电缆屏蔽接地规范

屏蔽电缆接地方式

一、名词介绍:

1、屏蔽层:导体外部有导体包裹的导线叫屏蔽线,包裹的导体叫屏蔽层,一般为编织铜网或铜泊(铝),屏蔽层需要接地,外来的干扰信号可被该层导入大地。

作用:保持零电位,使缆芯之间没有电位差;在短路时承载短路电流,以免因短路引起电缆温升过高而损坏绝缘层,同时屏蔽层也可以防止周围外界强电场对电缆内传输电流的干扰;屏蔽层还可以有效地将电缆产生的强电场限制在屏蔽层内,不会对周围的弱电线路及仪表,产生强电干扰或危及人身安全。

2、接地:“地”是电气工程中的电位参考点(经常作为零电位)。“地”可以是大地(Earth),“点”的尺度为三维地,“地”也可以是电路中的某一点(Ground),其尺度是一个有限的导体面、线、点。

电位参考点就是电位的基准点,可以是电力系统中的某一点,如变压器中性点;也可以是直流电源的正、负极或其中间某一点。

作用:接地通常分为系统接地和保护接地。系统接地是为了使系统稳定运行,如变压器中性点接地,信号交流时的公共电位参考点等;保护接地就是将电气设备的金属外壳与接地体连接,以防止因电气设备绝缘损坏而使外壳带电时,操作人员接触设备外壳而触电:如电源接地故障保护、静电接地、屏蔽接地、防雷接地等。也有的接地具有上述两种作用,接地是电气工程中必不可少的措施。

3、屏蔽接地:为避免电磁场对仪表和信号的干扰而采取的接地。

作用:为防止电气设备因受电磁干扰,而影响其工作或对其它设备造成电磁干扰。

二、屏蔽线缆的原理:

屏蔽布线系统源于欧洲,它是在普通非屏蔽布线系统的外面加上金属屏蔽层,利用金属屏蔽层的反射、吸收及趋肤效应实现防止电磁干扰及电磁辐射的功能,屏蔽系统综合利用了双绞线的平衡原理及屏蔽层的屏蔽作用,因而具有非常好的电磁兼容(EMC)特性。

电磁兼容(EMC)是指电子设备或网络系统具有一定的抵抗电磁干扰的能力,同时不能产生过量的电磁辐射。也就是说,要求该设备或网络系统能够在比较恶劣的电磁环境中正常工作,同时又不能辐射过量的电磁波干扰周围其它设备及网络的正常工作。

U/UTP(非屏蔽)电缆的平衡特性并不只取决于部件本身的质量(如绞对),而会受到周围环境的影响。因为U/UTP(非屏蔽)周围的金属、隐蔽的“地”、施工中的牵拉、弯曲等等

情况都会破坏其平衡特性,从而降低EMC性能。

所以,要获得持久不变的平衡特性,只有一个解决方案:在所有芯线外加多一层铝箔进行接地。铝箔为脆弱的双绞芯线增加了保护,同时为U/UTP(非屏蔽)电缆人为的创造了一个平衡环境。从而形成我们现在所说的屏蔽线缆。

屏蔽电缆的屏蔽原理不同于双绞的平衡抵消原理,屏蔽电缆是在四对双绞线的外面加多一层或两层铝箔,利用金属对电磁波的反射、吸收和趋肤效应原理(所谓趋肤效应是指电流在导体截面的分布随频率的升高而趋于导体表面分布,频率越高,趋肤深度越小,即频率越高,电磁波的穿透能力越弱),有效的防止外部电磁干扰进入电缆,同时也阻止内部信号辐射出去,干扰其它设备的工作。

实验表明,频率超过5MHz的电磁波只能透过38μm厚的铝箔。如果让屏蔽层的厚度超过38μm,就使能够透过屏蔽层进入电缆内部的电磁干扰的频率主要在5MHz以下。而对于5MHz以下的低频干扰可应用双绞线的平衡原理有效的抵消。

根据布线最早的定义,分为非屏蔽线缆-UTP和屏蔽线缆-STP两种。后来随着技术的发展和各家不同的工艺,衍生出了很多不同屏蔽的种类 1.F/UTP Foil Screened Cable 单层的铝箔屏蔽结构 2.Foil and Braid Screened Cable 铝箔和铜质编织网双层屏蔽结构 a) SF/UTP 铝箔和铜质编织网同时包裹在四对线的外层 b) S/FTP (PIMF) 线对单对铝箔屏蔽加上包裹在四对线的外层的铜质编织网 PIMF = Pair in Metal Foil。

屏蔽电缆抵抗外界干扰主要体现在:信号传输的完整性可以通过屏蔽系统得到一定的保证。屏蔽布线系统可以防止传输数据受到外界电磁干扰和射频干扰的影响。电磁干扰(EMI)主要是低频干扰,马达、荧光灯以及电源线是通常的电磁干扰源。射频干扰(RFI)是高频干扰,主要是无线频率干扰,包括无线电、电视转播、雷达及其他无线通信。

对于抵抗电磁干扰,选择编织层屏蔽最为有效,也就是金属网屏蔽,因其具有较低的临界电阻。而对于射频干扰,金属箔层屏蔽最有效,因为金属网屏蔽所产生的缝隙可使得高频信号自由地进出。对于高低频混合的干扰场,则要采用金属箔层加金属网的组合屏蔽方式,也就是S/FTP形式的双层屏蔽电缆,这样可使得金属网屏蔽适用于低频范围的干扰,金属箔屏蔽适用于高频范围的干扰。

IBM ACS的屏蔽线缆中铝箔屏蔽层单层厚度即达到50-62μm,起到了更完整的屏蔽效果。同时由于只采用单层屏蔽,对于施工而言将更加简单,便于安装,不易在施工过程中造成人为的损坏,且铝帛的厚度可以承受更大的破坏力。从而能给用户提供更高品质的传输性能。

三、屏蔽接法标准:

1、减少导线间的串扰主要采用远离技术:弱信号的模拟数据线要远离强信号线敷设,尤其是远离动力线路。要避免平行走线,实际的操作中可以采用敷设不同桥架的方式进行隔离。

2、抑制磁场耦合干扰,尽量屏蔽干扰源:对于变频器、热启动器等强干扰源设备最好能将其用导磁材料屏蔽,但在工程中较难实现,不过应该杜绝的是将它们同控制系统的输入输出通道设计在同一个控制箱内,建议采用相对独立的电控箱安装。变频器的动力输出电源最好使用屏蔽电缆,采用单端接地的连接方式,即在控制柜变频器端的屏蔽接地,电机端的屏蔽层悬浮(需要注意的是,电机侧屏蔽悬浮但正常的保护接地线仍然要正确安装和连接)。

3、模拟信号的传输选用双绞屏蔽线较好。双绞屏蔽线的信号线与其返回线绞合能减少感性耦合引起的干扰,绞合的两条线阻抗一样,自身产生的磁场干扰或外部磁场干扰都可以较好的抵消,同时,平衡式传输又独具很强的抗共模干扰能力。

4、区分处理低频信号和高频信号的屏蔽接地。对于低频信号一般采用屏蔽电缆的屏蔽层单端接地方式,能较好的抑制电位差达到消除电磁干扰目的(4~20mA的模拟量信号多属于此类);对于高频信号,应该采用双端接地的方式,包括PLC控制系统的总线网络(例如ProfiBus 网络、DeviceNet网络等)、同轴网络(ControlNet等)。同轴网络更是需要有良好的双端屏蔽接地,因为同轴网络的屏蔽层除担当屏蔽的作用外,还是高频通道的回程导线。

5、屏蔽接地要遵循同地的原则,系统的控制柜和子控制箱尽可能做到等电势,减少静电干扰。可以在柜间安装直径6㎜以上连接地线用于平衡电势。

6、安装连接屏蔽电缆时,要特别保持屏蔽的完整性,拆断或分开屏蔽将极大地降低屏蔽效率。

7、保护电缆的金属槽盒或者穿线管采用多点接地。

四、屏蔽层接地方式选择:

1、屏蔽层的一端接地,另一端悬空

存在变压器、电动机、大功率可控硅整流设备等干扰源的场所电缆屏蔽采用单端接地为宜。如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。因为单点接地的静电放电速度是最快的。

当信号线传输距离比较远的时候,由于两端的接地电阻不同或PEN(零地共用)线有电流,可能会导致两个接地点电位不同,此时如果两端接地,屏蔽层就有电流行成,反而对信号形成干扰,因此这种情况下一般采取一点接地,另一端悬空的办法,能避免此种干扰形成。两端接地屏蔽效果更好,但信号失真会增大。

2、屏蔽层双端接地

当电磁感应的干扰较大或高频电路,宜采用两点接地。

3、双层绝缘隔离屏蔽的电缆应采用外层屏蔽双端接地,内层屏蔽单端接地

最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,屏蔽层形成了一个理想的法拉第笼,从而消除感性干扰,基本上抵消掉没有外屏蔽层时所感应的电压;而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。这种方法能较好的消除各种干扰,保证传输信号的准确稳定。

4、电缆屏蔽层混合接地

一个电路,当从低频到高频的情况下,低频段单点接地,高频段两端接地。

注意:所提到两层屏蔽应是相互绝缘隔离型屏蔽,如没有相互绝缘仍应视为单层屏蔽。

屏蔽线屏蔽层应一端接地还是两端接地

屏蔽线屏蔽层应一端接地还是两端接地 屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ①屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 ②双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不同引发的地电流影响信号;

数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。 所以个人以为,无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。 单端接地。 如果是两端接地,由于两个接地端可能存在电位差,反而会产生干扰。一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等。 单端接地不存在接地电位差的问题,可减少接地干扰。 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。(3)屏蔽层悬浮:只

说说控制电缆的屏蔽层接地

(图说质量)说说控制电缆的屏蔽层接地 控制电缆接线工艺是电力工程重要的项目之一,而在整个接线过程中,电缆屏蔽接地是接线过程中必不可少的施工工序。屏蔽为什么需要接地?有哪些相关规定?如何接地?这里就这些问题具体说明一下:目前我公司的项目工程中控制电缆屏蔽接地,电气控制电缆部分采用两端接地方式,弱电及热控计算机监视电缆则采用一端接地方式。 电缆屏蔽接地是为防止电气设备因受电磁干扰造成误动和危害,为避免电磁干扰,控制电缆的屏蔽层 均应接地。 屏蔽电缆的屏蔽层两端接地使电磁感应在屏蔽层上产生一个感应 纵向电流,该电流产生一个与主干扰相反的二次场,抵消主干绕场的 作用,显著降低磁场耦合感应电压,可将感应电压降到不接地时感应 电压的1%以下。当然屏蔽电缆的屏蔽层两端接地也存在以下两个情 况:1、当接地网上出现短路电流或雷击电流时,由于电缆屏蔽层两点 的电位不同,使屏蔽层内流过电流,会引起额外的冲击或干扰电压。2、 当屏蔽层内流过电流时,对每个芯线将产生干扰信号。但对应用于继 电保护和自动装置回路的屏蔽电缆,由于其输入和输出均有一端在电网的高压或超高压环境中,电磁干扰是主要因数,为防止暂态过电压,故电气继电保护和自动装置的电缆屏蔽层宜在两端接地。 热工自动化设备比较分散,就地设备处的屏蔽层都要接到全厂公用地困难较大,且仪表及控制系统信号绝大多数是低频信号,为防止静电干扰,低频信号接地的原则是单点接地,以避免形成接地回路。因此热工专业规定电缆屏蔽层需在电子设备间DCS机柜处集中一点接地。 翻阅国标《电力工程电缆设计规范》GB50217-2007,就明确了控制电缆屏蔽层的接地方式: 3. 6. 9 控制电缆金属屏蔽的接地方式,应符合下列规定: 1 计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,应集中式一点接地。 2 集成电路、微机保护的电流、电压和信号的电缆屏蔽层,应在开关安置场所与控制室同时接地。 3 除上述情况外的控制电缆屏蔽层,当电磁感应的干扰较大时,宜采用两点接地;静电感应的干扰较大时,可采用一点接地。双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分别采用一点、两点接地。 4 两点接地的选择,还宜在暂态电流作用下屏蔽层不被烧熔。 3. 6. 10 强电控制回路导体截面不应小于1.5mm2,弱电控制回路不应小于0.5mm2。 GB50171-2012《电气装置安装工程盘、柜及二次回路接线施工及验收规范》第6.0.4条第四款内容:屏蔽电缆的屏蔽层应接地良好。和第7.0.11条规定:用于保护和控制回路的屏蔽电缆屏蔽层接地应符合设计要求,当设计未作要求时,应符合下列规定:1 用于电气保护及控制的单屏蔽层接地应采用两端接地方式。2 远动、通信等计算机系统所采用的单屏蔽电缆屏蔽层,应采用一点接地方式;双屏蔽电缆外屏蔽层应两端接地,内屏蔽层宜一点接地。屏蔽层一点接地的情况下,当信号源浮空时,屏蔽层接地点应在计算机侧;当信号源接地时,接地点应靠近信号源的接地点。 《建筑物防雷设计规范》GB50057-2010,对电缆屏蔽层的要求是: 6.3屏蔽、接地和等电位连接的要求中第1条第2款规定:在需要保护的空间内,采用屏蔽电缆时其屏蔽层应至少在两端,并宜在防雷区交界处做等电位连接,系统要求只在一端做等电位连接时,应采用两层屏蔽或穿钢管敷设,外层屏蔽或钢管应至少在两端,并宜在防雷区交界处做等电位连接。 在《国家电网公司十八项电网重大反事故措施》(修订版)继保专业重点实施要求中也有相关条文:13.1.1.7 电缆主绝缘、单芯电缆的金属屏蔽层、金属护层应有可靠的过电压保护措施。统包型电缆的金属

屏蔽线单端接地

屏蔽线单端接地是怎么个接法? 屏蔽线的一端接地,另一端悬空。 当信号线传输距离比较远的时候,由于两端的接地电阻不同或PEN线有电流,可能会导致两个接地点电位不同,此时如果两端接地,屏蔽层就有电流行成,反而对信号形成干扰,因此这种情况下一般采取一点接地,另一端悬空的办法,能避免此种干扰形成。 两端接地屏蔽效果更好,但信号失真会增大 请注意:两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽! 最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压;而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。下面的规范是最好的佐证!《GB 50217-1994电力工程电缆设计规范》——3.6.8 控制电缆金属屏蔽的接地方式,应符合下列规定:(1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。(2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜采用两点接地;静电感应的干扰较大,可用一点接地。双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。 (3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。 《GB50057-2000建筑物防雷设计规范》——第6.3.1条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。 其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。 如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。因为单点接地的静电放电速度是最快的。 但是,以下两种情况除外: 1、外部有强电流干扰,单点接地无法满足静电的最快放电。 如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。当然了,真是那样,也没有必要选择两层屏蔽。 否则,必须两层屏蔽,外层屏蔽主要是减少干扰强度,不是消除干扰,这时必须多点接地,虽然放不完,但必须尽快减弱,要减弱,多点接地是最佳选择。 比如,企业中的电缆桥架其实就是外屏蔽层,它是必须多点接地的,第一道防线,减小干扰源的强度。 内层屏蔽层(其实,大家不会买双层的电缆,一般是外层就是电缆桥架,内层才是屏蔽电缆的屏蔽层)必须单点接地,因为外部强度已经减少,尽快放电,消除

屏蔽线屏蔽层应一端接地还是两端接地

屏蔽线屏蔽层应一端接地还是两端接地

屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ①屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 ②双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不同引发的地电流影响信号; 数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。

所以个人以为,无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。 单端接地。 如果是两端接地,由于两个接地端可能存在电位差,反而会产生干扰。一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等。 单端接地不存在接地电位差的问题,可减少接地干扰。 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。(3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。 对于单端接地,是变送器端接地

屏蔽层接地标准规范

屏蔽层接地标准规范 一、单端接地 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 二、双端接地 双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。 动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线则需要区别情况对待,一般而言模拟信号电流信号、信号、温度信号、压 力信号、流量信号等单端接地,以避免双端接地时,地电势不同引发的地电流影响信号。 数字信号、差分信号、编码器,开关量主张双端接地,只是过大的地电流也同样可能影响信号。 无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。 三、屏蔽线的接地三种情况 单端接地方式、两端接地方式、屏蔽层悬浮 (1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻R L之后,i2再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干 扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。

屏蔽线接地的方法

屏蔽线接地的方法 屏蔽的作用是将电磁场噪声源与敏感设备隔离,切断噪声源的传播路径。屏蔽分为主动屏蔽和被动屏蔽,主动屏蔽目的是为了防止噪声源向外辐射,是对噪声源的屏蔽;被动屏蔽目的是为了防止敏感设备遭到噪声源的干扰,是对敏感设备的屏蔽。屏蔽电缆的屏蔽层主要由铜、铝等非磁性材料制成,并且厚度很薄,远小于使用频率上金属材料的集肤深度,屏蔽层的效果主要不是由于金属体本身对电场、磁场的反射、吸收而产生的,而是由于屏蔽层的接地产生的,接地的形式不同将直接影响屏蔽效果。对于电场、磁场屏蔽层的接地方式不同。可采用不接地、单端接地或双端接地 单端接地: 1) 屏蔽电缆的单端接地对于避免低频电场的干扰是有帮助的。或者说它能够避免 波长λ远远大于电缆长度 L 的频率干扰。L<λ /20 2) 电缆屏蔽层单端接地能够避免屏蔽层上的低频电流噪声。这种电流在内部导 致共模干扰电压并且有可能干扰模拟量设备。 3) 屏蔽层的单端接地对于那些对低频干扰敏感的电路(模拟量电路)来说是可取 的。 4) 连续测量值的上下波动和永久偏差表示有低频干扰。 北京塑力亿航线缆有限公司,主要以仓库批发、厂家直接订货为性质的销售北京塑力亿航线缆、河北亿航电线电缆电力电缆、煤矿用电缆、橡套电缆、控制电缆、通讯电缆、护套电缆屏蔽电线、480/750V无护套聚氯乙烯电缆、以及防水电缆阻燃电缆、耐火电缆等上百种产品,并能为客户提供技术咨询和售后服务。电话:0 0传真:0地址:北京市丰台区五里店北区京辰瑞达大厦406室 双端接地: 1) 确保到电控柜或者插头(圆形接触)的连接经过一个大的导电区域(低感应系 数)。选择金属在金属上比非金属在非金属上要好。 2) 由于有些模拟量模块使用了脉冲技术(例如:处理器和 A/D 转换器集成在同一模 块中),建议将模拟量信号彼此间屏蔽,确保正确的等电位连接,只有在这种情 况下进行双端接地。 3) 通常金属箔屏蔽层的传输阻抗远远大于铜编织线的屏蔽层,其效果相差 5-10 倍, 不能用作数字信号电缆。 4) 偶尔的功能失灵表明有高频干扰。这是导线等电位连接无法消除的。 5) 除去电缆的端点以外,屏蔽层多点接地是有利的。 6) 不要将屏蔽层接在插针上,避免“猪尾巴”现象。 7) 要时刻注意屏蔽层的并联阻抗应该小于自身阻抗的 1/10。电缆桥架、机械框架、 其它屏蔽层或者其它并行电缆都能够使系统作到等电位。 8) 如果当屏蔽层双端接地时电缆屏蔽层发热,或者屏蔽层碰到电控柜外壳或者屏蔽

电缆屏蔽接地规范

屏蔽电缆接地方式 一、名词介绍: 1、屏蔽层:导体外部有导体包裹的导线叫屏蔽线,包裹的导体叫屏蔽层,一般为编织铜网或铜泊(铝),屏蔽层需要接地,外来的干扰信号可被该层导入大地。 作用:保持零电位,使缆芯之间没有电位差;在短路时承载短路电流,以免因短路引起电缆温升过高而损坏绝缘层,同时屏蔽层也可以防止周围外界强电场对电缆内传输电流的干扰;屏蔽层还可以有效地将电缆产生的强电场限制在屏蔽层内,不会对周围的弱电线路及仪表,产生强电干扰或危及人身安全。 2、接地:“地”是电气工程中的电位参考点(经常作为零电位)。“地”可以是大地(Earth),“点”的尺度为三维地,“地”也可以是电路中的某一点(Ground),其尺度是一个有限的导体面、线、点。 电位参考点就是电位的基准点,可以是电力系统中的某一点,如变压器中性点;也可以是直流电源的正、负极或其中间某一点。 作用:接地通常分为系统接地和保护接地。系统接地是为了使系统稳定运行,如变压器中性点接地,信号交流时的公共电位参考点等;保护接地就是将电气设备的金属外壳与接地体连接,以防止因电气设备绝缘损坏而使外壳带电时,操作人员接触设备外壳而触电:如电源接地故障保护、静电接地、屏蔽接地、防雷接地等。也有的接地具有上述两种作用,接地是电气工程中必不可少的措施。 3、屏蔽接地:为避免电磁场对仪表和信号的干扰而采取的接地。 作用:为防止电气设备因受电磁干扰,而影响其工作或对其它设备造成电磁干扰。 二、屏蔽线缆的原理: 屏蔽布线系统源于欧洲,它是在普通非屏蔽布线系统的外面加上金属屏蔽层,利用金属屏蔽层的反射、吸收及趋肤效应实现防止电磁干扰及电磁辐射的功能,屏蔽系统综合利用了双绞线的平衡原理及屏蔽层的屏蔽作用,因而具有非常好的电磁兼容(EMC)特性。 电磁兼容(EMC)是指电子设备或网络系统具有一定的抵抗电磁干扰的能力,同时不能产生过量的电磁辐射。也就是说,要求该设备或网络系统能够在比较恶劣的电磁环境中正常工作,同时又不能辐射过量的电磁波干扰周围其它设备及网络的正常工作。 U/UTP(非屏蔽)电缆的平衡特性并不只取决于部件本身的质量(如绞对),而会受到周围环境的影响。因为U/UTP(非屏蔽)周围的金属、隐蔽的“地”、施工中的牵拉、弯曲等等

屏蔽线接地规则

屏蔽线的一端接地,另一端悬空。 当信号线传输距离比较远的时候,由于两端的接地电阻不同或PEN线有电流,可能会导致两个接地点电位不同,此时如果两端接地,屏蔽层就有电流行成,反而对信号形成干扰,因此这种情况下一般采取一点接地,另一端悬空的办法,能避免此种干扰形成。 两端接地屏蔽效果更好,但信号失真会增大 请注意:两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽! 最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压; 而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。下面的规范是最好的佐证! 《GB 50217-1994电力工程电缆设计规范》——3.6.8 控制电缆金属屏蔽的接地方式,应符合下列规定: (1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。 (2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜采用两点接地;静电感应的干扰较大,可用一点接地。 双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。 (3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。 《GB50057-2000建筑物防雷设计规范》——第6.3.1条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。 其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。 如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。因为单点接地的静电放电速度是最快的。 但是,以下两种情况除外: 1、外部有强电流干扰,单点接地无法满足静电的最快放电。 如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。当然了,真是那样,也没有必要选择两层屏蔽。 否则,必须两层屏蔽,外层屏蔽主要是减少干扰强度,不是消除干扰,这时必须多点接地,虽然放不完,但必须尽快减弱,要减弱,多点接地是最佳选择。 比如,企业中的电缆桥架其实就是外屏蔽层,它是必须多点接地的,第一道防线,减小干扰源的强度。 内层屏蔽层(其实,大家不会买双层的电缆,一般是外层就是电缆桥架,内层才是屏蔽电缆

屏蔽线接地方法及原理

屏蔽线接地方法与原理 屏蔽线的一端接地,另一端悬空。当信号线传输距离比较远的时候,由于两端的接地电阻不同或PEN线有电流,可能会导致两个接地点电位不同,此时如果两端接地,屏蔽层就有电流行成,反而对信号形成干扰,因此这种情况下一般采取一点接地,另一端悬空的办法,能避免此种干扰形成。两端接地屏蔽效果更好,但信号失真会增大 请注意:两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽! 最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压; 而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。下面的规范是最好的佐证!《GB 50217-1994电力工程电缆设计规范》—— 3.6.8 控制电缆金属屏蔽的接地方式,应符合下列规定: (1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。 (2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜采用两点接地;静电感应的干扰较大,可用一点接地。双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。 (3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。 《GB50057-2000建筑物防雷设计规范》——第6.3.1条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。 其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。 如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。因为单点接地的静电放电速度是最快的。 但是,以下两种情况除外: 1、外部有强电流干扰,单点接地无法满足静电的最快放电。 如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。当然了,真是那样,也没有必要选择两层屏蔽。

屏蔽线接地方法及原理

屏蔽线的一端接地,另一端悬空。当信号线传输距离比较远的时候,由于两端的接地电阻不同或PEN线有电流,可能会导致两个接地点电位不同,此时如果两端接地,屏蔽层就有电流行成,反而对信号形成干扰,因此这种情况下一般采取一点接地,另一端悬空的办法,能避免此种干扰形成。两端接地屏蔽效果更好,但信号失真会增大 请注意:两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽! 最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压; 而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。下面的规范是最好的佐证!《GB 50217-1994电力工程电缆设计规范》——3.6.8 控制电缆金属屏蔽的接地方式,应符合下列规定: (1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。 (2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜采用两点接地;静电感应的干扰较大,可用一点接地。双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。 (3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。 《GB50057-2000建筑物防雷设计规范》——第6.3.1条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。 其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。 如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。因为单点接地的静电放电速度是最快的。 但是,以下两种情况除外: 1、外部有强电流干扰,单点接地无法满足静电的最快放电。 如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。当然了,真是那样,也没有必要选择两层屏蔽。 否则,必须两层屏蔽,外层屏蔽主要是减少干扰强度,不是消除干扰,这时必须多点接地,虽然放不完,但必须尽快减弱,要减弱,多点接地是最佳选择。比如,企业中的电缆桥架其实就是外屏蔽层,它是必须多点接地的,第一道防线,减小干扰源的强度。内层屏蔽层(其实,大家不会买双层的电缆,一般是外层就是电缆桥架,内层才是屏蔽电缆的屏蔽层)必须单点接地,因为外部强度已经减少,尽快放电,消除干扰才是内层的目的。 2、外部电击和防雷等安全的要求。

屏蔽层接地标准标准

屏蔽层接地标准标准 一、单端接地 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过珍惜接地。 在屏蔽层单端接地情形下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地确实是利用抑制电势电位差达到排除电磁干扰的目的。 这种接地址式适合长度较短的线路,电缆长度所对应的感应电压不能超过平安电压。静电感应电压的存在将阻碍电路信号的稳固,有时可能会形成天线效应。 二、双端接地 双端接地是将屏蔽电缆的金属屏蔽层的两头均连接接地。 在屏蔽层双端接地情形下,金属屏蔽层可不能产生感应电压,但金属屏蔽层受干扰磁通阻碍将产生屏蔽环流通过,若是地址A和地址B的电势不相等,将形成专门大的电势环流,环流会对信号产生抵消衰减成效。 动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线那么需要区别情形对待,一样而言模拟信号电流信号、信号、温度信号、压力信号、流量信号等单端接地,以幸免双端接地时,地电势不同引发的地电流阻碍信号。 数字信号、差分信号、编码器,开关量主张双端接地,只是过大的地电流也一样可能阻碍信号。 无论是单端仍是双端,原那么是死的,实效才是目的,需以能解决现场问题和设备的稳固靠得住运行为重,因此往往只能灵活处置。

三、屏蔽线的接地三种情形 单端接地址式、两头接地址式、屏蔽层悬浮 (1)单端接地址式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻R L以后,i2再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,因此它们产生的磁场干扰彼此抵消。这是一个专门好的抑制磁场干扰的方式。同时它也是一个专门好的抗击磁场耦合干扰的方式。 (2)两头接地址式:由于屏蔽层上流过的电流是i2与地环电流i G的迭加,因此它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地址式差。单端接地址式与两头接地址式都有屏蔽电场耦合干扰作用。 (3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。 四、合理接地 一、独立地线。所谓的独立地线,顾名思义,确实是为本系统单独设置的地线,它必需是通过对地电阻测量合格的地线。那么什么是合格地线呢?它的对地电阻的标准是多少?这有国标决定,关于运算机系统的接地地线标准,应该是小于4欧姆。那个独立的地,接变频器的PE、现场的电机外壳、所有导电金属相关柜体、机体外壳。 二、等电位。所谓的等电位,确实是安装接线的那个系统所有物体的金属外壳,用导电体大面积连接一片。面积越大,抗干扰的成效越好。从抗干扰的成效看,等电位的处置,优于单独接地的成效。接独立地,是在等电位的基础上实施的,因为,依照一点接地的原那么,那个独立地是接在整个系统的什么位置也很关键。要视现场的具体情形而定。原那么是,独立地线的“入地址”接在系统所有壳体、物体的金属表面积最大的地址。等电位包括了所有电缆频蔽层的金属导体连接。

仪表电缆屏蔽接线规范

一.动力电缆 多芯动力电缆在电缆中间接头处,其电缆铠装、金属屏蔽层应各自又良好的电气连接并相互绝缘;在电缆终端头处,电缆铠装层、金属屏蔽层应用接地线分别引出,并应接地良好。交流系统单芯电力电缆金属层接地方式和回流线的选择应符合设计要求。 对于后面一句话的理解,因为这里面涉及的情况比较复杂,需要考虑很多因素和进行一些计算,需要由设计院给出明确要求。但是对于35KV 以下,线路不长的情况下一般都采用单点接地。 二.电气控制电缆 铠装电缆的铠装两侧应进行保护接地。 电气控制电缆金属屏蔽层的接地方式应符合下列规定: 1.计算机控制系统的模拟信号回路控制电缆屏蔽层不得构成两点或多点接地,应集中式一点接地; 2.集成电路,微机保护的电流、电压和信号的控制电缆屏蔽层应再开关安置场所与控制室同时接地;除本条第1款、第2款情况外的控制电缆屏蔽层,当电磁感应的干扰较大时,宜采用两点接地;静电感应的干扰较大时,可采用一点接地; 3.双重屏蔽或复合式总屏蔽宜对内、外屏蔽分别采用一点、两点接地。

三.仪表电缆 铠装电缆的铠装两侧应进行保护接地。 仪表电缆的屏蔽层应在控制室仪表盘柜侧接地,同一回路的屏蔽层应有可靠的电气连续性,不应浮空或重复接地。在中间接线箱内,主电缆分屏蔽层应用端子将对应的二次电缆屏蔽层进行连接,不同的屏蔽层应分别连接,不应混接,并应绝缘。 综上所述铠装电缆的两侧是都需要进行接地的,这里介绍几种常规的电缆铠装层接地方式。 1. 使用gland对铠装层进行接地。 铠装层通过gland内部的两个小组件C和R来保证铠装层与整个gland 的电气导通性。 2. 使用cable transit对铠装层接地,应用场景可参考下图。 这个就需要使用特制的模块,我从Roxtec网站上随便找了一个能够用来实现接地功能产品。但是这种型制的总体造价较高,相对于gland 来说使用的不是很广泛。

电力工程接地通用规范

电力工程接地通用规范(征求意见稿) 2020.06

目录 1 总则 (1) 2 基本要求 (2) 3 土壤数据 (3) 4 接地阻抗、转移电位和网内电位差 (4) 5 跨步电位差、接触电位差 (6) 6 接地装置的热稳定性、机械强度 (8) 7 设备与地网的连接 (9) 8 等电位接地网 (12) 9 直流接地极 (14) 附:条文说明 (15)

1 总则 1.0.1为使电力接地工程贯彻国家电力建设方针政策,满足经济和社会发展基本需求,保障人民生命财产安全、电力系统安全、生态环境安全,满足经济社会管理基本需要,依据有关法律、法规,制定本规范。 1.0.2发电、变电、输电和配电等电力工程的接地设计、施工、验收及改造应遵守本规范。 1.0.3本规范是电力工程接地的设计、施工、验收及改造等过程中的基本要求。当采用的技术措施与本规范的规定不一致,但经合规性评估符合本规范第2章的基本规定时,应允许使用。

2 基本要求 2.0.1电力接地工程的设计、施工、验收及改造,应保证人身、设备的安全及电力系统的可靠运行,并不应对周边设施的安全运行产生影响。 2.0.2电力工程接地应能满足保护接地、防雷接地、防静电接地、工作接地不同用途的基本要求,并通过接地装置实现。 2.0.3接地装置产生的地电位升、网内电位差、转移电位、跨步电位差和接触电位差应满足限值要求。 2.0.4接地装置应在预期寿命内满足热稳定性和机械强度的要求。 2.0.5接地装置的验收测试不应在雷、雨、雪中或雨、雪后立即进行。

3 土壤数据 3.0.1电力工程接地设计必须考虑工程地点的土壤电阻率以及埋设接地装置处土壤腐蚀性能和冻土深度。 3.0.2土壤电阻率测量结果应能反映与接地装置尺寸相当深度范围内的土壤分层状况。

国标单芯电缆屏蔽层接地标准

国标单芯电缆屏蔽层接地标准 国标单芯电缆屏蔽层接地标准 在现代的通讯和电力领域中,电缆作为一种重要的传输媒介,承载着各种信号和能量的传输。为了确保电缆传输稳定、安全、可靠,国家对电缆的相关标准进行了规范和要求。其中,国标单芯电缆屏蔽层接地标准作为保证电缆传输质量的重要环节,对于电缆行业来说具有非常重要的意义。 1. 单芯电缆屏蔽层接地的背景和意义 单芯电缆是指只有一个导体的电缆,通常用于单一能源传输或信号传输。在电磁干扰日益增多的现代通讯环境中,为了提高电缆的抗干扰能力,减少信号失真以及保障传输安全,电缆的屏蔽层接地显得尤为重要。 2. 国标单芯电缆屏蔽层接地的具体要求 根据我国国家标准对单芯电缆屏蔽层接地的规定,具体要求主要包括屏蔽层的材料、接地方式、接地电阻等内容。在电缆的设计和安装过程中,必须按照国家标准的要求进行操作,才能确保电缆的性能和质量。

3. 单芯电缆屏蔽层接地标准在实际工程中的应用 在实际的工程应用中,单芯电缆屏蔽层接地标准起到了至关重要的作用。它不仅能够有效地减少外界信号对电缆的干扰,还能够提高电缆 的使用寿命和可靠性。在特定的环境和条件下,合理实施单芯电缆屏 蔽层接地标准,可以最大程度地保障电缆传输的顺利进行。 4. 个人观点和总结 作为我国电缆行业中的重要标准之一,国标单芯电缆屏蔽层接地标准 对于提高电缆的抗干扰能力,保障信号传输质量具有非常重要的意义。在今后的工程建设和电缆设计中,我们需要更加严格地按照国家标准 的要求来进行操作,以确保电缆的安全可靠运行。我也希望未来能够 有更多的科研人员投入到电缆标准化方面的研究中,为我国电缆行业 的发展贡献自己的力量。 在本篇文章中,我们从单芯电缆屏蔽层接地的背景和意义、具体要求、实际工程应用以及个人观点和总结等方面进行了深入探讨。相信通过 对国标单芯电缆屏蔽层接地标准的了解,读者能够对电缆行业中的相 关标准有更加全面、深刻的认识。我们也希望这篇文章能够对读者在 相关领域的学习和工作有所帮助。单芯电缆屏蔽层接地标准是国家对 电缆行业的重要管理标准之一。在电信和电力领域中,电缆作为信号 和能量传输的重要媒介,其性能和质量直接关系到通讯和电力系统的 稳定运行。国家对电缆的相关标准进行规范和要求,以确保电缆传输 的稳定性、安全性和可靠性。

屏蔽接地相关标准规范要求

屏蔽接地相关标准规范要求 控制电缆接线工艺是电力工程重要的项目之一,而在整个接线过程中,电缆屏蔽接地是接线过程中必不可少的施工工序。电缆屏蔽有效正确接地是防止电气设备受电磁干扰造成误动和危害的重要措施,国家及电力行业标准中有关屏蔽接地的要求如下列出,红色加粗部分为重点。 相关规范: 一、继电保护及二次回路安装及验收规范GB/T 50976-2014 二、电力工程电缆设计规范GB 50217-2007 三、电力工业部关于颁发电力系统继电保护及安全自动装置反事故措施要点的通知 1994 年 3 月 31 日电安生1994191 号 四、《国家电网公司十八项电网重大反事故措施》(试行)继电保护专业重点实施要求 五、防止电力生产重大事故的二十五项重点要求 六、电气装置安装工程电缆线路施工及验收规范 GB50168-2006 七、关于印发《国家电网公司输变电工程质量通病防治工作要求及技术措施》的通知基建质量〔2010〕 19 号 八、电气装置安装工程盘、柜及二次回路结线施工及验收规范GB50171-2012 九、电气装置安装工程接地装置施工及验收规范GB50169-2006 十、其他企业值得借鉴的屏蔽接地方法 一、继电保护及二次回路安装及验收规范GB/T 50976-2014 4.3.1 用于继电保护和控制回路的二次电缆应采用铠装屏蔽同芯电缆,二次电缆端头应可靠封装。 4.3.8 保护通道信号的电传输部分应采用屏蔽电缆或音频线连接。该屏蔽线所连接的两个设备之间不应再经端子转接,配线架除外。单屏蔽层线缆的屏蔽层应在两端可靠接地;双屏蔽层线缆的外屏蔽层应两端接地,内屏蔽层应一端接地。传输音频信号应采用屏蔽双绞线,屏蔽层应两端接地。 4.6.5在开关场的变压器、断路器、隔离刀闸、结合滤波器和电流、电压互感器等设备的二次电缆应经金属管从一次设备的接线盒(箱)引至就地端子箱,并将金属管的上端与上述设备的底座和金属外壳良好焊接,下端就近与主接地网良好焊接。在就地端子箱处将这些二次电缆的屏蔽层使用截面不小于4mm2多股铜质软导线可靠单端连接至等电位接地网的铜排上。 4.6.6 除本规范第 4.6.5条规定的在就地端子箱处将二次电缆的屏蔽层可靠单端连接至等电位接地网铜排上的情况外,其余二次电缆屏蔽层应在两端接地,接地线截面面积不应小于4 mm2。严禁使用电缆内的备用芯替代屏蔽层接地。 二、电力工程电缆设计规范GB 50217-2007 3.6 控制电缆及其金属屏蔽 3.6.5强电回路控制电缆,除位于高压配电装置或与高压电缆紧邻并行较长,需抑制干扰的情况外,其他可不含金属屏蔽。 3.6.6弱电信号、控制回路的控制电缆,当位于存在干扰影响的环境又不具备有效抗干扰措施时,宜具有金属屏蔽。

相关主题
相关文档
最新文档