最小二乘法求解超定方程组

合集下载

求超定方程组的最小二乘解

求超定方程组的最小二乘解

求超定方程组的最小二乘解最小二乘法是一种常用的数学方法,用于求解超定方程组的近似解。

超定方程组指方程的个数多于未知数的个数,因此无法直接求解精确解。

而最小二乘法通过将方程组中的每个方程的残差平方之和最小化,找到一个最接近解的估计值。

最小二乘法的应用非常广泛,尤其在数据拟合和回归分析中被广泛使用。

举个例子来说,假设我们有一组观测数据,表示了某个物理过程的实际情况。

而我们想要通过一个数学模型来描述这个物理过程。

但是由于观测误差等原因,我们无法通过这组数据直接得到精确的解。

这时,我们可以使用最小二乘法来逼近这个数学模型。

首先,我们假设这个数学模型是一个线性方程组。

然后,我们根据观测数据,使用最小二乘法来找到一个最接近的解。

具体的求解步骤如下:1. 假设我们的线性方程组可以表示为 Ax = b 的形式,其中 A是一个 m 行 n 列的系数矩阵,x 是一个 n 维列向量表示未知数,b是一个 m 维列向量表示观测数据。

2. 我们的目标是找到一个最小二乘解 x*,使得 ||Ax - b||^2 = min。

其中,||.|| 表示向量的模(即向量的长度的平方)。

3. 通过数学推导可以得到,最小二乘解可以通过求解正规方程组ATAx = ATb 得到。

其中,AT 是 A 的转置矩阵,A^T 表示 A 的伪逆矩阵。

4. 求解正规方程组的方法有多种,最常见的是使用矩阵的分解方法,如QR分解或奇异值分解等。

通过以上步骤,我们可以得到最小二乘解 x*,并使用它来逼近我们的数学模型。

最小二乘法的优点在于它能够处理带有误差的观测数据,提供一个最优的近似解。

它在实际应用中具有广泛的指导意义。

举个实际案例来说,假设我们要估计一辆汽车的燃油消耗量与其速度的关系。

我们首先收集了一组汽车在不同速度下的燃油消耗数据。

然后,我们可以使用最小二乘法来拟合一个线性模型,得到一个最优的近似解。

通过最小二乘法,我们可以得到一个线性关系的方程,表示速度与燃油消耗量之间的关系。

拟合与逼近超定方程组的最小二乘解多项式拟合非线性曲线转化为线性

拟合与逼近超定方程组的最小二乘解多项式拟合非线性曲线转化为线性

y p2 ( x) 13.454 3.657 x 0.272 x 2
3.非线性曲线转化为线性: 有些非线性曲线可以转化为线性,从而用线性拟合进行处理, x 比如: y e ln y ln x
令Y ln y, A ln Y A x
1 1 1
x0 x1 xm
2 x0 2 x1

4

2 xm
n x0 a0 y0 n x1 a1 y1 n y xm an m
第七章
数据拟合与函数逼近 拟合与逼近
7.1
本章继续讨论用简单函数近似代替较复杂函数的问题.上章 提到的插值就是近似代替的方法之一,插值的近似标准是在 插值点处误差为零.但在实际应用中,有时不要求具体某些 点误差为零,而要求考虑整体的误差限制,这就引出了拟合 和逼近的概念.
7.1.1
数据拟合
对离散型函数(即数表形式的函数)考虑数据较多的情况.若 将每个点都当作插值节点,则插值函数是一个次数很高的多 项式,比较复杂.而且由于龙格振荡现象,这个高次的插值多 项式可能并不接近原函数.同时由于数表中的点一般是由观 察测量所得,往往带有随机误差,要求近似函数过所有的点 既不现实也不必要. 1 结束
x y
3 5
5 2
6 1
8 2
10 4
7
结束

5 4 3 2
y
首先作平面散点图如下:
1
0 1 2 3 4 5 6 7 8 9 10
x
从图中观察,这5个点大致在一条抛物线的附近,可考虑 用二次多项式 p2 ( x) a0 a1 x a2 x 2 进行拟合。

opencv 最小二乘求解超定方程组

opencv 最小二乘求解超定方程组

opencv 最小二乘求解超定方程组最小二乘法是一种常用的数值优化方法,它可以用于求解超定方程组的最优解。

在计算机视觉领域中,最小二乘法在图像处理和计算机视觉算法中应用广泛。

OpenCV是一个开源的计算机视觉库,提供了丰富的函数和工具,可以用于最小二乘求解超定方程组。

超定方程组指的是方程的数量多于未知数的数量。

在超定方程组中,我们往往无法精确地求解满足所有方程的解。

最小二乘法的目标是找到一个尽可能接近满足所有方程的解的解。

在最小二乘法中,我们通过最小化残差的平方和来定义一个代价函数,然后通过优化这个代价函数来求解超定方程组的最优解。

在OpenCV中,可以使用cv::solve函数来求解超定方程组的最优解。

cv::solve函数可以接受一个包含多个方程的矩阵和一个包含右侧常数的矩阵作为输入,然后返回一个解向量。

求解超定方程组的最优解需要满足以下条件:1.方程组必须是线性的。

如果方程组包含非线性方程,则需要使用非线性最小二乘法来求解。

2.方程组必须是超定的,即方程的数量多于未知数的数量。

3.方程组必须是可解的,即方程组必须存在至少一个解。

4.方程组必须是稳定的,即求得的最优解不能对输入数据的微小变化过于敏感。

在应用最小二乘法求解超定方程组之前,我们需要将方程组转化为矩阵形式。

设超定方程组的矩阵为A,未知数的向量为x,右侧常数的向量为b,则超定方程组可以表示为Ax=b。

在求解最优解之前,我们首先需要判断矩阵A的秩是否满秩,即A的行向量是否线性无关。

如果矩阵A的秩不满秩,意味着方程组不满足可解的条件,无法求得最优解。

在OpenCV中,可以使用cv::rank函数来计算矩阵的秩。

cv::rank函数接受一个矩阵作为输入,并返回矩阵的秩。

通过判断矩阵的秩是否等于矩阵的列数,我们可以判断方程组是否满足可解的条件。

如果方程组满足可解的条件,我们可以使用最小二乘法来求解超定方程组的最优解。

在OpenCV中,可以使用cv::solve函数来求解最小二乘问题。

数值分析简明教程课后习题答案(第二版)

数值分析简明教程课后习题答案(第二版)

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

超定方程组的最小二乘解原理

超定方程组的最小二乘解原理

超定方程组,又称为过定方程组,是线性代数中的一个概念。

当方程组的未知数数量少于方程数量时,该方程组就被称为超定方程组。

由于超定方程组通常没有精确解,我们常常会寻求一个近似解,使得所有方程的残差平方和最小。

这就是最小二乘解的原理。

一、最小二乘解的基本概念最小二乘法是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和最小。

最小二乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

二、超定方程组的性质对于超定方程组,由于方程数量多于未知数数量,因此通常不存在一个解能够使得所有方程同时成立。

这种情况下,我们需要寻找一个近似解,即一个解,使得所有方程的残差(即方程的实际值与解代入方程后得到的计算值之间的差)的平方和最小。

三、最小二乘解的原理最小二乘解的原理就是基于上述思想,通过最小化残差平方和来寻找超定方程组的近似解。

具体步骤如下:构建残差平方和函数:首先,我们需要构建一个表示残差平方和的函数。

假设超定方程组有(m) 个方程,(n) 个未知数((m > n)),未知数的向量记作(\mathbf{x} = (x_1, x_2, \ldots, x_n)^T),方程组的系数矩阵记作(\mathbf{A} = (a_{ij})_{m \times n}),常数项向量记作(\mathbf{b} = (b_1, b_2, \ldots, b_m)^T)。

那么,残差向量可以表示为(\mathbf{r} = \mathbf{A}\mathbf{x} - \mathbf{b}),残差平方和函数可以写为(S(\mathbf{x}) = \mathbf{r}^T\mathbf{r} = (\mathbf{A}\mathbf{x} - \mathbf{b})^T(\mathbf{A}\mathbf{x} - \mathbf{b}))。

62第二节 超定方程组的解

62第二节 超定方程组的解

2x1 4x2 11.0478 3x1 5x2 2.9119
x1 2x2 5.5239
b1 b2 b3
解得最小二乘解为

x1 x2

3.0403 1.2418
2x1 x2 7.3224 b4
m
n
m
故误差平方和为 I r 2 2
数学学院 信息与计算科学系
nm
m
即有 ( aij aik )xk aij bi ( j 1,2,..., n)
k 1 i1
i 1
此线性方程组写成矩阵形式就是
AT Ax AT b
故x*是 ATAx=ATb 的解.
定理得证.
这里 ATAx=ATb 是关于x1,x2, …,xn的线性 方程组,称为正规方程组或法方程组.
数学学院 信息与计算科学系
解的存在唯一性
由于ATA是n 阶方阵,且是对称阵,当R(A)=n 时, 对任意 y≠0,有Ay≠0 ,所以
yT ( AT A) y ( Ay, Ay) Ay 2 0 2
可见ATA是正定矩阵,必有det(ATA)>0。故法方程
AT Ax AT b
的解存在且唯一.
2 2 yT AT (b Ax* )
2
Ay
2 2

b Ax*
2

Ay 2
b Ax*
2
2
2
2
所以x*是Ax=b 的最小二乘解.
数学学院 信息与计算科学系
必要性 误差向量r=b-Ax 的第 i 个分量为
n
ri bi aik xk (i 1,2,..., m),

最小二乘法求超定方程组例题

最小二乘法求超定方程组例题

选择题使用最小二乘法求解超定方程组时,我们的目标是:A. 最小化残差的平方和B. 最大化残差的平方和C. 使得所有方程严格成立D. 求解出方程组的无穷多解(正确答案)对于一个超定方程组Ax = b,其中A 是m×n 矩阵(m > n),最小二乘解x 是通过以下哪个公式求得的?A. x = A\b (A 的左除)B. x = AT * bC. x = (AT * A)(-1) * AT * b (当AT * A 可逆时)(正确答案)D. x = b / A在最小二乘法中,残差定义为:A. 实际观测值与模型预测值之差B. 模型预测值与实际观测值之和C. 实际观测值与模型预测值之积D. 模型预测值与实际观测值之商(正确答案)关于最小二乘法,以下哪个说法是正确的?A. 它只能用于求解恰定方程组B. 它总是能找到使所有方程都成立的解C. 它是一种优化方法,用于找到使残差平方和最小的解(正确答案)D. 它只能用于线性方程组在求解超定方程组时,如果增加更多的观测数据,通常会对最小二乘解产生什么影响?A. 解会变得更加不准确B. 解会保持不变C. 解可能会变得更加稳定,但也可能受异常值影响(正确答案)D. 解的维度会增加最小二乘法在统计学中常用于:A. 计算样本均值B. 进行假设检验C. 进行数据拟合(正确答案)D. 计算样本方差对于超定方程组,以下哪个性质是最小二乘解不一定具有的?A. 唯一性(当AT * A 可逆时)B. 使所有方程成立C. 使残差平方和最小D. 是方程组的一个近似解(正确答案)在最小二乘法中,如果观测数据中存在异常值,可能会对最小二乘解产生什么影响?A. 解会变得更加准确B. 解会完全不受影响C. 解可能会受到较大影响,导致偏差(正确答案)D. 解的维度会降低关于最小二乘解,以下哪个说法是不正确的?A. 它是一种逼近解,不一定满足所有方程B. 它的求解过程中涉及到了矩阵运算C. 它总是能给出全局最优解(正确答案)D. 它适用于观测数据多于未知数个数的情况。

最小二乘法解超定方程组

最小二乘法解超定方程组

1. 最小二乘法解超静定方程组(1.《数值分析》,闵涛,秦新强,赵凤群编,P68页,例3-5) (2.《无网格法》,张雄,刘岩著,P10~11页)1.1 理论知识如果配点数(方程数)r 大于试函数中的项n (未知量个数),将导致超定方程组:Gu =P(1)其中系数矩阵G 为r ×n 阶矩阵,P 为r 阶列阵。

方法一:利用最小二乘法求解,即令(1)中每个方程的误差的平方和最小:[][]0∂--=∂T Gu P Gu P u (2)方法二:或Ku =f (3)其中T T K =G G,f =G P (4)1.2 算例例3.5 利用最小二乘法解下列超定方程组1231231231232312521352x x x x x x x x x x x x ++=⎧⎪+-=-⎪⎨++=⎪⎪-+=-⎩ (5)方法一:利用最小二乘法求解其中系数矩阵G 为4×3阶矩阵,P 为4阶列阵。

43111131252315⨯⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦G (6)[]412112T⨯=--P(7)31123[,,]T x x x ⨯=u(8)1231123212331234331414121112311311252125213523152x x x x x x x x x x x x x x x ⨯⨯⨯⨯++-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+-+--⎢⎥⎢⎥⎢⎥⎢⎥-=-=⎢⎥⎢⎥⎢⎥⎢⎥++-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦-++--⎣⎦⎣⎦⎣⎦Gu P(9)[]1231231231231231231231232222123123123123[]]2312,3125213522521352(2)(31)(2521)(352)x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =--++-⎡⎤⎢⎥+-+⎢⎥=++-+-+++--++⎢⎥++-⎢⎥-++⎣⎦=++-++-++++-+-++T I Gu P Gu P (10)[][]0,∂--=∂T Gu P Gu P u(11)由于123[,,]T x x x =u 即分别对x 1,x 2,x 3球偏导,得到12312311231231232(2)2(31)22(2521)23(352)2(1511193)Ix x x x x x x x x x x x x x x x ∂=++-++-+∂+⨯⨯+-+⨯⨯-++=+++(12)同理可得12322(113636)Ix x x x ∂=++-∂ (13)12332(193315)Ix x x x ∂=+++∂ (14)令偏导数等于零1231123212332(1511193)02(113636)02(193315)0Ix x x x Ix x x x Ix x x x ⎧∂=+++=⎪∂⎪⎪∂=++-=⎨∂⎪⎪∂=+++=⎪∂⎩ (15)法方程组为:1231511193113636193315x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦(16)解此方程组得最小二乘解:x 1= -1.5917 x 2= 0.5899 x 3=0.7572方法二:或3443331111123151119131135111363252112519331315⨯⨯⨯⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦-⎣⎦T K =G G(17)3441312112331135161112552⨯⨯⨯⎡⎤-⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦-⎣⎦T G P(18)法方程组为1231511193113636193315x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦(19)解得x 1= -1.5917 x 2= 0.5899 x 3=0.7572。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘法求解超定方程组
最小二乘法是一种常用的数学方法,用于求解超定方程组。

在实际
问题中,我们经常会遇到方程个数大于未知数个数的情况,这时候就
需要使用最小二乘法来找到一个最优解。

最小二乘法的基本思想是,通过最小化误差的平方和来确定未知数
的值。

假设我们有一个超定方程组Ax=b,其中A是一个m×n的矩阵,m>n,x是一个n维向量,b是一个m维向量。

我们的目标是找到一个x,使得Ax尽可能接近b。

首先,我们可以将方程组写成矩阵形式:A^T Ax = A^T b,其中
A^T表示A的转置。

这个方程被称为正规方程。

我们可以通过求解正
规方程来得到最小二乘解。

为了求解正规方程,我们需要计算A^T A和A^T b的乘积。

首先计算A^T A,它是一个n×n的对称矩阵。

然后计算A^T b,它是一个n维向量。

最后,我们可以通过求解线性方程组(A^T A)x = A^T b来得到最小二乘解x。

然而,直接求解正规方程可能会遇到一些问题。

当A^T A的条件数很大时,求解过程可能会变得不稳定。

此外,当A的列向量之间存在
线性相关性时,A^T A可能不可逆,导致无法求解。

为了解决这些问题,我们可以使用奇异值分解(SVD)来求解最小
二乘问题。

SVD将矩阵A分解为UΣV^T的形式,其中U和V是正交
矩阵,Σ是一个对角矩阵。

通过SVD,我们可以得到A的伪逆A^+,
它是VΣ^+U^T的形式,其中Σ^+是Σ的逆矩阵。

利用A^+,我们可以得到最小二乘解x = A^+ b。

这个解是使得Ax
尽可能接近b的解。

通过SVD,我们可以避免求解不可逆的正规方程,同时也可以提高求解的稳定性。

最小二乘法在实际问题中有广泛的应用。

例如,在数据拟合问题中,我们可以使用最小二乘法来拟合一个函数曲线,使得拟合曲线与实际
数据之间的误差最小。

在信号处理中,最小二乘法可以用于滤波和降噪。

在机器学习中,最小二乘法可以用于线性回归和参数估计。

总之,最小二乘法是一种重要的数学方法,用于求解超定方程组。

通过最小化误差的平方和,我们可以找到一个最优解。

通过奇异值分解,我们可以提高求解的稳定性和可靠性。

最小二乘法在实际问题中
有广泛的应用,是数学建模和数据分析中不可或缺的工具之一。

相关文档
最新文档