2020年高考数学三轮题型突破 3 解答题突破 题型17 数列的综合问题(学生版不含答案)

合集下载

2022年高考数学基础题型+重难题型突破类型三数列综合应用(原卷版)

2022年高考数学基础题型+重难题型突破类型三数列综合应用(原卷版)

类型三数列综合应用【典例1】[2020济南市6月模拟]已知数列{a n }的前n 项和为S n ,且S n =12n 2+12n.(1)求{a n }的通项公式; (2)设b n ={a n ,n 为奇数,2a n ,n 为偶数,求数列{b n }的前2n 项和T 2n .【典例2】.[2020全国卷Ⅲ,17,12分][理]设数列{a n }满足a 1=3,a n+1=3a n -4n. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2na n }的前n 项和S n .【典例3】已知在等比数列{a n }中,a 1=2,且a 1,a 2,a 3-2成等差数列. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n +2log 2a n -1,求数列{b n }的前n 项和S n .【典例4】(2020·莆田市第一联盟体学年联考)设数列{a n }的前n 项和为S n ,且S n =n 2-2n ,{b n }为正项等比数列,且b 1=a 1+3,b 3=6a 4+2. (1)求数列{a n }和{b n }的通项公式;(2)设c n =1a n +1·log 2b n +1,求{c n }的前n 项和T n .【典例5】 已知数列{a n }的前n 项和为S n ,a 1=2,a n >0,且a 2n +1-2a n +1a n -3a 2n =0. (1)求数列{a n }的通项公式;(2)设b n =log 3(1+S n ),求数列{a n b n }的前n 项和T n .【拓展训练】1 (1)已知函数f(n)=⎩⎪⎨⎪⎧n 2,n 为奇数,-n 2,n 为偶数,且a n =f(n)+f(n +1),则a 1+a 2+a 3+…+a 8等于( ) A .-16 B .-8 C .8 D .16(2)(2020·武汉江夏一中、汉阳一中联考)若首项为23的数列{a n }满足2(2n +1)a n a n +1+a n +1=a n ,则a 1+a 2+a 3+…+a 2 020等于( ) A.8 0804 041 B.4 0784 040 C.4 0404 041 D.4 0394 040(3)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n +1-1(n ∈N *).①求数列{a n }与{b n }的通项公式; ②记数列{a n b n }的前n 项和为T n ,求T n .【典例6】 (1)(2020·日照模拟)如图,在直角坐标系xOy 中,一个质点从A(a 1,a 2)出发沿图中路线依次经过B(a 3,a 4),C(a 5,a 6),D(a 7,a 8),…,按此规律一直运动下去,则a 2 017+a 2 018+a 2 019+a 2 020等于( )A .2 017B .2 018C .2 019D .2 020(2)(2020·洛阳第一高级中学月考)已知数列{a n }满足a 1+12a 2+…+1n a n =n 2+n(n ∈N *),设数列{b n }满足b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n <n n +1λ(n ∈N *)恒成立,则λ的取值范围是( )A.⎝ ⎛⎭⎪⎫14,+∞B.⎣⎢⎡⎭⎪⎫14,+∞C.⎣⎢⎡⎭⎪⎫38,+∞ D.⎝ ⎛⎭⎪⎫38,+∞ 【拓展训练】2 (1)(2020·中国人民大学附属中学模拟)在数列{a n }中,已知a n =n 2+λn ,n ∈N *,则“a 1<a 2”是“{a n }是单调递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件(2)设曲线y =2 020xn +1(n ∈N *)在点(1,2 020)处的切线与x 轴的交点的横坐标为x n ,令a n=log 2 020x n ,则a 1+a 2+…+a 2 019的值为( ) A .2 020 B .2 019 C .1 D .-1专题训练一、单项选择题1.[2021石家庄市重点高中模拟]已知1,a 1,a 2,3成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值为 ( )A.2B.-2C.±2D.542.[2021蓉城名校联考]已知数列{a n }对任意m,n ∈N *都满足a m+n =a m +a n ,且a 1=1,若命题“∀n ∈N *,λa n ≤a n 2+12”为真,则实数λ的最大值为 .3.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n =3,n ∈N *,则数列{ba n }的前10项和为( ) A.12×(310-1) B.18×(910-1) C.126×(279-1) D.126×(2710-1) 4.已知数列{a n }和{b n }的首项均为1,且a n -1≥a n (n ≥2),a n +1≥a n ,数列{b n }的前n 项和为S n ,且满足2S n S n +1+a n b n +1=0,则S 2 021等于( ) A .2 021 B.12 021 C .4 041 D.14 0415.定义在[0,+∞)上的函数f(x)满足:当0≤x<2时,f(x)=2x -x 2;当x ≥2时,f(x)=3f(x -2).记函数f(x)的极大值点从小到大依次为a 1,a 2,…,a n ,…,并记相应的极大值依次为b 1,b 2,…,b n ,…,则S 20=a 1b 1+a 2b 2+…+a 20b 20的值为( ) A .19×320+1 B .19×319+1 C .20×319+1D .20×320+16.若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =nD .a n =ln nn +17.(2020·浙江改编)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,a 1d ≤1.记b 1=S 2,b n +1=S 2n +2-S 2n ,n ∈N *,下列等式可能成立的是( )A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .a 24=a 2a 8 D .b 24=b 2b 88.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论错误的是( ) A .S n =2T n B .T n =2b n +1 C .T n >a nD .T n <b n +19.[2021南昌市高三测试]无穷数列{a n }满足:只要a p =a q (p,q ∈N *),必有a p+1=a q+1,则称{a n }为“和谐递进数列”.若{a n }为“和谐递进数列”,S n 为其前n 项和,且a 1=1,a 2=2,a 4=1,a 6+a 8=6,则a 7= ;S 2 021= . 10.数列{a n }的通项公式为a n =1n +n +1,若该数列的前k 项之和等于9,则k =________.11.设数列{a n }满足a 1=1,且a n +1a n =n +2n +1(n ∈N *),则数列{a n }的通项公式a n =________,数列⎩⎨⎧⎭⎬⎫1a n a n +1的前10项和为________. 12.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f(x)=x 2-b n x +2n的两个零点,则a 5=________,b 10=________.13.在数列{a n }中,a 1+a 22+a 33+…+a n n =2n -1(n ∈N *),且a 1=1,若存在n ∈N *使得a n ≤n(n+1)λ成立,则实数λ的最小值为________.14.[2021河北六校第一次联考]已知数列{a n }为正项等比数列,a 1=1,数列{b n }满足b 2=3,a 1b 1+a 2b 2+a 3b 3+…+a n b n =3+(2n-3)2n. (1)求a n ; (2)求{1b n b n+1}的前n 项和T n .15.[原创题]记S n 为数列{a n }的前n 项和,已知a 1=1,S n+1+1=2a n +n+S n ,数列{b n }满足b n =a n +n.(1)求{b n }的通项公式;(2)令c n =(1+b n )log 2b n ,求数列{c n }的前n 项和T n . 16.[2020天津,19,15分]已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4-a 3),b 5=4(b 4-b 3). (1)求{a n }和{b n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N *);(3)对任意的正整数n,设c n ={(3a n -2)b na na n+2,n 为奇数,a n -1b n+1,n 为偶数,求数列{c n }的前2n 项和.17.[2021湖南四校联考]等差数列{a n }(n ∈N *)中,a 1,a 2,a 3分别是如表所示第一、二、三行中的某一个数,且其中的任意两个数不在表格的同一列.第一列第二列第三列第一行 5 8 2第二行 4 3 12第三行 16 6 9(1)请选择一个可能的{a1,a2,a3}组合,并求数列{a n}的通项公式.(2)记(1)中您选择的{a n}的前n项和为S n,判断是否存在正整数k,使得a1,a k,S k+2成等比数列?若存在,请求出k的值;若不存在,请说明理由.。

2020年高考数学专项突破50题(3)--数列【含答案解析】

2020年高考数学专项突破50题(3)--数列【含答案解析】

2020年高考数学专项突破50题(3)--数列学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(本题共40道小题,每小题2分,共80分)1.用数学归纳法证明“633123,*2n n n n N ++++⋅⋅⋅+=∈ ”,则当 1n k =+时,左端应在n k =的基础上加上( )A. ()()33312(1)k k k ++++++LB.()()()333121k k kk +++++++LC. 3(1)k + D. 63(1)(1)2k k +++2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位)。

这个问题中,甲所得为( ) A. 54钱 B.43钱 C.23钱 D.35钱 3.设等差数列{a n }的前n 项和为S n ,首项10a >,公差0d <,10210a S ⋅<,则S n 最大时,n 的值为( ) A. 11 B. 10C. 9D. 84.等比数列{a n }的前n 项和为S n ,若243,15S S ==,则56a a +=( ) A. 16 B. 17C. 48D. 495.设正项等比数列{a n }的前项和为S n ,若32=S ,154=S ,则公比q =( ) A. 2 B. 3C. 4D. 56.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟.根据这样的规律,若阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为( )A. 410190-B. 5101900-C. 510990-D.4109900- 7.已知等差数列{a n }的前n 项和为S n ,若1785S =,则7911a a a ++的值为 A. 10 B. 15C. 25D. 308.已知数列{a n }中,12a =,111n n a a +--3=,若n a 1000≤,则n 的最大取值为( )A. 4B. 5C. 6D. 79.等差数列{a n }中,若243,7a a ==,则6a =( ) A. 11 B. 7C. 3D. 210.设等差数列{a n }前n 项和为S n ,等差数列{b n }前n 项和为T n ,若2018134n n S n T n -=+,则33a b =( ) A. 528 B. 529C. 530D. 53111.设等差数列{a n }的前n 项和为S n 若39S =,627S =,则9S =( ) A. 45 B. 54C. 72D. 8112.已知等差数列{a n }的前n 项和S n 满足56S S <且678S S S =>,则下列结论错误的是( ) A. 6S 和7S 均为S n 的最大值 B. 70a = C. 公差0d < D. 95S S > 13.用数学归纳法证明:“()221*111,1n nn a a a a a n N a++-++++=≠∈-L ”,在验证1n =成立时,左边计算所得结果是( ) A. 1B. 1a +C. 21a a ++D.231a a a +++14.等比数列{a n }的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=L ( ) A. 12 B. 10 C. 8 D. 2+log 3515.在等差数列{a n }中,64=a ,3510a a a +=,则=12a ( ) A. 10 B. 12 C. 14 D. 1616.已知数列{a n }的前n 项和S 满足*1(1)26()2nn n n S a n n N --=-+∈,则100S =( ) A. 196 B. 200C. 10011942+ D. 10211982+17.若点(),n n a 都在函数324y x =-图象上,则数列{a n }的前n 项和最小时的n 等于( ) A. 7或8 B. 7C. 8D. 8或918.等差数列{a n }的前n 项和为S n ,且8,45241=+=+a a a a ,则20192019S = ( ) A. 2016 B. 2017C. 2018D. 201919.已知数列{a n }满足:112a =,*11()2n n n a a n N +=+∈,则2019a =()A. 2018112-B. 2019112-C.20183122- D.20193122- 20.已知数列{a n }満足: 11a =,132n n a a +=-,则6a =( ) A. 0 B. 1C. 2D. 621.已知数列{a n }的前n 项和为S n ,11a =,当2n ≥时,12n n a S n -+=,则2019S 的值为( ) A. 1008 B. 1009C. 1010D. 101122.记等差数列{a n }的前n 项和为S n ,若53a =,1391S =,则11S =( ) A. 36 B. 72C. 55D. 11023.在等差数列{a n }中,其前132<<m 项和为S n ,且满足若3512a S +=,4724a S +=,则59a S +=( )A. 24B. 32C. 40D. 7224.若{a n }为等差数列,S n 是其前n 项和,且11223S π=,则6tan()a 的值为( )A. 3B.C.3D. 33-25.若a ,b 是方程20(0,0)x px q p q -+=<>的两个根,且a ,b ,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值为( ) A.-4 B. -3C. -2D. -126.已知S n 为等比数列{a n }的前n 项和,1a 1=,23a a 8=-,则6S (= ) A.1283B. -24C. -21D. 1127.已知△ABC 的三个内角A ,B ,C 依次成等差数列,BC 边上的中线32=AD ,2AB =,则△ABC 的面积S 为( )A. 3B.C.D. 28.已知等差数列{a n }的前n 项和为S n ,且181212a a a ++=,则13S =( ) A. 104 B. 78C. 52D. 3929.记等差数列{a n }的前n 项和为S n ,若53a =,1391S =,则11S =( ) A. 36 B. 72C. 55D. 11030.《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一栋七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则该塔中间一层灯的盏数是( ) A. 24 B. 48 C. 12 D. 6031.已知数列{a n }是等差数列,数列{b n }分别满足下列各式,其中数列{b n }必为等差数列的是( ) A. ||n n b a =B. 2n n b a =C. 1n nb a =D.2nn a b =-32.已知数列{a n }是一个递增数列,满足*n a N ∈,21n a a n =+,*n N ∈,则4a =( )A. 4B. 6C. 7D. 833.11的等比中项是( ) A. 1 B. -1C. ±1D.1234.某个命题与自然数n 有关,且已证得“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A. 当8n =时,该命题不成立 B. 当8n =时,该命题成立 C. 当6n =时,该命题不成立 D. 当6n =时,该命题成立35.在数列{a n }中,231518n a n n =+-,则a n 的最大值为( )A. 0B. 4C.313 D.213 36.在等差数列{a n }中,已知1a 与11a 的等差中项是15,9321=++a a a ,则9a =( ) A. 24 B. 18 C. 12 D. 637.已知等差数列{a n }的公差0≠d ,前n 项和为S n ,若对所有的)(*∈N n n ,都有10S S n ≥,则( ). A. 0≥n aB. 0109<⋅a aC. 172S S <D. 019≤S38.已知等差数列{a n }和{b n }的前n 项和分别为n A 和n B ,且6302n n A n B n +=+,则使得nnb a 为整数的正整数n 的个数是( ) A. 2 B. 3C. 4D. 539.设数列{a n }满足31=a ,且对任意整数n ,总有1(1)(1)2n n n a a a +--=成立,则数列{a n }的前2018项的和为( ) A. 588 B. 589C. 2018D. 201940.数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A. 1盏B. 2盏C. 3盏D. 4盏第II 卷(非选择题)请点击修改第II 卷的文字说明二、(本题共10道小题,每小题7分,共70分)41.已知数列{ a n }的首项1133,()521n n n a a a n N a *+==∈+. (1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)记12111...n nS a a a =+++,若<100n S ,求最大正整数n . 42.已知在等比数列{a n }中,23411,92187a a a ==. (1)求数列{a n }的通项公式;(2)设n n b na =,求数列{b n }的前n 项和T n . 43.若{c n }是递增数列,数列{a n }满足:对任意*n N ∈,存在*m N ∈,使得10m nm n a c a c +--…,则称{a n }是{c n }的“分隔数列”.(1)设2,1n n c n a n ==+,证明:数列{a n }是{c n }的分隔数列;(2)设4,n n c n S =-是{c n }的前n 项和,32n n d c -=,判断数列{S n }是否是数列{d n }的分隔数列,并说明理由;(3)设1,n n n c aq T -=是{c n }的前n 项和,若数列{T n }是{c n }的分隔数列,求实数a ,q 的取值范围. 44..在等比数列{a n }与等差数列{b n }中,11a =,12b =-,223a b +=-,334a b +=-. (1)求数列{a n }与数列{b n }的通项公式; (2)若n n n c a b =+,求数列{c n }的前n 项和S n . 45.已知数列{a n }各项均为正数,满足2333(1)122n n a n +⎛⎫+++= ⎪⎝⎭L .(1)求1a ,2a ,3a 的值;(2)猜想数列{a n }的通项公式,并用数学归纳法证明你的结论. 46.已知数列{a n }满足: 12n n n a a ++=,且111,23nn n a b a ==-⨯.(1)求证:数列{b n }是等比数列;(2)设S n 是数列{a n }的前n 项和,若10n n n a a tS +->对任意*n N ∈都成立.试求t 的取值范围. 47.已知数列{a n }的前n 项和为S n ,点(,)n n a S 在直线22y x =-上. (1)求数列{a n }的通项公式; (2)设()23log 2n n nS b a -+=,求数列{b n }的前n 项和T n .48.等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足55a =,410S =,0n b >,24b a =,416b a =.(1)求数列{a n }和{b n }的通项公式;(2)令()()1211na n n n cb b +=--,求数列{c n }的前n 项和T n .49.已知数列{a n }满足11a =,11+=+n nn a a a (n N *∈). (1)求2a ,3a ,4a 的值; (2)证明:数列{1na }是等差数列,并求数列{a n }的通项公式. 50.定义12...nnp p p +++为n 个正数12,,...,n p p p 的“均倒数”.已知正项数列{a n }的前n 项的“均倒数”为1n. (1)求数列{a n }的通项公式. (2)设数列21211n n a a -+⎧⎫⎨⎬⋅⎩⎭的前n 项和为T n ,若4n T <244m m --对一切*n N ∈恒成立,求实数m 的取值范围.(3)令9()10nn nb a=⋅,问:是否存在正整数k使得k nb b≥对一切*n N∈恒成立,如存在,求出k值;如不存在,说明理由.试卷答案1.A 【分析】写成n k =的式子和1n k =+的式子,两式相减可得. 【详解】当n k =时,左端式子为3123k +++⋅⋅⋅+,当1n k =+时,左端式子为3333(1)(12312())k k k k ++++++++⋅⋅⋅+++L , 两式比较可知增加的式子为()()33312(1)k k k ++++++L .故选A.【点睛】本题主要考查数学归纳法,从n k =到1n k =+过渡时,注意三个地方,一是起始项,二是终止项,三是每一项之间的步长规律,侧重考查逻辑推理的核心素养. 2.B设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a \=,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B. 3.B 【分析】由等差数列前n 项和公式得出21S 1121a =,结合数列{}n a 为递减数列确定10110,0a a ><,从而得到n S 最大时,n 的值为10.【详解】由题意可得()2111112120212110212S a d a d a ´=+=+= 10210a S ⋅<Q 10110a a ∴⋅<等差数列{}n a 的首项10a >,公差0d < 则数列{}n a 为递减数列10110,0a a ∴><即当10n =时,n S 最大 故选B 。

【通用版】2020高考数学(三轮复习)冲刺专题《数列大题部分》(含答案)

【通用版】2020高考数学(三轮复习)冲刺专题《数列大题部分》(含答案)

专题 数列大题部分【训练目标】1、 理解并会运用数列的函数特性;2、 掌握等差数列,等比数列的通项公式,求和公式及性质;3、 掌握根据递推公式求通项公式的方法;4、 掌握常用的求和方法;5、 掌握数列中简单的放缩法证明不等式。

【温馨小提示】高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。

总之,此类题目难度中等,属于必拿分题。

【名校试题荟萃】1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求使得成立的n 的最小值.【答案】(1)2nn a = (2)10(2)由(1)可得112nn a ⎛⎫= ⎪⎝⎭,所以,由,即21000n>,因为,所以10n ≥,于是使得成立的n 的最小值为10.2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n na b 的前n 项和n T .【答案】(1) (2)(2)由函数()f x 的图象在点22(,)a b 处的切线方程为所以切线在x 轴上的截距为21ln 2a -,从而,故22a =从而n a n =,2n n b =,2n nn a nb =所以故。

3、(辽宁省辽河油田第二高级中学2019届高三上学期期中考试数学(文)试题)设n S 为数列{}n a 的前项和,已知10a ≠,,n *∈N .(1)求1a ,2a ;(2)求数列{}n a 的通项公式; (3)求数列{}n na 的前n 项和. 【答案】(1)1,2 (2)12-=n n a (3)(3)由(2)知12-=n n n na ,记其前n 项和为n T ,于是① ②①-②得从而.4、(湖南省浏阳一中、株洲二中等湘东六校2019届高三12月联考数学(理)试题)已知数列}{n a 的前n 项和n S 满足,且11=a 。

2020年普通高等学校招生全国统一考试全国卷3文科数学试题解析(word版)

2020年普通高等学校招生全国统一考试全国卷3文科数学试题解析(word版)

C.
D.




时,标志着已初步遏 ,






故选:B.
6.在平面内, , 是两个定点, 是动点,若
A. 圆
B. 椭圆
C. 抛物线
【答案】A
【解析】在平面内, , 是两个定点, 是动点,
不妨设

,设

因为

,则点 的轨迹为( ) D. 直线
所以

解得

所以点 的轨迹为圆.
故选:A.
7.设 为坐标原点,直线 与抛物线 :


故选:C.
12.已知函数
,则( )
A.
的最小值为
B.
的图象关于 轴对称
C.
的图象关于直线 对称
D.
的图象关于直线
对称
【答案】D 【解析】由
可得函数的定义域为
,故定义域关于原点对称;

,则

,由双勾函数的图象和性质得,

,故 A 错误;
又有
,故
义域关于原点对称,故图象关于原点中心对称;故 B 错误;
所以
平面


平面

. 是长方体,
所以

因为
是长方体,且

所以
是正方形,
所以



所以 平面

又因为点 , 分别在棱 , 上,
所以
平面

所以

(2)点 在平面 内.
【答案】见解析
【解析】取 上靠近 的三等分点 ,连接 , , .

2020高考—数列(解答+答案)

2020高考—数列(解答+答案)

2020年高考——数列1.(20全国Ⅰ理17)(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.2.(20全国Ⅲ文17)(12分)设等比数列{a n }满足124a a +=,138a a -=. (1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m .3.(20全国Ⅲ理17)(12分)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .4.(20新高考Ⅰ18)(12分)已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .5.(20天津19)(本小题满分15分)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+-⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.6.(20浙江20)(本题满分15分)已知数列{a n },{b n },{c n }满足1111121,,,nn n n n n n b a b c c a a c c n b +++====-=∈*N . (Ⅰ)若{b n }为等比数列,公比0q >,且1236b b b +=,求q 的值及数列{a n }的通项公式;(Ⅱ)若{b n }为等差数列,公差0d >,证明:*12311,n c c c c n d++++<+∈N .7.(20江苏20)(本小题满分16分)已知数列{}()n a n ∈*N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为“λ~k ”数列.(1)若等差数列{}n a 是“λ~1”数列,求λ的值; (2)若数列{}n a”数列,且0n a >,求数列{}n a 的通项公式; (3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ~3”数列,且0n a ≥?若存在,求λ的取值范围;若不存在,说明理由.8.(20北京21)(本小题15分) 已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n ,在{}n a 中都存在两项,()k l a a k l >.使得2kn la a a =.(Ⅰ)若(1,2,)n a n n ==,判断数列{}n a 是否满足性质①,说明理由;(Ⅱ)若12(1,2,)n n a n -==,判断数列{}n a 是否同时满足性质①和性质②,说明理由;(Ⅲ)若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列。

【全国1卷】【个题分析】(理科17)2020年高考全国Ⅲ卷数列题的研究

【全国1卷】【个题分析】(理科17)2020年高考全国Ⅲ卷数列题的研究

不仅仅只有错位相减法, 还有裂项相消法和待定系数法等方
法, 这体现了数学问题和方法的多样性, 掌握多种方法为我
们解题拓宽了新的思路, 也对培养和提高数学思维能力和数
学素养有很大的帮助.
(3) 近几年全国卷高考的解答题中, 数列大多以基础题
的形式出现. 主要是对基础知识, 基本技能, 基本思想和基本
活动经验的考查, 对这类问题我们要做到不丢分. 所以在平时
能够记住差比数列的前项和的形式才能够进行求解, 体现了
函数与方程的思想在解题中的应用. 而且此公式在教材中没有
给出, 所以不建议考生在解答题中直接应用, 但是可以借助
这个形式对自己的求解的结果做一个检验. 本题也可以由 SnSn-1=(2n+1)2n 列出方程组进行求解.
四、 归纳总结
(1) 数列通项公式是数列的核心内容之一, 构造法是求数
f(n+1)与 f(n)的差的形式的数列求和问题都可以用裂项相消
法. 用裂项相消法求差比数列的和时, 只需要用待定系数法把
通项公式裂成 f(n+1)-f(n)的形式即可 (其中 f(n)=(kn+b)qn).
此解法的优点在于运算量小, 准确率高, 但是需要考生能够
掌握差比数列通项公式裂项的技巧, 这个需要经过一定训练
(2) 数列求和的常用方法有公式求和法, 分组求和法, 裂
项相消法, 错位相减法, 并项求和法, 倒序相加法, 待定系
数法等. 在平时的学习中, 对数列求和的这些方法, 我们不仅
要知道它们适用的范围, 更应该知道这些方法所蕴含的数学
思想方法, 学法而不拘泥于法, 才能够在解题过程中做到融
会贯通, 得心应手. 从上述例题我们发现差比数列的求和问题

【精品高考数学】2020年江苏省高考数学三轮冲刺专项突破-专题03 平面向量+答案

2020年江苏省高考数学三轮冲刺专项突破专题03 平面向量2020年江苏高考核心考点1.平面向量基本定理的应用平面向量基本定理表明,平面内的任意一个向量都可用一组基底唯一表示,题中将同一向量用同一组基底的两种形式表示出来,因此根据表示的“唯一性”可建立方程组求解. 2.平面向量的坐标运算(1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②若a ∥b (a ≠0),则b =λa .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解. 3.平面数量积的基本运算(1)向量的数量积考查常见思路:基底法、坐标法(建系)、投影等.常用的知识:极化恒等式、向量共线定理、平面向量基本定理、鸡爪定理等.(2)基底法:题目中有角,有边长的;坐标法:有特殊角的;有特殊图形的;有线段长,根据对称性建系,线段中点为原点.专项突破一、填空题(本大题共14小题,每小题5分,共计70分.)1.(江苏省南通市2020届四校联盟)如图,已知O 为矩形ABCD 内的一点,且OA =2,OC =4,AC =5,则OB →⋅OD →= .2.(江苏省丹阳市2020届高三年级下学期3月质量检测卷)已知正方形ABCD 的边长为2,以C 为圆心的圆与直线BD 相切.若点M 是圆C 上的动点,则AM MD ⋅u u u u r u u u u r的最小值为 .3.(江苏省南通市海安市2020届高三下学期3月月考)已知1e u r ,2e u u r是夹角为60°的两个单位向量,2123e e a +=,122b e ke =-r u r u u r(k ∈R ),且a ⋅r ()a b -r r =8,则k 的值为 .4.(南京市高淳区高级中学2020届高三模拟考试)如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =u u u r u u u r ,4AP BP ⋅=u u u r u u u r ,则AB AD ⋅u u u r u u u r的值是__________.5.(江苏省张家港市2020届高三阶段性调研测试)已知正方形ABCD 的边长为4,M 是AD 的中点,动点N 在正方形ABCD 的内部或其边界移动,并且满足0MN AN ⋅=u u u u r u u u r ,则NB NC ⋅u u u r u u u r的最小值是______.6.(江苏省苏北七市2020届高三第二次调研考试)图(1)是第七届国际数学教育大会(I CME —7)的会徽图案,它是由一串直角三角形演化而成的(如图(2)),其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,则6778A A A A ⋅u u u u u r u u u u u r的值是 .7.(江苏省南通市2020届四校联盟)在ABC ∆所在的平面上有一点P ,满足PA PB PC AB ++=u u u r u u u r u u u r u u u r,则PA PB PB PC⋅⋅uu u r uu u r uu u r uuu r = . 8.(江苏省南京市、盐城市2020届高三年级第二次模拟考试)在△AB C 中,BC 为定长,AB 2AC+u u u r u u u r =3BCu u u r .若△ABC 的面积的最大值为2,则边BC 的长为 .9.(南京市高淳区高级中学2020届高三模拟考试)在ABC V 中,3AB =,2AC =,3AB AC ⋅=-u u u r u u u r,O 是ABC V 的外心,若AO x AB y AC =+u u u r u u u r u u u r,则x y +的值为__________.10.(2019—2020学年度扬州市第二学期阶段性检测)在ABC △中,,2sin )AB x x =u u u r,(sin ,cos )AC y y =-u u u r ,若对任意的实数t ,AB t AC AB AC -≥-u u u r u u u r u u u r u u u r 恒成立,则ABC △面积的最大值是 .11.(2019—2020学年度镇江市九校2020届高三年级3月模拟考试)在边长为4的菱形ABC D 中,A =60°,点P 在菱形ABCD 所在的平面内.若P A=3,PB PD u u u r u u u r g =.12.(江苏省常熟市2020届高三3月“线上教育”学习情况调查)已知平面四边形ABCD 中,1,2,3,10AB CD DA AC BD ===⋅=u u u r u u u r,则BC =________.13.(2019~2020学年度如皋高三年级第二学期期初调研测试)已知ABC ∆中,2,1AB AC ==,平面ABC 上一点D 满足3-=⋅AD BC ,则=+⋅)(CD BD BC .14.(2019—2020学年度苏、锡、常、镇四市高三教学情况调查(一))在△AB C 中,(AB AC λ-u u u r u u u r )⊥BC uuu r(λ>1),若角A 的最大值为6π,则实数λ的值是 . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.15.(江苏省扬州市2020届第二学期高三数学阶段性学情调研)设向量(sin ),(1,1),(1,1)a x x b c ==-=rrr(其中[0,]x π∈)(1)若()//a b c +r r r,求实数x 的值;(2)若12a b ⋅=rr ,求函数sin 6x π⎛⎫+ ⎪⎝⎭的值.16.(江苏省苏北七市2020届高三第二次调研考试)在平面直角坐标系xOy 中,已知向量a r=(cos α,sin α),b r =(cos(α+4π),sin(α+4π)),其中0<α<2π.(1)求()b a a -⋅r r r的值;(2)若c r =(1,1),且()b c +r r∥a r ,求α的值.17.( 南京二十九中2020届高三年级第二学期阶段测试)已知向量(1,)a m =r ,(2,)b n =r.(1)若3m =,1n =-,且)(b a a λ+⊥,求实数λ的值;(2)若5a b +=r r ,求a b ⋅r r的最大值18.(苏州市2020届高考模拟考试)已知向量a r =(sin x ,34),b r =(cos x ,﹣1).(1)当a r ∥b r时,求tan2x 的值;(2)设函数()2()f x a b b =+⋅r r r ,且x ∈(0,2π),求()f x 的最大值以及对应的x 的值.19.(连云港市市2020届高考模拟考试) 如图,在△AB C 中,AB =5,AC =4,点D 为△ABC 内一点,满足BD =CD =2,且50AB AC DB DC ⋅+⋅=u u u r u u u r u u u r u u u rA(1)求BCDABC∠∠sin sin 的值;(2)求边BC 的长。

【全国3卷】【个题分析】(理科17)由数列递推关系探究通项公式——2020年全国卷Ⅲ数列题的解答

o
sα>0 进行取舍).
-1≤co
sα≤1,所 以 c
o
sα=
变式
综上所述,给出递推关 系 求 数 列 通 项 公 式 的 过 程
其实就是转 化 的 过 程,即 将 一 般 化 特 殊、将 陌 生 化 熟
山东
(
).
16
A.
15
π

已知 s
i
n( +α)= ,则 t
anα·s
i
nα=


16
B.-
15
常数列,
bn =an+1 -an =2,即 数 列{
an }是 公 差 为 2 的
等差数列,所以 an =3+2(
n-1)=2n+1.
在得出 an+1 =pan +q(
p ≠0,
q≠1)的 递 推
关系后,可利 用 待 定 系 数 法,即 引 入 参 数 λ,
令an+1 +λ=p(
an +λ),将 其 展 开 后 与 原 递 推 关 系 对
+ n-1 … + 3 .


3n


两式相减得
-★厂心又k又
有如下 4 种 .
、一
1)叠加法
对于 an -an-1 =f (
n)的 形 式,可 利 用 叠 加 法 求
通项公式,即 an = (
an -an-1)+ (
an-1 -an-2 )+ … +
(
a2 -a1)+a1 =f(
n)+f(
n-1)+ … +f(



(
)
3 1- n-2
(
)
4 4 n -1


2020高考数学 三轮冲刺 解答题专练--数列 一(10题含答案)

2020高考数学 三轮冲刺 解答题专练--数列 一1.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y=16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =log 12a n .求证:对任意正整数n≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34.2.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).3.设数列{a n }的各项均为正数,且a 2=4a 1,a n +1=a 2n +2a n (n ∈N *).(1)证明:数列{log 3(1+a n )}为等比数列;(2)设数列{log 3(a n +1)}的前n 项和为T n ,求使T n >520成立时n 的最小值.4. (等差数列{a n }是递增数列,前n 项和为S n ,若a 32=a 1·a 9,S 5=a 52.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =121+⋅++n n a a n n ,求数列{b n }的前99项的和.5.已知数列{a n }中,a 1=4,a n =a n ﹣1+2n ﹣1+3(n ≥2,n ∈N *).(1)证明数列{a n ﹣2n}是等差数列,并求{a n }的通项公式;(2)设b n =,求b n 的前n 和S n .6.已知数列{21 n b }是等差数列,且b 3=-611,b 5=-713,求b 9的值.7.设数列{}的前项和为.已知=4,=2+1,.(I)求通项公式;(II)求数列{}的前项和.8.已知数列{}的首项为1,为数列{}的前n项和,,其中q>0,. (I)若成等差数列,求a n的通项公式;(ii)设双曲线的离心率为,且,证明:.9.知数列{a}的前n项和为,且满足,数列{b n}为等差数列,且满足n.(I)求数列{a n},{b n}的通项公式;(II)令,关于k的不等式的解集为M,求所有的和S.10.已知等差数列和等比数列满足a=b1=1,a2+a4=10,b2b4=a5.1(Ⅰ)求的通项公式;(Ⅱ)求和:.答案解析1.解:(1)∵S n =16-13a n ,∴当n≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=16-13a 1,∴a 1=18,∴a n =18×⎝ ⎛⎭⎪⎫14n -1=⎝ ⎛⎭⎪⎫122n +1.(2)证明:由c n +1-c n =log 12a n =2n +1,得当n≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1). ∴1c 2+1c 3+1c 4+…+1c n =122-1+132-1+142-1+…+1n 2-1 =12×[ ⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1-1n +1 ] =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12-⎝ ⎛⎭⎪⎫1n +1n +1=34-12⎝ ⎛⎭⎪⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证. 2.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q=2.所以b n =2n.由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d=16.②由①②,解得a 1=1,d=3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n. (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=-4n 1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.3.解:(1)证明:由已知,得a 2=a 21+2a 1=4a 1, 则a 1(a 1-2)=0,因为数列{a n }的各项均为正数,所以a 1=2.因为a n +1+1=(a n +1)2>0,所以log 3(a n +1+1)=2log 3(a n +1). 又log 3(a 1+1)=log 33=1,所以数列{log 3(1+a n )}是首项为1,公比为2的等比数列.(2)由(1)可知,log 3(1+a n )=2n -1,所以T n =1+2+22+…+2n -1=2n-1.由T n >520,得2n >521(n ∈N *),得n≥10. 则使T n >520成立时n 的最小值为10.4.解:(1)设数列{a n }公差为d(d>0),因为a 32=a 1a 9,即(a 1+2d)2=a 1(a 1+8d),有d 2=a 1d.因为d ≠0,所以a 1=d ,①因为S 5=a 52,所以5a 1+245⨯·d=(a 1+4d)2,② 由①②得,a 1=53,d=53,所以a n =53n. (2)b n =)1(535312+⋅++n n n n =925·)1(12+++n n n n =925·(1+n 1-11+n ).所以b 1+b 2+b 3+…+b 99=925[99+(1-21)+(21-31)+…+(991-1001)]=925(100-1001)=41111. 5.解:6.解:令a n =21+n b ,由题意可知{a n }成等差数列,且a 3=213+b ==6,a 5=215+b =7. 设数列{a n }的公差为d ,则a 5-a 3=2d ,∴d=21,∴a 9=a 3+6d=6+6×21=9.又219+b =a 9=9,∴b 9=-917. 7.(1);(2).8.9.10.(Ⅰ);(Ⅱ).。

2020高考数学三轮冲刺分层练习 数列及其综合高考题3套


【解析】anan1 2anan1 3an1an1
,
1 2 3 an1 an1 an
,
1
1
2
1
1
,
an1 an
an an1
1 1
则 an1 1
an 1
2
,数列
1
1
是首项为 2,公比为 2 的等比数列,
an1 an
an an1
1 1 2 2n1 2n an1 an
,利用叠加法,
的取值范围是
2,
3 2
,故
选 D.
2 . 已 知 数 列 an 满 足 a1 1 ,
a2
1 3
an an1 2an1 3an1 an1 n 2, n N * ,则数列 an 的通项 an (
,若 )
1 A. 2n1
【答案】B
1 B. 2n 1
1 C. 3n1
1 D. 2n1 1
2 Sn an +1 , n N * ,若不等式 Sn 2an1 81n 对任意的 n N * 恒成立,
求实数 的最大值为 A. 21 B. 15 C. 9
【答案】D
D. 2
【 解 析 】 由 2
Sn
an +1

{ 4Sn 4Sn1
(an ( an1
, 4an
an 1 2 an1 1 2 , 整 理 得
1 a1
1 a2
1 a1
1 a3
1 a2
......
1 an
1 an1
1
2
22
.......
2n1

1 an
2n 1 2n 1 2 1
,则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三篇主题17 数列的综合问题【主题考法】本主题考题形式为解答题,主要考查等差数列与等比数列定义、性质及通项公式,考查利用构造法、叠加法、叠乘法及第n 项与前n 项和公式法求数列通项公式方法,主要考查分组求和法、拆项法、错位相减法、并项法等求和方法,考查运算求解能力、转化与化归思想,难度为中档难度,分数为12分.【主题考前回扣】1.求数列的通项公式的常见类型和解法:(1)观察法:对已知数列前几项或求出数列前几项求通项公式问题,常用观察法,通过观察数列前几项特征,找出各项共同构成的规律,横向看各项的关系结构,纵向看各项与项数n 的关系时,分解所给数列的前几项,观察这几项的分解式中,哪些部分是变化的,哪些部分是不变化的,变化部分与序号的关系,,归纳出n a 的通项公式,再用数学归纳法证明.(2)累加法:对于可转化为)(1n f a a n n +=+形式数列的通项公式问题,化为1()n n a a f n +-=,通过累加得n a =112211()()()n n n n a a a a a a a ----+-++-+L =1(1)(2)(1)f n f n f a -+-+++L ,求出数列的通项公式,注意相加等式的个数(3)累积法:对于可转化为1()n n a a f n +=形式数列的通项公式问题,化为1()n na f n a +=,通过累积得n a =121121n n n n a a a a a a a ---⨯⨯⨯⨯L =1(1)(2)(1)f n f n f a -⨯-⨯⨯⨯L ,求出数列的通项公式,注意相乘等式的个数(4)构造法:对于化为1()n n a pa f n +=+(其中p 是常数)型,常用待定系数法将其化为1(1)[()]n n a Af n p a Af n +++=+,由等比数列定义知{()n a Af n +}是公比为p 的等比数列,由等比数列的通项公式先求出()n a Af n +通项公式,再求出n a 的通项公式.(5)利用前n 项和n S 与第n 项n a 关系求通项:对递推公式为n S 与n a 的关系式(或()n n S f a =),利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n 进行求解.注意n a =1n n S S --成立的条件是n ≥2,求n a 时不要漏掉n =1即n a =1S 的情况,当1a =1S 适合n a =1n n S S --时,n a =1n n S S --;当1a =1S 不适合n a =1n n S S --时,用分段函数表示.2.数列求和的主要方法:(1)分组求和:若给出的数列不是特殊数列,但把数列的每一项分成两项,或把数列的项重新组合,使之转化为等比或等差数列,分组利用等比或等差数列的前n 和公式求前n 项和.(2)拆项相消法:若数列的每一项都可拆成两项之差,求和时中间的一些项正好相互抵消,于是将前n 项和转化为首尾若干项和,注意未消去的项是哪些项.常用拆相公式: ①若{}n a 是各项都不为0公差为(0)d d ≠的等差数列,则11n n a a +=1111()n n d a a +=-②n a 1n n ++1n n +(3)倒序相加法:如果一个数列与首尾两相距离相等的两项之和等于首尾两项之和,则正着写和与到序写和的两式对应项相加,就转化为一个常数列的前n 项和.推导等差数列的前项和公式正是应用了此法,体现了转化与化归数学思想(4)错位相减法:若数列{}n a 是公差为(0)d d ≠的等差数列,{}n b 是公比为(1)q q ≠的等比数列,则在数列{}n n a b 的前项和n S =112233n n a b a b a b a b ++++L L= 211121311n n a b a b q a b q a b q -++++L L ①,两边同乘以公比q 得n qS =231121311n n a b q a b q a b q a b q ++++L L ② ,①式与②式错位相减得(1)n q S -= 221111211131211111()()()n n n n n n a b a b q a b q a b q a b q a b q a b q a b q ---+-+-++--L L =21111(1)n n n a b d q q q a b q -++++-L L ,转化为等比数列211,,,,n q q q -L L ,的前n 项和问题,注意转化出的等比数列的首项及项数.(5)并项求和法:若数列某项组合相加可将其化为等比数列或等差数列的和问题,常用并项法,即通过并项化为特殊数列,利用公式求和.【易错点提醒】1.已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.2.利用错位相减法求和时,要注意寻找规律,不要漏掉第一项和最后一项.7.裂项相消法求和时,一注意分裂前后的值要相等,如1n (n +2)≠1n -1n +2,而是1n (n +2)=12)111(+-n n ;二注意要注意消去了哪些项,保留了哪些项.学=科网8.通项中含有(-1)n 的数列求和时,要把结果写成n 为奇数和n 为偶数两种情况的分段形式.【主题考向】考向一 等差数列、等比数列的定义、通项公式、性质、前n 项和公式【解决法宝】对等差数列、等比数列基本量问题,利用等差数列、等比数列通项公式、性质、前n 项和公式列出关于首项、公差(公比)的方程组,解出首项、公差(公比)即可解决问题.例1【2020届福建省福州适应性练习】已知数列{}n a 满足12a =,()()1121n n na n a n n +-+=+,设nn a b n=. (1)求数列{}n b 的通项公式;(2)若2n b n c n =-,求数列{}n c 的前n 项和. 【分析】 【解析】考向二 已知递推公式求数列的通项公式【解决法宝】求数列的通项公式的常见类型和解法:(1)观察法:对已知数列前几项或求出数列前几项求通项公式问题,常用观察法,通过观察数列前几项特征,找出各项共同构成的规律,横向看各项的关系结构,纵向看各项与项数n 的关系时,分解所给数列的前几项,观察这几项的分解式中,哪些部分是变化的,哪些部分是不变化的,变化部分与序号的关系,,归纳出n a 的通项公式,再用数学归纳法证明.(2)累加法:对于可转化为)(1n f a a n n +=+形式数列的通项公式问题,化为1()n n a a f n +-=,通过累加得n a =112211()()()n n n n a a a a a a a ----+-++-+L =1(1)(2)(1)f n f n f a -+-+++L ,求出数列的通项公式,注意相加等式的个数(3)累积法:对于可转化为1()n n a a f n +=形式数列的通项公式问题,化为1()n na f n a +=,通过累积得n a =121121n n n n a a a a a a a ---⨯⨯⨯⨯L =1(1)(2)(1)f n f n f a -⨯-⨯⨯⨯L ,求出数列的通项公式,注意相乘等式的个数(4)构造法:对于化为1()n n a pa f n +=+(其中p 是常数)型,常用待定系数法将其化为1(1)[()]n n a Af n p a Af n +++=+,由等比数列定义知{()n a Af n +}是公比为p 的等比数列,由等比数列的通项公式先求出()n a Af n +通项公式,再求出n a 的通项公式.学科-网(5)利用前n 项和n S 与第n 项n a 关系求通项:对递推公式为n S 与n a 的关系式(或()n n S f a =),利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n nn 进行求解.注意n a =1n n S S --成立的条件是n ≥2,求n a 时不要漏掉n =1即n a =1S 的情况,当1a =1S 适合n a =1n n S S --时,n a =1n n S S --;当1a =1S 不适合n a =1n n S S --时,用分段函数表示.例2【2020江苏如皋期初考】已知数列{}n a ,{}n b ,{}n c 满足:2n n n b a a +=-,1232n n n n c a a a ++=++. (1)若{}n b 是等差数列,且公差1121d b a a ====,求数列{}n c 的通项公式n c ;(2)若{}n b 、{}n c 均是等差数列,且数列{}n c 的公差136d a ==,119c =,求数列{}n a 的通项公式. 【分析】 【解析】考向三 数列求和【解决法宝】数列求和的主要方法:(1)分组求和:若给出的数列不是特殊数列,但把数列的每一项分成两项,或把数列的项重新组合,使之转化为等比或等差数列,分组利用等比或等差数列的前n 和公式求前n 项和.(2)拆项相消法:若数列的每一项都可拆成两项之差,求和时中间的一些项正好相互抵消,于是将前n 项和转化为首尾若干项和,注意未消去的项是哪些项.常用拆相公式: ①若{}n a 是各项都不为0公差为(0)d d ≠的等差数列,则11n n a a +=1111()n n d a a +=-②n a 1n n ++1n n +(3)倒序相加法:如果一个数列与首尾两相距离相等的两项之和等于首尾两项之和,则正着写和与到序写和的两式对应项相加,就转化为一个常数列的前n 项和.推导等差数列的前项和公式正是应用了此法,体现了转化与化归数学思想(4)错位相减法:若数列{}n a 是公差为(0)d d ≠的等差数列,{}n b 是公比为(1)q q ≠的等比数列,则在数列{}n n a b 的前项和n S =112233n n a b a b a b a b ++++L L= 211121311n n a b a b q a b q a b q -++++L L ①,两边同乘以公比q 得n qS =231121311n n a b q a b q a b q a b q ++++L L ② ,①式与②式错位相减得(1)n q S -= 221111211131211111()()()n n n n n n a b a b q a b q a b q a b q a b q a b q a b q ---+-+-++--L L =21111(1)n n n a b d q q q a b q -++++-L L ,转化为等比数列211,,,,n q q q -L L ,的前n 项和问题,注意转化出的等比数列的首项及项数.(5)并项求和法:若数列某项组合相加可将其化为等比数列或等差数列的和问题,常用并项法,即通过并项化为特殊数列,利用公式求和.例3【2020届百校联考百日冲刺金卷(三)】已知正项等比数列{}n a 满足12a =,23732a a =,数列{}n b 的前n 项和为n S ,22n b n =-. (1)求{}n a 的通项公式与n S ; (2)设11n n n c a S +=+,求数列{}n c 的前n 项和n T . 【分析】 【解析】例4【2020届山西省运城一模】已知数列{}n a 的前n 项和为n S ,且满足()2*11911,02,,6n n n a n a a n S n N +--=->≥=∈,各项均为正数的等比数列{}n b 满足1234,b a b a ==(1)求数列{}{},n n a b 的通项公式; (2)若1,2n n n c a b =,求数列{}n c 的前n 项和n T 【分析】 【解析】例5.【2020届慕华优策第一次联考】已知各项为正数的数列{}n a ,前n 项和为n S ,且11a =,21(n n S S -=(2,n n N ∈…). (1)证明:数列为等差数列,并求出数列{}n a 通项公式na;(2)设11n n n b a a -=⋅,求数列{}n b 的前n 项和n T .【分析】 【解析】考向四 数列与不等式等知识的交汇【解题法宝】1.求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视; (2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.例6 【2020届全国大联考第六次联考】设数列{}n a 是等差数列,其前n 项和为n S ,且32a =,954S =. (1)求数列{}n a 的通项公式; (2)13⋅⋅⋅+>. 【分析】 【解析】【主题集训】1.【2020湖湘名校3月线上检测】设数列{}n a 满足:11a =,且112n n n a a a +-=+(2n ≥),3412a a +=. (1)求{}n a 的通项公式: (2)求数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和. 2.【2020河北省石家庄二中质量检测】已知数列{}n a 为等差数列,n S 是数列{}n a 的前n 项和,且22a =,36S a =,数列{}n b 满足:2124b b ==,当3n ≥,n *∈N 时,()1122...222n n n a b a b a b n b +++=-+.(1)求数列{}n a ,{}n b 的通项公式;(2)令*nn na c n Nb =∈,,证明:12...2n c c c +++<. 3.【2020届河省新乡二中第四次月考】在数列{}n a 和等比数列{}n b 中,10a =,32a =,()1*2n a n b n N +=∈.(1)求数列{}n b 及{}n a 的通项公式; (2)若12n n n c a b =,求数列{}n c 的前n 项和n S . 4.【2019届湖南省郴州市二质监】已知数列和满足,若数列为等比数列,且,.(1)求数列和的通项公式;(2)设,求数列的前项和.5.【2020福建3月考】已知数列{}n a 的前n 项和为n S ,11a =,121n n S a n +-=-. (1)求证:12n a ⎧⎫-⎨⎬⎩⎭是等比数列; (2)若4n n b =,求数列{}4n n a b 的前n 项和n T . 6.【2019届山东省第一次大联考】已知数列,,且满足.(1)求数列的通项公式; (2)若数列满足,求数列的前项和.7.【2020福建省福清3月线上检测】已知数列{}n a 的前n 项和为n S ,满足22n n a S -= (1)求n a ;(2)若数列{}n b 满足14nn n n a b S S +=(*n N ∈),求{}n b 的前n 项和n T .8.【2019届黑龙江省齐齐哈尔市二模】已知等差数列的前项和为,且成等比数列.(1)求数列的通项公式;(2)设为数列的前项和,求满足的最小的值.9.【2020届江西省吉安期末】数列{}n a 是首项为1,公差不为0的等差数列,且1a ,2a ,5a 成等比数列;数列{}n b 的前n 项和为n S ,且12b =,1213n n S S +=+()*n ∈N . (1)求n a ,n b ;(2)若n n n c a b =⋅,且数列{}n c 的前n 项和为n T ,证明:9n T <. 10.【2019届贵州省凯里一中模拟(二)】在等差数列中,已知.(I)求数列的通项公式;(II)记为数列的前项和,求的最小值.11.【2020江苏省南通市海安市3月月考】已知数列{}n a 的首项为1,各项均为正数,其前n 项和为n S ,112n nn n na a S a a ++=-,n *∈N .(1)求2a ,3a 的值;(2)求证:数列{}n a 为等差数列;(3)设数列{}n b 满足11b =,1n n n b b a +=,求证:1121nn i ia b =≥-∑. 12.【2019届天津市十二重点中学联考(一)】设等比数列的前项和为,已知,且成等差数列. (1)求数列的通项公式;(2)若数列是首项为,公差为的等差数列,求数列的前项和.13.【2020届内蒙古赤峰二中三模】设数列{}n a 的前n 项和为n S ,2,0n S An Bn C A =++≠. (Ⅰ)当2A =、0C =,且210a =-时,求数列{}n a 的通项公式;(Ⅱ)设{}n a 的各项均为负实数,当1336,9a a =-=-时,求实数A 的取值范围. 14.【2019届河北省衡水中学一调】已知数列的前项和满足,.(1)求数列的通项公式;(2)在数列的前100项中,是否存在两项,(,且),使得,,三项成等比数列?若存在,求出所有的,的取值;若不存在,请说明理由..15.【2020吉林省吉林第二次调研】已知数列{}n a 是公比为正数的等比数列,其前n 项和为n S ,满足12a =,且223,2,a S a 成等差数列. (1)求{}n a 的通项公式;(2)若数列{}n b 满足2log n n b a =,求2222222212345699100b b b b b b b b -+-+-+⋅⋅⋅+-的值.16.【2019届湖南省衡阳市第二次联考】已知数列,满足,,,.(1)证明:数列,为等比数列;(2)记为数列的前项和,证明:.17.【2020河南省郑州第二次质量预测】已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)若12111n n T S S S =+++L ,证明:34n T <. 18.【2019届安徽省六安市一中模拟(四)】已知分别为的三内角A ,B ,C 的对边,其面积,在等差数列中,,公差.数列的前n 项和为,且.(1)求数列的通项公式; (2)若,求数列的前n 项和.19.【2020届浙江宁波鄞州中学下期初考】已知数列{}n a 的前n 项和为n S ,且满足()()221n n S n a =+-,*n N ∈.(1)证明:11n a n +⎧⎫⎨⎬+⎩⎭为常数列,并求n a ; (2)令2sin2n nn a b a π=⋅,求数列{}n b 的前n 项和n T .20.【2019届安徽省宣城市八校期末】设递增数列满足,、、成等比数列,且对任意,函数满足.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和为,,数列的前项和为,证明:.。

相关文档
最新文档