苏科版初二数学上册代数式单元测试卷及参考答案

合集下载

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。

《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)

《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)

《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。

八年级数学苏科版上册第3单元复习《单元测试》01 练习试题试卷 含答案

八年级数学苏科版上册第3单元复习《单元测试》01 练习试题试卷 含答案

苏科八年级上单元测试第3单元班级________姓名________一、选择题(每小题3分,共30分)1.下列条件中,不能判断△ABC 为直角三角形的是()A.a 2=1,b 2=2,c 2=3B.a:b:c=3:4:5C.∠A+∠B=∠CD.∠A:∠B:∠C=3:4:52.如图,点D 在△ABC 的边AC 上,将△ABC 沿BD 对折后,点A 恰好与点C 重合,若BC=5,CD=3,则BD 的长为()A.1B.2C.3D.43.若一个直角三角形的三边长分别为a,b,c,且a 2=9,b 2=16,则c 2为()A.25B.7C.7或25D.9或164.等腰三角形的腰长是10,一腰上的高为6,则底边长为()A.B.C.或D.5.在Rt△ABC 中,∠C=90°,AB=2,则AB 2+BC 2+CA 2的值为()A.2B.4C.8D.166.如果将长为6cm,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cmB.C.5.5cmD.1cm7.ABC D 的三边为,,a b c 且2()()a b a b c +-=,则该三角形是()A.以a 为斜边的直角三角形B.以b 为斜边的直角三角形C.以c 为斜边的直角三角形D.锐角三角形8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm9.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE,且点F 在矩形ABCD 内部.将AF 延长交边BC 于点G.若41=BG CG ,则=ABAD ()A.21B.22C.25D.2610.如图在棱长为1的正方体ABCD﹣A 1B 1C 1D 1中,一只蚂蚁从点A 出发,沿正方体表面爬行到面对角线A 1B 上的一点P,再沿截面A 1BCD 1爬行到点D 1,则整个过程中蚂蚁爬行的最短路程为()A.2B.C.2+D.二、填空题(每小题2分,共20分)11.点P(8,-15)到原点的距离是.12.有一个直角三角形两边长分别是4和5,则第三边长为.13.在△ABC 中,AB=AC=17cm,BC=16cm,AD⊥BC 于点D,则AD=_______.14.已知一个三角形的三边长分别是12,16,20,则这个三角形的面积为.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.16.如图,在Rt△ABC 中,∠BAC=90°,过顶点A 的直线DE∥BC,∠ABC,∠ACB 的平分线分别交DE 于点E、D,若AC=6,BC=10,则DE 的长为.17.如图是由边长为1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C 所走的路程为________m.(结果保留根号)18.如图,在△ABC 中,AB=AC=5,BC=6,若点P 在边AC 上移动,则BP 的最小值是.B19.如图,OP=1,过P 作OP PP ^1且1=PP 作121OP P P ^且121=P P ,得32=OP ;又过2P 作232OP P P ^且132=P P ,得23=OP ;……依此法继续作下去,得2014OP =_______.20.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D 的面积和是49cm 2,则其中最大的正方形S 的边长为cm.三、解答题(每小题10分,共70分)21.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm,求CD 的长.22.一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距多少千米?23.如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?24.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,并求出三角形的面积.25.阅读下列解题过程.已知a,b,c是△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2),①∴c2=a2+b2,②∴△ABC是直角三角形.③则(1)上述解决问题的过程,从第________步出现错误.(2)错误的原因是________.(3)本题正确的结论是________.26.在一次“探究性学习”课中,老师设计如下数表:n2345…a22-132-142-152-1…b46810…c22+132+142+152+1…(1)请你观察a,b,c与n之间的关系,用含自然数n(n>1)的代数式表示a、b、c,则a=________,b=________,c=________.(2)猜想:以a,b,c为边的三角形是否为直角三角形?证明你的结论.27.据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三,股是四,那么弦就等于五.后人概括为“勾三、股四、弦五”.(1)观察:3、4、5;5、12、13;7、24、25;…,发现这些勾股数的“勾”都是奇数,且从3起就没有间断过,计算1(91)2-,1(91)2+与1(251)2-,1(251)2+,并根据你发现的规律,分别写出能用勾表示7、24、25的股和弦的算式;(2)根据(1)的规律,用含n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,猜想它们之间的两种相等关系,并对其中一种猜想加以说明;(3)继续观察4、3、5;6、8、10;8、15、17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用类似上述探索的方法,直接用含m(m为偶数且m>4)的代数式来表示它们的股和弦.参考答案一、选择题(每小题3分,共30分)1.D2.D3.C.4.C5.C6.A7.A8.A9.C10.D二、填空题(每小题2分,共20分)11.1712.3或13.15cm14.9615.1016.1417.18.4.820.7三、解答题(每小题10分,共70分)21.在Rt△ABC中,根据勾股定理,得BC2=AC2+AB2=32+42=25.在Rt△CBD中,根据勾股定理,得CD2=BC2+BD2=25+122=169,所以CD=13.22.如图,由已知得,OB=16×0.5=8海里,OA=12×0.5=6海里,在△OAB中∵∠AOB=90°,由勾股定理得OB2+OA2=AB2,即82+62=AB2,=10海里.23.(1)先根据勾股定理求出BC及DC的长,进而可得出BD的长,根据载重汽车的速度是4m/s 即可得出受噪音影响的时间;(2)根据(1)中得出的时间与25秒相比较即可得出结论.试题解析:(1)∵由题意得AC=9,AB=AD=41,AC⊥BD,∴Rt△ACB 40=,Rt△ACD 40=,∴BD=80,∴80÷4=20(s),∴受影响时间为20s;(2)∵20<25,∴可以通行.24.(1)格点三角形的边长一般为数,则可以3、4、5为三边作一直角三角形;(2)可先作一条边,再逐个顶点尝试作出整个三角形.求面积时因为不是特殊三角形,故可用长方形面积减去三个小直角三角形面积求得.试题解析:(1)如图,以3,4,5为三边的三角形即为作画;为三边的三角形即为所画.面积:1117241241132222S =´-´´-´´-´´=25.(1)②(2)等式的两边都除以(a 2-b 2),但不知a 2-b 2是否为0(3)△ABC 的形状为直角三角形或等腰三角形26.解:(1)n 2-12n n 2+1(2)以a,b,c 为边的三角形是直角三角形.理由如下:∵a 2+b 2=(n 2-1)2+(2n)2=n 4-2n 2+1+4n2=(n 2+1)2=c 2,∴以a,b,c 为边的三角形是直角三角形.27.(1)7、24、25的股24的算式为211(491)(71)22-=-;弦25的算式为211(491)(71)22+=+.(2)本题答案不唯一,如弦-股=1;勾2+股2=弦2.证明第一个猜想:弦-股=2222111(1)(1)[(1)(1)]1222n n n n +--=+--=(3)探索得:当m 为偶数且m>4时,股、弦的代数式分别为2()12m -、2()12m +.。

代数式单元测试卷(解析版)

代数式单元测试卷(解析版)

一、初一数学代数式解答题压轴题精选(难)1.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。

(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.故答案为|﹣2﹣x|+|3﹣x|,5.【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;①根据OC=2OB列出方程,解方程即可求解;②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

代数式 苏科版数学八年级上册课时练习(含答案)

代数式 苏科版数学八年级上册课时练习(含答案)

3.2 代数式一、选择题1.用式子表示“x的2倍与y的和的平方”是()A.(2x+y)2B.2x+y2C.2x2+y2D.x(2+y)22.买单价为a元/支的体温计n支,付费b元,则应找回的钱数是( )A.(b-a)元B.(b-n)元C.(na-b)元D.(b-na)元3.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A.200-60xB.140-15xC.200-15xD.140-60x4.下图中表示阴影部分面积的代数式是)A.ab+bcB.c(b-d)+d(a-c)C.ad+c(b-d)D.ab-cd5.我国启动“家电下乡”工程,国家对购买家电补贴13%.若某种品牌彩电每台售价a 元,则购买时国家需要补贴( )A.a元B.13%a元C.(1-13%)a元D.(1+13%)a元6.某超市销售一批商品,若零售价为每件a元,获利25%,则每件商品的进价应为()A.25%a元B.(1 - 25%)a元C.(1+25%)a元D.a1+25%元7.两列火车都从A地驶向B地.已知甲车的速度是x千米/时,乙车的速度是y千米/时,经过3小时,乙车距离B地5千米,此刻甲车距离B地( )A.[3( - x+y) - 5]千米B.[3(x+y) - 5]千米C.[3( - x+y)+5]千米D.[3(x+y)+5]千米8.已知一个三位数,百位上的数字为a,十位上的数字为b,个位上的数字为c,则这个三位数可表示成()A.abcB.a+b+cC.100a+10b+cD.100c+10b+a9.下列语句正确的是()A.1+a不是一个代数式B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式10.下列代数式的意义表示错误的是()A.2x+3y表示2x与3y的和B.表示5x除以2y所得的商C.9﹣y表示9减去y的所得的差D.a2+b2表示a与b和的平方11.有一两位数,其十位数字为a,个位数字为b,将两个数颠倒,得到一个新的两位数,那么这个新两位数十位上的数字与个位数字的和与这个新两位数的积用代数式表示( )A.ba(a+b)B.(a+b)(b+a)C.(a+b)(10a+b)D.(a+b)(10b+a)12.一根绳子弯曲成如图3-2的形状,当用剪刀沿图中的虚线a把绳子剪断时,绳子被剪为5段;当用剪刀沿图中的虚线b(b∥a)把绳子再剪一次时,绳子就被剪成9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪刀的方向与a平行),这样一共剪n 次时绳子的段数是( )A.4n+1B.4n+2C.4n+3D.4n+5二、填空题13.“数a的2倍与10的和”用代数式表示为________.14.原价为a元的书包,现按8折出售,则售价为元.15.铅笔每支m元,小明用10元钱买了n支铅笔后,还剩下元.16.一件羊毛衫标价a元,如果按标价的8折出售,那么这件羊毛衫的售价为______元.如果按8折的售价是a元,那么这件羊毛衫的原价是_________元.17.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,..….按此规律,那么请你推测第n组应该有种子数是________粒.18.下图为手的示意图,在各个手指间标记字母A、B、C、D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1、2、3、4、…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是________(用含n的代数式表示).三、解答题19.下列各式哪些是代数式?哪些不是代数式?(1)3>2;(2)a+b=5;(3)a;(4)3;(5)5+4﹣1;(6)m米;(7)5x﹣3y20.某超市今年第一季度的营业额为m万元,预计本年度每季度比上一季度的营业额增长p%.请你完成下列问题:(1)用代数式分别表示第二季度、第三季度、第四季度的预计营业额;(2)当m=10,p=15时,求出本年度预计营业总额(结果精确到0.1万元).21.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?22.如图,四边形ABCD与四边形CEFG是两个边长分别为a、b的正方形.(1)用a、b的代数式表示三角形BGF的面积;(2)当a=4cm,b=6cm时,求阴影部分的面积.23.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).参考答案1.A2.D3.C4.C5.B6.D7.C8.C9.B10.D11.D12.A13.答案为:2a+1014.答案为:a.15.答案为:(10-mn) ;16.答案为:0.8a,5a417.答案为:2n+118.答案为:B,603,6n+319.解:(1)、(2)中的“>”、“=”它们不是运算符号,因此(1)、(2)不是代数式.(3)、(4)中a、3是代数式,因为单个数字和字母是代数式.(5)中是加减运算符号把5、4、1连接起来,因此是代数式.(6)m米含有单位名称,故不是代数式.(7)5x﹣3y中由乘、减两种运算联起5、x、3、y,因此是代数式. 答:代数式有(3)(4)(5)(7);(1)(2)(6)不是代数式.20.解:(1)第二季度预计营业额:m(1+p%)万元;第三季度预计营业额:m(1+p%)2万元;第四季度预计营业额:m(1+p%)3万元.(2)49.9万元.21.解:(1)x千克这种蔬菜加工后重量为x(1﹣20%)千克,价格为y(1+40%)元.x千克这种蔬菜加工后可卖x(1﹣20%)•y(1+40%)=1.12xy元.(2)加工后可卖1.12×1000×1.5=1680元,1.12×1000×1.5﹣1000×1.5=180(元)比加工前多卖180元.22.解:23.解:(1)l=2πr+2a.(2)S=πr2+2ar.(3)当a=8m,r=5m时,l=2π×5+2×8=10π+16≈47.4(m),S=π×52+2×8×5=25π+80≈158.5(m2).。

代数式单元测试卷(初中数学)附答案

代数式单元测试卷(初中数学)附答案

代数式单元测试卷一.选择题(共10小题共20分)1.计算-3(x -2y )+4(x -2y )的结果是( )A .x -2yB .x+2yC .-x-2yD .-x+2y2.若2y m+5x n+3与-3x 2y 3是同类项,则m n =( )A .21B .21- C .1 D .-2 3.下列各式中,是3a 2b 的同类项的是( )A .2x 2yB .-2ab 2C .a 2bD .3ab4.若-x 3y m 与x n y 是同类项,则m+n 的值为( )A .1B .2C .3D .45.下列计算正确的是( )A .3a -2a =1B .x 2y-2xy 2=-xy 2C .3a 2+5a 2=8a 4D .3ax-2xa=ax6.若单项式2x n y m-n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( )A .m =3,n =9B .m =9,n =9C .m =9,n =3D .m =3,n =37.下列判断错误的是( )A .若x <y ,则x +2010<y +2010B .单项式7432y x -的系数是-4 C .若|x -1|+(y -3)2=0,则x =1,y =3 D .一个有理数不是整数就是分数8.化简m-n-(m+n )的结果是( )A .0B .2mC .-2nD .2m -2n 9.已知a ,b 两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|-|a-2|+|b+2|的结果是( )A .2a+2bB .2b +3C .2a -3D .-110.若x-y =2,x-z =3,则(y-z )2-3(z-y )+9的值为( )A .13B .11C .5D .7 二.填空题(共10小题共30分)11.如果单项式-xy b+1与21x a-2y 3是同类项,那么(a-b )2015= . 12.若单项式2x 2y m 与331y x n -的和仍为单项式,则m+n 的值是 .13.若-2x 2y m 与6x 2n y 3是同类项,则mn = .14.单项式-4x 2y 3的系数是 ,次数 .15.单项式322y x -的系数与次数之积为 . 16.多项式 与m 2+m-2的和是m 2-2m .17.多项式-2m 2+3m -21的各项系数之积为 . 18.在代数式3xy 2,m ,6a 2-a +3,12,22514xy yz x -,ab 32中,单项式有 个,多项式有 个.19.单项式-2πa 2bc 的系数是 .20.观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3…,则第2013个单项式是 .三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.(每小题4分)合并同类项①3a-2b-5a+2b②(2m+3n-5)-(2m-n-5)③2(x 2y+3xy 2)-3(2xy 2-4x 2y )22.(每小题4分)化简:(1)16x-5x+10x(2)7x-y+5x-3y+3(3)a 2+(2a 2-b 2)+b 2(4)6a 2b+(2a+1)-2(3a 2b-a )23.(6分)已知|a-2|+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值。

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 计算(12x4y2+3x3y)÷3x3y的结果是()A. 4xy+1B. 4xyC. 4x2y+3D. 4x3y+3x3y2. 在下列各式中的括号内填入a3后成立的是()A. a12=()2B. a12=()3C. a12=()4D. a12=()63. 把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是()A. x+1B. x+3C. 2xD. x+24. 下列多项式中,不能进行因式分解的是()A. x2-2x+1B. x2-9C. x2+1D. 6x2+3x5. 若计算(x+my)(x+ny)时能使用平方差公式,则m,n应满足()A. m,n同号B. m,n异号C. m+n=0D. mn=16. 下列因式分解正确的是()A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)27. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-7xy(2y-x-3)=-14xy2+7x2y□,□的地方被钢笔水弄污了,你认为□处应是()A. +21xyB. -21xyC. -3D. -10xy8. 如图1-①,将一张长方形纸板四个角各切去一个同样的正方形,制成图1-①的无盖纸盒,若该纸盒的容积为4a2b,则图①中纸盒底部长方形的周长为()A. 4abB. 8abC. 4a+bD. 8a+2b① ①图19. 已知a=314,b=96,c=275,则a,b,c的大小关系为()A. c>a>bB. a>c>bC. c>b>aD. b>c>a10. 课本第37页“阅读材料”中介绍了贾宪三角,贾宪三角可以看作是对两数和平方公式的推广,也告诉我们二项式乘方展开式的系数规律:…… …………根据上述规律,(a+b)7展开式的系数和是()A. 32B. 64C. 88D. 128二、填空题(本大题共6小题,每小题3分,共18分)11. 多项式x2-9与x2-6x+9的公因式是.12. 火星的体积约为1.35×1020立方米,地球的体积约为1.08×1021立方米,地球体积约是火星体积的__________倍.13. 一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:___________.14. 若2a=5,8b=11,则2a+3b的值为____________.15. 一个正方形的边长增加3 cm,它的面积增加了45 cm2,则原来这个正方形的面积为________cm2.16. 已知:31=3,32=9,33=27,34=81,35=243,36=729,…,设A=2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1,则A的个位数字是______________.三、解答题(本大题共6小题,共52分)17. (每小题4,共8分)因式分解:(1)a2(m-2)-b2(m-2);(2)3m3-6m2n+3mn2;18. (6分)先化简,再求值:(2x+y)2-(2x+y)(2x-y)-2y(x+y),其中x=12,y=2.19.(8分)如图2,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.图2(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:______________;(2)利用上述乘法公式计算:1002-98×102;20. (9分)如图3,小明用若干个长为a,宽为b的小长方形拼出图形,把这些拼图置于图①,②所示的正方形和大长方形内,请解答下列问题.(1)分别求出图①,图②中空白部分的面积S1,S2;(用含a,b的代数式表示)(2)若S1=11,S2=32,求ab的值.①②图321.(9分)发现:任意两个连续偶数的平方和是4的奇数倍.验证:(1)计算22+42的结果是4的倍;(2)设两个连续偶数较小的一个为2n(n为整数),请说明“发现”中的结论正确;拓展:(3)任意三个连续偶数的平方和是4的倍数吗?是(填“是”或“不是”)22. (12分)如图4,阴影部分是一个边长为a的大正方形剪去一个边长为b的小正方形和两个宽为b的长方形之后所剩余的部分.(1)①图1中剪去的长方形的长为_____________ ,面积为_____________.①用两种方式表示阴影部分的面积为__________________或________________,由此可以验证的公式为____________________.图4 图5(2)请设计一个新的图形验证公式:(a+b)2=a2+2ab+b2.(3)如图5,S1,S2分别表示边长为a,b的正方形的面积,且A,B,C三点在一条直线上,若S1+S2=40,AB=8,求图中阴影部分的面积.附加题(20分,不计入总分)形如a2±2ab+b2的式子叫做完全平方式.有些多项式虽然不是完全平方式,但可以通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在因式分解、代数最值等问题中都有着广泛的应用.(1)用配方法因式分解:a2+6a+8.解:原式=a2+6a+9-1=(a+3)2-1=(a+3-1)(a+3+1)=(a+2)(a+4).(2)用配方法求代数式a2+6a+8的最小值.解:原式=a2+6a+9-1=(a+3)2-1.因为(a+3)2≥0,所以(a+3)2-1≥-1.所以a2+6a+8的最小值为-1.解决问题:(1)因式分解:a2-12a+32= ;(2)用配方法求代数式4x2+4x+5的最小值;拓展应用:(3)若实数a,b满足a2-5a-b+7=0,则a+b的最小值为.参考答案一、1. A 2. C 3. B 4. C 5. C 6. C 7. A 8. D 9. A 10. D二、11. x-3 12. 8 13. x2-1(答案不唯一)14. 55 15. 36 16. 110. D 解析:当n=0时,展开式的系数和为1=20;当n=1时,展开式的系数和为1+1=2=21;当n=2时,展开式的系数和为1+2+1=4=22;当n=3时,展开式的系数和为1+3+3+1=8=23;当n=4时,展开式的系数和为1+4+6+4+1=16=24;当n=5时,展开式的系数和为1+5+10+10+5+1=32=25;……当n=8时,展开式的系数和为28=256.16. 1 解析:A=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(34-1)(34+1)(38+1)(316+1)(332+1)+1=(38-1)(38+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364.观察已知等式,个位数字以3,9,7,1循环,且64÷4=16,能整除,所以A的个位数字是1.三、17. 解:(1)原式=(m-2)(a2-b2)=(m-2)(a+b)(a-b);(2)原式=3m(m2-2mn+n2)=3m(m-n)2.18. 解:(2x+y)2-(2x+y)(2x-y)-2y(x+y)=4x2+4xy+y2-4x2+y2-2xy-2y2=2xy.当x=12,y=2时,原式=2×12×2=2.19. 解:(1)(a+b)(a-b)=a2-b2.(2)1002-98×102=1002-(100-2)(100+2)=1002-(1002-22)=1002-1002+22=4.20. 解:(1)S1=(a+b)2-3ab=a2+b2-ab.S2=(2a+b)(a+2b)-5ab=2a2+2b2.(2)因为S1=a2+b2−ab=11,S2=2a2+2b2=32,所以a2+b2=16.所以ab=5.21. 解:(1)5(2)因为两个连续偶数较小的一个为2n(n为整数),则较大的偶数为2n+2.所以(2n)2+(2n+2)2=4n2+4n2+8n+4=8n2+8n+4=4(2n2+2n+1).因为n为整数,所以2n2+2n+1为奇数.所以任意两个连续偶数的平方和是4的奇数倍.(3)是解析:设三个连续偶数较小的一个为2n(n为整数),则中间的偶数为2n+2,最大的偶数为2n+4.所以(2n)2+(2n+2)2+(2n+4)2=4n2+4n2+8n+4+4n2+16n+16=12n2+24n+20=4(3n2+6n+5).所以任意三个连续偶数的平方和是4的倍数.22. 解:(1)①a-b ab-b2①(a-b)2a2-2ab+b2(a-b)2=a2-2ab+b2(2)如图所示:(3)因为S1+S2=40,AB=8,所以a2+b2=40,a+b=8.因为(a+b)2=a2+2ab+b2,所以82=40+2ab.所以ab=12.所以图中阴影部分的面积=2×12ab=ab=12.附加题解:(1)(a-4)(a-8)解析:a2-12a+32=a2-12a+36-4=(a-6)2-4=(a-6+2)(a-6-2)=(a-4)(a-8).(2)4x2+4x+5=4x2+4x+1+4=(2x+1)2+4.因为(2x+1)2≥0,所以(2x+1)2+4≥4.所以4x2+4x+5的最小值为4.(3)3 解析:因为a2-5a-b+7=0,所以a2-4a-a-b+7=0.所以a+b=a2-4a+4+3=(a-2)2+3. 因为(a-2)2≥0,所以(a-2)2+3≥3.所以a+b的最小值为3.。

第15章《整式的乘除与因式分解》单元测试题(含答案)[

《整式的乘除与因式分解》单元测试题一、选择题(共5小题,每小题4分,共20分)1、下列运算正确的是 ( )A 、 933842x x x ÷=B 、2323440a b a b ÷=C 、22m m aa a ÷= D 、2212()42abc ab c ÷-=- 2、计算(32)2013×1.52012×(-1)2014的结果是( ) A 、32 B 、23 C 、-32 D 、-23 3、下列多项式乘法中可以用平方差公式计算的是( ) A 、))((b a b a -+- B 、)2)(2(x x ++ C 、)31)(31(x y y x -+ D 、)1)(2(+-x x 4、 把代数式ax ²- 4ax +4a ²分解因式,下列结果中正确的是( )A 、a (x -2) 2B 、 a (x +2) 2C 、a (x -4) 2D 、a (x -2) (x +2)5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )。

A 、a 2+b 2=(a +b )(a -b )B 、(a +b )2=a 2+2abC 、(a -b )2=a 2-2ab +b 2D 、a 2-b 2=(a -b )2二、填空题(共5小题,每小题4分,共20分)6、运用乘法公式计算:(32a -b )(32a +b )= ;(-2x -5)(2x -5)= 7、计算:534515a b c a b -÷=8、若a +b =1,a -b =2006,则a 2-b 2=9、在多项式4x 2+1中添加一个单项式,使其成为完全平方式,则添加的单项式为 (只写出一个即可)10、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 2y -2xy 2,商式必须是2xy ,则小亮报一个除式是 。

初二上册数学代数式练习题及答案

初二上册数学代数式练习题及答案一、填空题1. 已知a = 3 ,b = 5 ,求(a + b)²的值。

解:(a + b)² = (3 + 5)² = 64。

2. 如果x = -4 ,求2x² + (x - 2)² + 3x的值。

解:2x² + (x - 2)² + 3x = 2(-4)² + (-4 - 2)² + 3(-4) = 16 + 36 - 12 - 12 - 12 = 16。

3. 若3(x + 4) - 2(x - 1) = 2x + 9 ,求x 的值。

解:3(x + 4) - 2(x - 1) = 2x + 9化简得:3x + 12 - 2x + 2 = 2x + 9合并同类项得:1x + 14 = 2x + 9移项得:14 - 9 = 2x - 1x化简得:5 = x所以 x = 5。

二、选择题1. 已知 x = 2 ,则 2x的值是()A. 4B. 2D. -2答案:A2. 若 3x - 4 = 2 ,则 x 的值是()A. 1B. 2C. 3D. 4答案:B三、解方程1. 方程2x - 3 = 7的解为多少?解:2x - 3 = 72x = 7 + 32x = 10x = 5所以,方程2x - 3 = 7的解为 x = 5。

2. 方程3(x - 2) + 4 = 16的解为多少?3(x - 2) + 4 = 163x - 6 + 4 = 163x - 2 = 163x = 16 + 23x = 18x = 6所以,方程3(x - 2) + 4 = 16的解为 x = 6。

四、应用题1. 小明现在的年龄是x岁,5年前的年龄是(x - 5)岁。

如果小明的年龄是18岁,那么5年前小明几岁?解:设小明5年前的年龄为a岁,则由题意可得:x - 5 = 18 - 5x - 5 = 13x = 13 + 5x = 18所以,小明5年前的年龄是 18 - 5 = 13岁。

第六章 一次函数数学八年级上册-单元测试卷-苏科版(含答案)

第六章一次函数数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、若点在正比例函数的图象上,则下列各点不在正比例函数的图象上的是()A. B. C. D.2、函数中自变量x的取值范围是()A.x≠3B.x≤2C.x<2且x≠3D.x≤2且x≠33、已知甲、乙两弹簧的长度y(cm)与所挂物体x(kg)之间的函数解析式分别是y1=k1x+b1, y2=k2x+b2,图象如下图所示,当所挂物体质量均为2kg时,甲、乙两弹簧的长度y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定4、三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.45、在同一坐标系中,一次函数y=一mx+n2与二次函数y=x2+m的图象可能是( )A. B. C. D.6、若一个正比例函数的图象经过不同象限的两点A(﹣2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<07、正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()A. B. C. D.8、一次函数y=2x-3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9、设半径为r的圆的面积为S,则S=πr2,下列说法错误的是()A.A.变量是S和rB.常量是π和2C.用S表示r为D.常量是π10、一次函数y=(m+1)x+5中,y的值随x的增大而减小,则m的取值范围是()A.m<-1B.m>-1C.m>0D.m<011、某汽车从A开往360km外的B,全程的前一部分为高速公路,后一部分为普通公路.若汽车在高速公路和普通公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/hB.普通公路总长为90km C.汽车在普通公路上的行驶速度为60km/h D.汽车出发后4h 到B地12、直线y=2x+b的图象如图所示,则方程2x+b=﹣3的解为()A.﹣4B.﹣3C.2D.013、如果直线经过第一、二、四象限,且与轴的交点为,那么当时的取值范围是()A. B. C. D.14、如图,正方形ABCD的边长为5,P为DC上一点,设DP=x,△APD的面积为y,关于y 与x的函数关系式为:y=x,则自变量的取值范围为()A.0<x<5B.0<x≤5C.x<5D.x>015、甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:(1)他们都骑行了20km; (2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有().A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、甲、乙两车从A地开往B地,全程800km;所行的路程与时间的函数图像如图所示,下列问题:①乙车比甲车早出发2h;②甲车追上乙车时行驶了300km;③乙车的速度小于甲车速度;④甲车跑完全程比乙车跑完全程少用3h;以上正确的序号是________.17、一次函数,y随x的增大而减小,则k的值可以是________(写出一个即可).18、如图,小聪上午8:00整从家里出发,骑车去一家超市购物,然后从这家超市返回家中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29、观察图,解答下列问题.(本题 10 分) (1)图中的小圆圈被折线隔开分成六层,第一层有 1 个小圆圈,第二层有 3 个圆圈,第 三层有 5 个圆圈,……,第六层有 11 个圆圈.如果要你继续画下去,那么第八层有几个 小圆圈?第 n 层呢? (2)某一层上有 65 个圆圈,这是第几层? (3)数图中的圆圈个数可以有多种不同的方法. 比如:前两层的圆圈个数和为(1+3)或 22, 由此得,1 + 3 = 22. 同样, 由前三层的圆圈个数和得:1 + 3 + 5 = 32. 由前四层的圆圈个数和得:1 + 3 + 5 + 7 = 42. 由前五层的圆圈个数和得:1 + 3 + 5 + 7 + 9 = 52. …… 根据上述请你猜测,从 1 开始的 n 个连续奇数之和是多少?用公式把它表示出来. (4)计算:1 + 3 + 5 + … + 99 的和; (5)计算:101 + 103 + 105 + … + 199 的和.
14.已知当 x=1 时,2ax2+bx 的值为 3,则当 x=2 时,ax2+bx 的值为
15.若关于 x 的多项式 3x3+2x2-mx2+5x-1 与多项式 3x3+nx+3x-1 相等,则 mn= 16.a 是某数的十位数字,b 是它的个位数字,则这个数可表示为_______. 17.若 A=x2-3x-6,B=2x2-4x+6,则 3A-2B=_______ 18.单项式 5.2×105a3bc4 的次数是_______,单项式-
B.ay·3 C.
a 2b 4
D.a×b+c
10. 已知 a, b 两数在数轴上的位置如图所示,则化简代数式 a + b − a − 1 + b + 2 的结果 是( A.1 C. 2a − 3 ) B. 2b + 3 D.-1
11.在排成每行七天的月历表中取下一个 3 × 3 方块(如图所示).若所有日期数之和为 189, 则 n 的值为( A.21 ) B.11 C.15 D.9 第 11 题图 )
26.有这样一道计算题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值, 其中 x= 回事?
1 1 1 ,y=-1”,甲同学把 x= 看错成 x=- ,但计算结果仍正确,你说是怎么一 2 2 2
27.某市出租车收费标准:3 km 以内(含 3 km)起步价为 8 元,超过 3 km 后每 1 km 加收 1.8 元.(1)若小明坐出租车行驶了 6 km,则他应付多少元车费? (2)如果用 s 表示出租车行驶的路程,m 表示出租车应收的车费,请你表示出 s 与 m 之 间的数量关系(s>3).
七年级上数学 代数式 单元测试卷
班级 一、选择题 1.计算-2x2+3x2 的结果是 ( A.-5x2 B.5x2 ) C.-x2 D.x2 ) 姓名
2.足球每个 m 元,篮球每个 n 元,桐桐为学校买了 4 个足球,7 个篮球共需要( A.(7m+4n)元

B.28mn 元
C.(4m+7n)元
D.11mn 元 )
12. 下列图形都是由同样大小的小圆圈按一定规律所组成的, 其中第①个图形 中一共有 6 个小圆圈,第②个图形中一共有 9 个小圆圈,第③个图形中一共 有 12 个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为(
A.21 二、填空题
B.24
C.27
D.30
13.体育委员带了 500 元钱去买体育用品,已知一个足球 a 元,一个篮球 b 元,则代数式 500-3a -2b 表示的意义为 。 。 。
21.当 时,代数式 px + qx + 1 的值为 2 005,则当
3
时,代数式 px + qx + 1 的
3
值为__________. 22.已知甲、乙两种糖果的单价分别是 x 元/千克和 12 元/千克.为了使甲、乙两种糖果分别销 售与把它们混合成什锦糖后再销售的收入保持不变,则由 20 千克甲种糖果和 y 千克乙 种糖果混合而成的什锦糖的单价应是 三、解答题 23.合并同类项. (1)5(2x-7y)-3(4x-10y); 元/千克.
28.一种蔬菜 x 千克,不加工直接出售每千克可卖 y 元;如果经过加工质量减少了 20% , 价格增加了 40% ,问: (1) x 千克这种蔬菜加工后可卖多少钱? (2)如果这种蔬菜有 1 000 千克,不加工直接出售每千克可卖 1.50 元,加工后原 1 000 千克这种蔬菜可卖多少钱?比不加工多卖多少钱?
2 2 πa b 的系数是_______. 3 19.代数式 x2-x 与代数式 A 的和为-x2-x+1,则代数式 A=_______. 2 2 3 3 4 4 a a 20.已知 ×2= +2, ×3= +3, ×4= +4,…,若 ×10= +10(a、b 都是正 1 1 2 2 3 3 b b 整数) ,则 a+b 的值是_______.
(2) (5a-3b)-3(a2-2b);
(3)3(3a2-2ab)-2(4a2-ab)
(4) 2x-[2(x+3y)-3(x-2y)]
24.化简并求值. ( 1) ,其中 , ;
( 2)
,其中
.
25.用同样大小的黑色棋子按如图所示的规律摆放:
(1)第 5 个图形有多少颗黑色棋子? (2)第几个图形有 2016 颗黑色棋子?请说明理由.
3.已知代数式-3xm 1y3 与 ynxn+1 是同类项,那么 m,n 的值分别是 ( A. n=-3,m=-1 B. n=-3,m=-3 C. n=3,m=5 )
D. n=2,m=3
4.下列各组代数式中,是同类项的2y 与 yx2 C.5ax2 与 yx2 D.83 与 x3 5 5 5 5.下列式子合并同类项正确的是 ( ) A.3x+5y=8xy B.3y2-y2=3 C.15ab-15ba=0; D.7x3-6x2=x 6.同时含有字母 a、b、c 且系数为 1 的五次单项式有( ) A.1 个 B.3 个 C.6 个 D .9 个 7.右图中表示阴影部分面积的代数式是 ( ) A.ab+bc B.c(b-d)+d(a-c) C.ad+c(b-d) D.ab-cd 8.圆柱底面半径为 3 cm,高为 2 cm,则它的体积为( ) A.97π cm2 B.18π cm2 C.3π cm2 D.18π2 cm2 9.下面选项中符合代数式书写要求的是( ) 1 A.2 cb2a 3
相关文档
最新文档