第8课时 解三角形应用举例
湘教版数学九年级上册4.4《解直角三角形的应用》(第1课时)教学设计

湘教版数学九年级上册4.4《解直角三角形的应用》(第1课时)教学设计一. 教材分析湘教版数学九年级上册4.4《解直角三角形的应用》是本册教材中的一个重要内容。
在此之前,学生已经学习了直角三角形的性质、勾股定理等知识。
本节课主要让学生掌握解直角三角形的应用,即如何利用直角三角形的性质解决实际问题。
教材通过例题和练习题的形式,引导学生学会运用解直角三角形的方法解决生活中的问题,提高学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形的概念和性质有一定的了解。
但是,他们在解决实际问题时,往往不知道如何将数学知识运用到具体情境中。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 教学目标1.知识与技能目标:使学生掌握解直角三角形的应用方法,能够运用所学知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。
3.情感、态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:解直角三角形的应用方法。
2.难点:如何将实际问题转化为直角三角形问题,并运用解直角三角形的方法解决。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现问题,提出解决方案。
2.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。
3.合作学习法:学生分组讨论,共同解决问题,培养团队合作精神。
六. 教学准备1.教师准备:教材、课件、黑板、直角三角板等教学工具。
2.学生准备:课本、练习本、直角三角板等学习工具。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如测量旗杆高度、房屋面积等,引导学生发现这些问题都可以通过解直角三角形来解决。
从而激发学生的学习兴趣,引入新课。
2.呈现(10分钟)教师展示教材中的例题,引导学生观察题干,分析问题。
然后,教师通过讲解,展示解直角三角形的步骤和方法。
高中数学人教B版必修5第1章《解三角形》(1.2 第1课时)同步课件

∴AE=2csoisn1350°°=
2×12 6+
= 2
6-
2.
4
在△ABC 中,已知 A=45°,cosB=45. (1)求 cosC 的值; (2)若 BC=10,D 为 AB 的中点,求 CD 的长.
[解析]
(1)∵A=45°,∴cosA=
22,sinA=
2 2.
又∵cosB=45,∴sinB=35.
第一章 解三角形
第一章 1.2 应用举例 第1课时 距离问题
1
课前自主预习
3
易错疑难辨析
2
课堂典例讲练
4
课时作业
课前自主预习
• 碧波万顷的大海上,“蓝天号”渔轮在A处进行海上
作业,“白云号”货轮在“蓝天号”正南方向距
“蓝天号”20n mile的B处.现在“白云号”以10n
mile/h的速度向正北方向行驶,而“蓝天号”同时
小岛A周围38 n mile内有暗
礁,一船正向南航行,在B处
测得小岛A在船的南偏东30°,
航行30 n mile后,在C处测
得小岛在船的南偏东45°,
如果此船不改变航向,继续
向南航行,有无触礁的危险?
• [分析] 船继续向南航行,有无触礁的危险,取决
于A到直线BC的距离与38 n mile的大小,于是我们 只要先求出AC或AB的大小,再计算出A到BC的距离,
∴x=503 6 n mile.
• 4.在相距2 km的A、B两点处测量目标点C,若∠CAB =75°,∠CBA=60°,则A、C两点之间的距离为
______ km.
[答案] 6
[解析] 如图所示,由题意知∠C=45°, 由正弦定理,得siAn6C0°=sinA4B5°,∴AC= 22·23= 6. 2
人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)

求出BC的长;
第三步:在△ABC中,由余弦定理 第三步:
AB 2 = CA2 + CB 2 − 2CA CB cos C 求得AB的长。
形成结论
在测量上, 在测量上,根据测量需要适当确 定的线段叫做基线 如例1中的AC 基线, AC, 定的线段叫做基线,如例1中的AC, 中的CD.基线的选取不唯一, CD.基线的选取不唯一 例2中的CD.基线的选取不唯一, 一般基线越长 基线越长, 一般基线越长,测量的精确度越 高.
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
测量问题: 测量问题: 1、水平距离的测量 ①两点间不能到达, 又不能相互看到。 需要测量CB、CA的长和角C的大小,由余弦定理,
AB 2 = CA2 + CB 2 − 2CA CB cos C 可求得AB的长。
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦定理计 中 算出AB两点间的距离 算出 两点间的距离
A = A 2 + B 2 −2A ×B cosα B C C C C
例题2:要测量河对岸两地A、B之间的距离,在岸边 例题2:要测量河对岸两地A 之间的距离, 2:要测量河对岸两地 米的C 两地,并测得∠ADC=30° 选取相距 100 3 米的C、D两地,并测得∠ADC=30°、 ADB=45° ACB=75° BCD=45° ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 四点在同一平面上, 两地的距离。 D四点在同一平面上,求A、B两地的距离。 解:在△ACD中, ACD中 DAC=180 180° ACD+∠ADC) ∠DAC=180°-(∠ACD+∠ADC) 180° 75° 45° 30°)=30 30° =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3 在△BCD中, BCD中 CBD=180°-(∠BCD+∠BDC) ∠CBD=180°-(∠BCD+∠BDC) =180°-(45 +45°+30° =60° 45° =180°-(45°+45°+30°)=60°
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1

人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》一节,是在学生学习了相似三角形的性质和判定之后,进一步探讨相似三角形在实际问题中的应用。
通过本节课的学习,使学生了解相似三角形在实际生活中的重要性,提高他们运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和空间想象能力。
但学生在解决实际问题时,往往缺乏将数学知识与实际问题相结合的能力。
因此,在教学过程中,教师需要注重引导学生将所学知识应用于实际问题,提高他们的数学应用能力。
三. 教学目标1.理解相似三角形在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
2.培养学生的逻辑思维能力和空间想象能力。
3.增强学生对数学学科的兴趣和自信心。
四. 教学重难点1.重点:相似三角形在实际问题中的应用。
2.难点:将实际问题转化为数学问题,运用相似三角形的性质和判定解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形在实际问题中的应用。
2.利用多媒体课件辅助教学,直观展示实际问题,提高学生的空间想象能力。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重个体差异,因材施教,使每个学生都能在课堂上得到有效的训练和提高。
六. 教学准备1.准备相关实际问题,用于引导学生运用相似三角形知识解决。
2.准备多媒体课件,展示实际问题及解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如建筑物的设计、尺子测量等,引导学生思考这些实际问题与数学知识的联系。
从而引出本节课的主题——相似三角形在实际问题中的应用。
2.呈现(10分钟)教师展示一个实际问题:在同一平面内,有两座建筑物,一座高度为30米,另一座高度为18米。
请问,在离这两座建筑物等距离的地点,如何测量出两座建筑物的高度比?教师引导学生分析问题,并提出解决方法:利用相似三角形。
2024版《三角形的内角和》优质ppt课件

《三角形的内角和》优质ppt课件CONTENTS•三角形基本概念与性质•三角形内角和定理推导•三角形内角和定理应用举例•拓展:多边形内角和计算方法探讨•练习题与课堂互动环节•课程小结与预习提示三角形基本概念与性质01三角形定义及分类三角形定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。
三角形分类按边可分为等边三角形、等腰三角形和不属于以上两种的其他三角形;按角可分为锐角三角形、直角三角形和钝角三角形。
三角形边长与角度关系三角形边长关系任意两边之和大于第三边,任意两边之差小于第三边。
三角形角度关系三角形内角和等于180°,外角和等于360°。
三边相等,三个内角均为60°。
等边三角形等腰三角形直角三角形锐角三角形和钝角三角形有两边相等,且两底角相等;顶角的平分线、底边上的中线和高互相重合(简称“三线合一”)。
有一个角为90°,斜边中线等于斜边一半;两锐角互余,且满足勾股定理。
除上述特殊三角形外,其余均为普通锐角三角形或钝角三角形,它们不具有特殊的性质。
特殊三角形性质介绍三角形内角和定理推导02直观感受法01通过测量不同类型的三角形的三个内角,并求和,观察结果是否接近或等于180度。
02利用三角形纸片的撕拼,将三个内角拼在一起,观察是否能拼成一个平角。
拼图验证法将三角形三个内角剪下,并尝试拼合,观察是否能拼成一个平角。
通过动画演示,将三角形三个内角旋转、平移拼接,直观展示三角形内角和为180度的过程。
过三角形一个顶点做对边的平行线,利用平行线的性质及平角的定义进行证明。
延长三角形的一条边,并作出与之相邻的外角,通过外角性质及平角的定义进行证明。
利用向量的加法运算及共线向量定理进行证明。
平行线性质证明外角性质证明向量法证明几何证明法三角形内角和定理应用举例03求角度问题已知三角形两个内角,求第三个内角的大小。
已知三角形一个内角及相邻两边,求另一个内角的大小。
2024年宝藏PPT分享303小学数学《三角形的面积》

数学竞赛题目解析与拓展
2024/3/1
典型题目解析
在数学竞赛中,经常出现与三角形面 积相关的题目。通过分析典型题目的 解题思路和方法,可以帮助学生掌握 解题技巧,提高数学竞赛的应对能力 。
拓展题目挑战
除了典型题目,还可以提供一些拓展 题目供学生挑战。这些题目可以涉及 更复杂的三角形形状和面积计算方法 ,激发学生的探索精神和创新思维。
等边三角形面积计算
等边三角形是三边长度都相等的三角形。其面积计算公式为:面积 = (边长^2 × √3) / 4。这个公式利用了等边三角形的高与边长的固定比例关系。
2024/3/1
16
直角三角形面积计算技巧分享
直角三角形面积计算
直角三角形是一个角为90度的三角形。其面积计算公式为: 面积 = (底 × 高) / 2,其中底和高分别是直角三角形的两个 直角边。
7
三角形基本性质回顾
三角形有三条边和三个角,任意两边之和大于第三边。
三角形内角和为180度。
2024/3/1
三角形具有稳定性,即三边长度确定后,三角形的形状和大小就唯一确定了。
8
平行四边形面积公式复习
平行四边形的面积可以通过底和高来 计算,即面积 = 底 × 高。
在计算平行四边形面积时,需要确保 底和高的单位一致。
学生自我评价报告分享
学生能够熟练掌握三角形面积的计算 方法,并能够在实际问题中加以应用 。
部分学生在理解三角形面积与底和高 之间的关系时存在困难,需要进一步 加强练习和指导。
学生在课堂上积极参与讨论和实验, 表现出浓厚的学习兴趣和探究精神。
2024/3/1
25
下节课预告及预习建议
下节课将学习梯形的面积计算,学生需要提前预习相关知识。
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_2
第1课时解三角形应用举例—距离问题一、教材分析本课是人教B版数学必修5第一章解三角形中1.2的应用举例中测量距离(高度)问题。
主要介绍正弦定理、余弦定理在实际测量(距离、高度)中的应用。
因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。
本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。
对加深学生数学源于生活,用于生活的意识做贡献。
二、学情分析距离测量问题是基本的测量问题,在初中,学生已经学习了应用全等三角形、相似三角形和解直角三角形的知识进行距离测量。
这里涉及的测量问题则是不可到达的测量问题,在教学中要让学生认识问题的差异,进而寻求解决问题的方法。
在某些问题中只要求得到能够实施的测量方法。
学生学习本课之前,已经有了一定的知识储备和解题经验,所以本节课只要带领学生勤思考多练习,学生理解起来困难不大。
三、教学目标(一)知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量(距离、高度)有关的实际问题。
(二)过程与方法通过应用举例的学习,经历探究、解决问题的过程,让学生学会用正、余弦定理灵活解题,从而获得解三角形应用问题的一般思路。
(三)情感、态度与价值观提高数学学习兴趣,感知数学源于生活,应用于生活。
四、教学重难点重点:分析测量问题的实际情景,从而找到测量和计算的方法。
难点:测量方法的寻找与计算。
五、教学手段计算机,PPT,黑板板书。
六、教学过程(设计)情景展示,引入问题情景一:比萨斜塔(展示图片)师:比萨斜塔是意大利的著名建筑,它每年都会按照一定度数倾斜,但斜而不倒,同学们想一想,如果我们不能直接测量这个塔的高度,该怎么知道它的高度呢?情景二:河流、梵净山(展示图片)师:如果我们不能直接测量,该怎么得出河流的宽度和梵净山的高度呢?引入课题:我们今天就是来思考怎么通过计算,得到无法测量的距离(高度)问题。
知识扩展:简单介绍测量工具(展示图片)1 经纬仪:测量度数2卷尺:测量距离长.[分析]由余弦定理得cos∠=100+36-1962×10×6=-∴∠ADC=120°,∠在△ABD中,由正弦定理得sin∠ADB、如图,要测底部不能到达的烟囱的高AB,从[分析]如图,因为B A AA AB 11+=,又[分析] 分别在△BCD 出BD 和AD ,然后在△ADBBCD中用余弦定理求得BC.如下图,为了测量河宽,在岸的一边选定两点ACAB=45°,∠CBA=75°,________米.[分析]在△ABC中,∵∠CAB=45°,∠ABC=75°,ACB=60°,由正弦定理可得AC=AB·sin∠ABCsin∠ACB=120×sin75°sin60°=20(32+,设C到AB的距离为CD,则CD=AC·sin∠CAB=2+6)sin45°=20(3+3),∴河的宽度为20(3+3)米.五个量中,a,两个小岛相距10 n mile,从岛望C岛和A岛成岛之间的距离为________n=45°,由正弦定理.如图,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,测量时应当用数据( )[解析] 要测γ.2.某观察站C和500米,测得灯塔在观察站C正西方向,A.500米 BC.700米 D[解析]如图,由题意知,∠3002+5002+2×300七、板书设计八、教学反思1.本教案为解三角形应用举例,是对解三角形的较高的应用,难度相应的也有提高;例题选择典型,涵盖了解三角形的常考题型,突出了重点方法,并且通过同类型的练习进行巩固;课后通过基本题、模拟题和高考题对学生的知识掌握进行考查,使本节内容充分落实.教师要积极引导学生对这些应用问题进行探索,鼓励学生进行独立思考,并在此基础上大胆提出新问题.2.对于学生不知道如何处理的应用问题,教师通过转化,使学生能够理解,需要在练习中加强.。
三角形的三边关系教学设计一等奖(精选5篇)
三角形的三边关系教学设计一等奖(精选5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!三角形的三边关系教学设计一等奖(精选5篇)角形边的关系教案篇1教学目标:1、通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。
认识三角形教案(优秀8篇)
认识三角形教案(优秀8篇)《三角形认识》教案篇一教学目标(一)使学生理解三角形的意义,掌握三角形的特征,学会按角的特征给三角形分类.(二)培养学生观察能力、识图能力和归纳概括能力.教学重点和难点使学生理解三角形的意义和特征,会按角的特征给三角形进行分类,既是教学的重点,也是学习的难点.教学过程设计(一)复习准备1.指出下面各是什么图形?(投影)说出长方形、正方形的边是直线、射线还是线段?2.指出下面各是什么角?说出什么叫直角、锐角、钝角?组成角的两条边是什么线?3.请大家在本子上画出直角(用三角板)、锐角、钝角各一个.小结:我们已经学习了线段和角,如果把角的两条边改为线段,把角的两个端点连起来会出现什么图形?(三角形)我们今天就来研究和认识三角形.(板书课题:三角形的认识)(二)学习新课1.理解三角形的意义.(1)我们已学过三角形,你能举例说出哪些物体的面是三角形吗?(红领巾、三角板、小红旗等)(2)结合复习题,思考讨论:①三角形是几条线段围成的?②什么样的图形叫三角形?在讨论的基础上,引导学生概括:三角形是由三条线段围成的,由三条线段围成的图形叫做三角形.(3)巩固概念.①找一找,哪些是三角形?(投影)②用三条线段组成的图形叫做三角形.这句话对不对?为什么?在学生回答的基础上,教师强调,看一个图形是不是三角形,要从两方面看:一是看只有三条线段,二是要看是否围成的封闭图形.2.掌握三角形的特征.刚才大家找出这么多三角形,它们的形状各不相同,进一步观察一下,这些三角形有没有共同的地方?启发学生明确:它们都是三条线段围成的,它们都有三个角,都有三个顶点.再引导学生概括:围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点.3.教学三角形的特性.我们学习的三角形在日常生活中有很多地方要用到,像自行车的车架、房梁架等.为什么要用三角形的呢?我们来做一次实验.教师用事先准备好的木框,让同学们拉一拉.先拉五边形木框.(变形)再拉四边形木框.(变形)后拉三角形木框.(拉不动,三角形不变).提问:通过三角形木框拉不动,你明白了什么道理?可以得出什么结论?引导学生明确:三角形的三条边长度固定,三角形的形状和大小就固定不变了.因而三角形具有稳定性.这就是三角形的特征.你能举出生活中有哪些用到三角形的特性吗?(椅子腿松动了,可以固定一个三角形铁架)4.教学三角形的分类.三角形是多种多样的,我们可以根据三角形中角的不同进行分类.怎样分?(1)出示投影片,观察每个三角形内角的度数.(2)比较这三个三角形的三个角,它们有什么相同点和不同点?引导学生明确:相同点是每个三角形都至少有两个锐角;不同点是还有一个角分别是锐角、钝角和直角.(3)分类.根据上边三个三角形三个角的特点的分析,可以把三角形分成三类.图①,三个角都是锐角,它就叫锐角三角形.(板书)提问:图②、图③只有两个锐角,能叫锐角三角形吗?(不能)引导学生根据另一个角来区分.图②还有一个角是直角,它就叫直角三角形,图③还有一个钝角,它就叫钝角三角形.请同学再概括一下,根据三角形角的特征可以把三角形分成几类?分别叫做什么三角形?教师板书:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形.(4)三角形的关系.我们可以用集合图表示这种三角形之间的关系.把所有三角形看作一个整体,用一个圆圈表示.(画圆圈)好像是一个大家庭,因为三角形分成三类,就好象是包含三个小家庭.(边说边把集合图补充完整.)每种三角形就是这个整体的一部分.反过来说,这三种三角形正好组成了所有的三角形.(5)怎样判断三角形的类型呢?填表后观察.(投影)由上表可以看出,三角形中至少要有两个锐角,所以判断三角形的类型,应看它最大的内角.……(三)巩固反馈1.说说三角形的意义、特征.2.三角形有什么特性?3.三角形按角分,可以分为哪几类?4.判断题.(1)由三条线段组成的图形叫三角形.(2)锐角三角形中最大的角一定小于90°.(3)看到三角形中一个锐角,可以断定这是一个锐角三角形.(4)三角形中能有两个直角吗?为什么?(四)作业练习三十一第1~3题.课堂教学设计说明三角形是常见的一种图形,也是最基本的多边形,是学习研究其它几何图形的基础,在实践中有着广泛的应用.因此这部分内容很重要.本课教学既重视概念教学,又重视学生实践,不仅教知识,还要注意培养学生能力.新课第一部分,首先让学生理解三角形的概念.通过学生自己举例,观察,讨论后引导学生概括出什么样的图形叫做三角形.第二部分,让学生通过对各种形状三角形的观察、比较、找出它们的共同点,从而概括出三角形的特征,有三条边、三个角、三个顶点.第三部分,学习三角形的特性.让学生自己动手拉一拉五边形、四边形、三角形的木框,从而发现三角形的特性,即具有稳定性.第四部分,学习三角形的分类.学生在观察比较各种不同的三角形中的相同点和不同点的基础上,把三角形按角分类,可以分成锐角三角形、钝角三角形、直角三角形,概括出各种三角形的定义,并掌握它们之间的关系.通过不同形式的练习,让学生在思维中分辨,在观察中思维,使学生进一步理解概念,提高观察、概括能力.板书设计由三条线段围成的图形叫做三角形.三条边、三个角、三个顶点特性:稳定性按角分类三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形.《三角形认识》教案篇二【教材分析】本课是苏教版四年级下册第七单元第一课时的内容。
第8课摆花样(教学设计)
5.激发学生的创新意识和审美情趣,鼓励学生在摆花样的过程中发挥创意,体会数学图形的美学价值。
三、教学难点与重点
1.教学重点
(1)图形的组合:熟练掌握基本图形(如三角形、正方形、圆形等)的组合方法,并能运用这些组合创作出新的图形。
此外,今天的课堂让我意识到,教学难点和重点的把握至关重要。在今后的教学中,我需要更加精准地把握学生的需求,针对他们的薄弱环节进行有针对性的讲解和指导。同时,我要注重培养学生的团队协作能力,让他们在合作中相互学习、共同进步。
3.重点难点解析:在讲授过程中,我会特别强调图形的平移、旋转和轴对称这三个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与图形组合相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示图形的平移、旋转和轴对称的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形组合的基本概念。图形组合是指利用基本图形(如三角形、正方形、圆形等)通过平移、旋转和轴对称等操作形成新的图案。它是几何图形学习中的重要部分,有助于培养我们的空间想象力和创新能力。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过旋转和轴对称将基本图形组合成美丽的图案,以及这些图案在实际中的应用。
举例:学生知道图形可以通过平移、旋转和轴对称进行变换,但在具体应用时可能会不知道如何下手。
(3)几何语言的描述:用数学语言描述图形特征,对学生的表达能力是一个挑战。
举例:学生可能会知道图形是轴对称的,但难以用准确的语言描述轴对称的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8课时 解三角形应用举例
【课前热身】
1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β之间的关系是( )
A .α>β
B .α=β
C .α+β=90°
D .α+β=180°
2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )
A .北偏东15°
B .北偏西15°
C .北偏东10°
D .北偏西10°
3.在200 m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,如图
所示则塔高CB 为( )
A.4003 m
B.4003 3 m
C.2003 3 m
D.2003 m
4.(2011·上海卷)在相距2千米的A 、B 两点处测量目标点C ,若∠CAB =75°,
∠CBA =60°,则A 、C 两点之间的距离为________千米.
5. 如图,为了测量河的宽度,在一岸边选定两点A ,B 望对岸的标记物C ,
测得∠CAB =30°,∠CBA =75°,AB =120 m ,则这条河的宽度为
________m.
6.(2010·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两
个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?
【知识要点】
1.仰角和俯角
在视线和水平线所成的角中,视线在水平线
的角叫仰角,在水平线 的角叫俯角(如图
①).
2.方位角
从指北方向顺时针转到目标方向线的水平角,如B
点的方位角为α(如图②).
3.方向角
相对于某一正方向的水平角(如图③)
(1)北偏东α°即由指北方向顺时针旋转α°到达目标方向.
(2)北偏西α°即由指北方向逆时针旋转α°到达目标方向. (3)南偏西等其他方向角类似.
考向一:测量距离的问题
【例1】如图所示,A、B、C、D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.
(1)求证:AB=BD. (2)求BD.
【变式练习1】如图所示,为了测量河对岸A,B两点间的距离,在这一岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.
考向二:测量高度的问题
【例2】如图,A、B是海平面上的两个点,相距800 m,在A点测得山顶C的仰角为45°,∠BAD =120°,又在B点测得∠ABD=45°,其中D是点C到水平面的垂足,求山高CD.
【变式练习2】在一个塔底的水平面上某点测得该塔顶的仰角为θ,由此点向塔底沿直线行走了30
m,测得塔顶的仰角为2θ,再向塔底前进10 3 m,又测得塔顶的仰角为4θ,则塔的高度为多少?
考向三:测量角度的问题
【例3】某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
【变式练习3】如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.
(1)求渔船甲的速度;(2)求sin α的值.
【方法感悟】
1.解题时需注意的几个问题
(1)要注意仰角、俯角、方位角等名词,并能准确地找出这些角;
(2)要注意将平面几何中的性质、定理与正、余弦定理结合起来,发现题目中的隐含条件,才能顺利解决.
2.解题的基本思路
运用正、余弦定理处理实际测量中的距离、高度、
角度等问题,实质是数学知识在生活中的应用,要解决
好,就要把握如何把实际问题数学化,也就是一个抽象、
概括的问题,即建立数学模型.
【综合提升】
1.若点A在点B的北偏西30°,则B点在A点的()
A.西偏北30°B.西偏北60°C.南偏东30°D.东偏南30°
2.(2012·潍坊模拟)如图,设A、B两点在河的两岸,一测量者在A的同侧,在所
在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )
A .50 2 m
B .50 3 m
C .25 2 m D.2522 m
3.在△ABC 中,角A ,B 均为锐角,且cos A >sin B ,则△ABC 的形状是( )
A .直角三角形
B .锐角三角形
C .钝角三角形
D .等腰三角形
4.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则该船的航行速度为( ) A.1762海里/小时 B .346海里/小时 C.1722海里/小时 D .342海里/小时
5.(2011·天津卷)如图,在△ABC 中,D 是边AC 上的点,且AB =AD ,2AB =3BD ,BC =2BD ,
则sin C 的值为( )
A.33
B.36
C.63
D.66
6.有一山坡坡度为30°,若某人在斜坡的平面上沿着一条与山坡底线成30°角的小路前进一段路后,升高了100米,则此人行走的路程为( )
A .300 m
B .400 m
C .200 m
D .200 3 m
7.直径为30 m 的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆形,其轴截面顶角为120°,若要光源恰好照亮整个广场则光源的高度为________m.
8.一船向正北方向航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在它的南偏西60°方向,另一灯塔在它的南偏西75°方向,则这艘船的速度是每小时________海里.
9.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正
东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位
置D ,测得∠BDC =45°,则塔AB 的高是______米.
10.(2011·浙江台州一模)某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以多大的速度匀速升旗?
11.如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cos θ的值.
12.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问乙船每小时航行多少海里?。