12, 这说明在A逃入公海前,我边防快艇B能够追上A。 上 述想 s/海里 问一 题想 12 吗你 10 ?能 P l2 用 8 其 6 l1 他 方 4 法 2 解 决 2 4 6 8 10 12 14 16 O
(1)当小聪追上小慧时,他们是否已经过了“草甸”?
(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km?
⑵当小聪到达“飞瀑”时,即S1=45km,此时S2=42.5km。 所以小慧离“飞瀑”还有45-42.5=2.5(km)
60 55 50 45 40 35 30 25 20 15 10 5
S(km) S1=36t
S2=26t+10
42.5
思考:用解析法如何
求得这两个问题的结果?
0
0.25
0.5 0.75
1
1.25
1.5
1.75
t(时)
例 如图,l1反映了某公司产品的销售收入与销售量的 关系, l2反映了该公司产品的销售成本与销售量的 关系,根据图意填空: (1)当销售量为2吨时,销售收入= 2000 元, 销售成本= 3000 元; y/元 l1
S(km)
S2=26t+10
这说明当小聪追上小慧时, S1=S2=36 km,即离“古 刹”36km,已超过35km,也就 是说,他们已经过了“草甸”
36
0
0.25
0.5 0.75
1
1.25
1.5
1.75
t(时)
例 小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪
一次函数图象的应用(二)演示文稿-PPT课件
根据图象回答下列问题: 1)哪条线表示B到海岸的距离
与追赶时间之间的关系? (交流)
2)A、B哪个速度快?
11
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
6000 5000 4000 3000 2000
1000
0
12
根据图象回答:
L1 3)当销售量为 4 时,
.
销售收入等于销售成本。 L2 4)当销售量大于4吨时,
该公司赢利。
(即收入大于成本)。
当销售量 小于4吨 时,
该公司亏损
3 4 5 6 x/吨(即收入小于成本)。 5
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
L2 销售成本是 3000 元。
3000
2)当销售为6吨时,
销售收入是 6000 元。
2000
1000
.
销售成本是 5000 元。 该公司赢利 元。
0 1 2 3 4 5 6 x/吨
4
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
1
班级:八年级(5、6) 授课教师:周末
2
1、想一想:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
问1:这个图象与前一
L1
节课所看到的图
象有何不同?
5000 4000
与追赶时间之间的关系? (交流)
2)A、B哪个速度快?
11
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
6000 5000 4000 3000 2000
1000
0
12
根据图象回答:
L1 3)当销售量为 4 时,
.
销售收入等于销售成本。 L2 4)当销售量大于4吨时,
该公司赢利。
(即收入大于成本)。
当销售量 小于4吨 时,
该公司亏损
3 4 5 6 x/吨(即收入小于成本)。 5
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
L2 销售成本是 3000 元。
3000
2)当销售为6吨时,
销售收入是 6000 元。
2000
1000
.
销售成本是 5000 元。 该公司赢利 元。
0 1 2 3 4 5 6 x/吨
4
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
1
班级:八年级(5、6) 授课教师:周末
2
1、想一想:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
问1:这个图象与前一
L1
节课所看到的图
象有何不同?
5000 4000
北师大版八年级上册数学 《一次函数图象的应用》一次函数PPT教学课件
水量y与天数t的函数关系。 ( Y 4t 20 )
20 t(天)
2020/11/10
10
课堂小结
今天, 你有什么收获?
2020/11/10
11
课外探究
在生活中,你还遇到过哪些可以 用一次函数关系来表示的实际问题? 选择你感兴趣的问题,编制一道数学 题与同学交流。
2020/11/10
12
谢谢您的聆听与观看
当b<0时,直线交y轴于负半轴, 必过二、三、四象限.
2020/11/10
2
想一想
由于持续高温和连日无
雨,某水库的蓄水量随着时
间的增加而减少.干旱持续
时间t(天)与蓄水量V(万米3) 的关系如下图所示,回答下 列问题:
PPT模 板 下 载 : 节 日 PPT模 板 : PPT背 景 图 片 : 优 秀 PPT下 载 : Word教 程 : 资料下载:
(2)如果该地区沙漠的面积继续 按此趋势扩大,那么从现ቤተ መጻሕፍቲ ባይዱ开始,第几年底后,该地区 将丧失土地资源?(50年底后)
(3)如果从现在开始采取植树造林措施,每年改造4万千
米2沙漠,那么到第几年底,该地区的沙漠面积能减少
到176万千米2(.第12年底)
2020/11/10
9
探究升级
从宣传活动开始,假设每天
一元一次方程0.5x+1=0与一次函数 y=0.5x+1有什么联系?
y
3 2 1
-3 -2 -1 0 1 -1
2
3x
1. 从“数”的方面看,当一次函数y=0.5x+1的函数
值y=0时,相应的自变量的值即为方程0.5x+1=0解。
2. 从“形”的方面看,函数y=0.5x+1与x轴交点的
20 t(天)
2020/11/10
10
课堂小结
今天, 你有什么收获?
2020/11/10
11
课外探究
在生活中,你还遇到过哪些可以 用一次函数关系来表示的实际问题? 选择你感兴趣的问题,编制一道数学 题与同学交流。
2020/11/10
12
谢谢您的聆听与观看
当b<0时,直线交y轴于负半轴, 必过二、三、四象限.
2020/11/10
2
想一想
由于持续高温和连日无
雨,某水库的蓄水量随着时
间的增加而减少.干旱持续
时间t(天)与蓄水量V(万米3) 的关系如下图所示,回答下 列问题:
PPT模 板 下 载 : 节 日 PPT模 板 : PPT背 景 图 片 : 优 秀 PPT下 载 : Word教 程 : 资料下载:
(2)如果该地区沙漠的面积继续 按此趋势扩大,那么从现ቤተ መጻሕፍቲ ባይዱ开始,第几年底后,该地区 将丧失土地资源?(50年底后)
(3)如果从现在开始采取植树造林措施,每年改造4万千
米2沙漠,那么到第几年底,该地区的沙漠面积能减少
到176万千米2(.第12年底)
2020/11/10
9
探究升级
从宣传活动开始,假设每天
一元一次方程0.5x+1=0与一次函数 y=0.5x+1有什么联系?
y
3 2 1
-3 -2 -1 0 1 -1
2
3x
1. 从“数”的方面看,当一次函数y=0.5x+1的函数
值y=0时,相应的自变量的值即为方程0.5x+1=0解。
2. 从“形”的方面看,函数y=0.5x+1与x轴交点的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、当同一直角坐标系中出 现多个函数图象时,一定 要注意对应的关系。 2、根据函数的的图象的确 定该函数的类型.
2000
1000 0 1 2 3 4 5 6
x/吨
例1
我边防局接到情报,近海处有一可疑船只A正向公 海方向行驶,边防局迅速派出快艇B追赶(如下图)。
海 岸
B
A
公 海
4、做一做
我边防局接到情报,近海处有一可疑船只A正向公海 方向行使。边防局迅速派出快艇B追赶(如图(1)), 图(2)中L1、L2分别表示两船相对海岸的距离S(海 里)与追赶时间t(分)之间的关系。
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。 根据图象回答下列问题: 1)哪条线表示B到海岸的距离与 追赶时间之间的关系?(交流) 2)A、B哪个速度快? s/海里
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
根据图象回答下列问题: 1)哪条线表示B到海岸的距离 与追赶时间之间的关系? (交流) 2)A、B哪个速度快?
x/吨
4)当销售量大于4吨时, 该公司赢利。 (即收入大于成本)。 当销售量 小于4吨 时, 该公司亏损 (即收入小于成本)。
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
5000 4000 3000
根据图象回答:
L1
.
1 2 3 4 5
L2
5)L1对应的函数表达 式为 。 L2对应的函数表达 式是 。
2000
1000 0
.
6
x/吨
3、说 一说
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
L1 L2
6000
5000 4000 3000
做了本题后你有什么 体会或收获?(交流)
4)如果一直追上去,那么B能否追上A?
5)当A逃到离海岸12海里 的公海时,B将 s/海里 无法对其进行检 9 查。照此速度, 8 7 B能否在A逃入 6 5 公海前将其拦截?
4 3 2 1
0
2 4 6 8
L2(A)
P
.
L1(B)
10
12
14
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
根据图象回答下列问题: 1)哪条线表示B到海岸的距离与 追赶时间之间的关系? 2)A、B哪个速度快? 3)15分钟内B能否追上A?
4)如果一直 追上去,那 么B能否追上 A?
s/海里 9 8 7 6 5 4 3 2 1
0
2 4 6 8
L2(A)
.
P
14
L1(B)
10
12
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
班级:八年级(5、6) 授课教师:周末
1、想一想:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
5000 4000 3000
L1 L2
问1:这个图象与前一 节课所看到的图 象有何不同?
问2:你能说出这两 个函数代表的函数 的自变量与因变量 分别指什么? 问3:你能说出x轴、y 轴分别表示什么量?
(呵呵!这也是中考题,我们都会做啦) 6、练一练:
某图书馆开展两种方式的租书业务:一种是使用会员 卡,一种是使用租书卡,使用这两种卡租书,租书金额y(元) 与租书时间x(天)之间的关系如下图: 1)分别写出用租书卡和会员卡 Y(元) 租书的金额y(元)与租书时间 x(天)之间的函数关系式; 2)两种租书方式每天租书的 50 收费分别是多少? 会员卡 3)若两种租书卡的使用期限 租书卡 20 X(天) 均为一年,则在这一年中如 何选取这两种租书方式比 100 较划算?
2000
1000 0 1 2 3 4 5 6
x/吨
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
5000 4000 3000
L1 L2
根据图象回答: 1)当销售为2吨时, 销售收入是 2000 元。 销售成本是 3000 元。 2)当销售为6吨时, 销售收入是 6000 元。 销售成本是 5000 元。 该公司赢利 元。
2000
1000 0 1
.
2
3
4
5
6
x/吨
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
5000 4000 3000
L1
.
1 2 3 4 5
根据图象回答: 3)当销售量为 4 时, 销售收入等于销售成本。
L2
2000
1000 0 6
.
7、小结:
问:经过本堂课的学习,你有什么收获?
1)学会解较为复杂的一次函数的应用题
2)学会把复杂的图象转化为几个简单的图象去 解决问题
书面作业:第207页:第2题 选做题:相关练习册的练习
下课了!
祝你成功!
根据图象回答下列问题: 1)哪条线表示B到海岸的距离与 追赶时间之间的关系? 2)A、B哪个速度快? 3)15分钟内B能否追上A? 4)如果一直追上去,那么B能否 追上A? 5)当A逃到离海岸12海里的公海时, B将无法对其进行检查。照此速度, B能否在A逃入公海前将其拦截?
5、议一议
你能求出两直线的表达式吗?
3)15分钟内B能 9 8 否追上A? 7
6 5 4 3 2 1
0
2 4 6 8
L2(A)
. .
t/分
L1(B)
10
12
14 15
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
s/海里 9 8 7 6 5 4 3 2 1
0
海 岸
B (1)
公
L2
A
海
L1
t/分
(2)
2
4
6
8
10
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
根据图象回答下列问题: 1)哪条线表示B到海岸的距离与 追赶时间之间的关系? 2)A、B哪个速度快? 3)15分钟内B能否追上A? 4)如果一直追上去,那么B能否 追上A? 5)当A逃到离海岸12海里的公海 时,B将无法对其进行检查。 照此速度,B能否在A逃入公 海前将其拦截?
2000
1000 0 1 2 3 4 5 6
x/吨
例1
我边防局接到情报,近海处有一可疑船只A正向公 海方向行驶,边防局迅速派出快艇B追赶(如下图)。
海 岸
B
A
公 海
4、做一做
我边防局接到情报,近海处有一可疑船只A正向公海 方向行使。边防局迅速派出快艇B追赶(如图(1)), 图(2)中L1、L2分别表示两船相对海岸的距离S(海 里)与追赶时间t(分)之间的关系。
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。 根据图象回答下列问题: 1)哪条线表示B到海岸的距离与 追赶时间之间的关系?(交流) 2)A、B哪个速度快? s/海里
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
根据图象回答下列问题: 1)哪条线表示B到海岸的距离 与追赶时间之间的关系? (交流) 2)A、B哪个速度快?
x/吨
4)当销售量大于4吨时, 该公司赢利。 (即收入大于成本)。 当销售量 小于4吨 时, 该公司亏损 (即收入小于成本)。
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
5000 4000 3000
根据图象回答:
L1
.
1 2 3 4 5
L2
5)L1对应的函数表达 式为 。 L2对应的函数表达 式是 。
2000
1000 0
.
6
x/吨
3、说 一说
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
L1 L2
6000
5000 4000 3000
做了本题后你有什么 体会或收获?(交流)
4)如果一直追上去,那么B能否追上A?
5)当A逃到离海岸12海里 的公海时,B将 s/海里 无法对其进行检 9 查。照此速度, 8 7 B能否在A逃入 6 5 公海前将其拦截?
4 3 2 1
0
2 4 6 8
L2(A)
P
.
L1(B)
10
12
14
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
根据图象回答下列问题: 1)哪条线表示B到海岸的距离与 追赶时间之间的关系? 2)A、B哪个速度快? 3)15分钟内B能否追上A?
4)如果一直 追上去,那 么B能否追上 A?
s/海里 9 8 7 6 5 4 3 2 1
0
2 4 6 8
L2(A)
.
P
14
L1(B)
10
12
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
班级:八年级(5、6) 授课教师:周末
1、想一想:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
5000 4000 3000
L1 L2
问1:这个图象与前一 节课所看到的图 象有何不同?
问2:你能说出这两 个函数代表的函数 的自变量与因变量 分别指什么? 问3:你能说出x轴、y 轴分别表示什么量?
(呵呵!这也是中考题,我们都会做啦) 6、练一练:
某图书馆开展两种方式的租书业务:一种是使用会员 卡,一种是使用租书卡,使用这两种卡租书,租书金额y(元) 与租书时间x(天)之间的关系如下图: 1)分别写出用租书卡和会员卡 Y(元) 租书的金额y(元)与租书时间 x(天)之间的函数关系式; 2)两种租书方式每天租书的 50 收费分别是多少? 会员卡 3)若两种租书卡的使用期限 租书卡 20 X(天) 均为一年,则在这一年中如 何选取这两种租书方式比 100 较划算?
2000
1000 0 1 2 3 4 5 6
x/吨
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
5000 4000 3000
L1 L2
根据图象回答: 1)当销售为2吨时, 销售收入是 2000 元。 销售成本是 3000 元。 2)当销售为6吨时, 销售收入是 6000 元。 销售成本是 5000 元。 该公司赢利 元。
2000
1000 0 1
.
2
3
4
5
6
x/吨
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
5000 4000 3000
L1
.
1 2 3 4 5
根据图象回答: 3)当销售量为 4 时, 销售收入等于销售成本。
L2
2000
1000 0 6
.
7、小结:
问:经过本堂课的学习,你有什么收获?
1)学会解较为复杂的一次函数的应用题
2)学会把复杂的图象转化为几个简单的图象去 解决问题
书面作业:第207页:第2题 选做题:相关练习册的练习
下课了!
祝你成功!
根据图象回答下列问题: 1)哪条线表示B到海岸的距离与 追赶时间之间的关系? 2)A、B哪个速度快? 3)15分钟内B能否追上A? 4)如果一直追上去,那么B能否 追上A? 5)当A逃到离海岸12海里的公海时, B将无法对其进行检查。照此速度, B能否在A逃入公海前将其拦截?
5、议一议
你能求出两直线的表达式吗?
3)15分钟内B能 9 8 否追上A? 7
6 5 4 3 2 1
0
2 4 6 8
L2(A)
. .
t/分
L1(B)
10
12
14 15
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
s/海里 9 8 7 6 5 4 3 2 1
0
海 岸
B (1)
公
L2
A
海
L1
t/分
(2)
2
4
6
8
10
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
根据图象回答下列问题: 1)哪条线表示B到海岸的距离与 追赶时间之间的关系? 2)A、B哪个速度快? 3)15分钟内B能否追上A? 4)如果一直追上去,那么B能否 追上A? 5)当A逃到离海岸12海里的公海 时,B将无法对其进行检查。 照此速度,B能否在A逃入公 海前将其拦截?