高三数学压轴题训练——解三角形问题的两类题型
高考数学压轴专题2020-2021备战高考《三角函数与解三角形》技巧及练习题附答案

【高中数学】数学《三角函数与解三角形》复习资料一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,0AB BC ⋅>,2a =,则b c +的取值范围是( ) A .31,2⎛⎫ ⎪⎝⎭B.322⎛⎫ ⎪ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .31,2⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】利用余弦定理222cos 2b c a A bc+-=,可得3A π=,由|||cos()|0AB BC AB BC B π⋅=⋅->,可得B为钝角,由正弦定理可得sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解【详解】由余弦定理有:222cos 2b c a A bc+-=,又222b c a bc +-=故2221cos 222b c a bc A bc bc +-===又A 为三角形的内角,故3A π=又2a=sin sin sin(120)ob c c B C B ==- 又|||cos()|0AB BC AB BC B π⋅=⋅-> 故cos 0B B <∴为钝角3sin sin(120)sin 30)2o o b c B B B B B ∴+=+-=+=+(90,120)o o B ∈,可得130(120150)sin(30)(2o o o o B B +∈∴+∈,330))2o b c B ∴+=+∈ 故选:B 【点睛】本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题3.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是()A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞⎪⎝⎭C .[]1,1,22⎛⎫-∞ ⎪⎝⎭D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦【答案】C 【解析】 【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围. 【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2],因为a +2-2a =2-a >0,所以a +2>2a , 所以此时函数g (x )的值域为(2a ,+∞), 由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2], 当a ≥23时,-a +2≤2a ,由题得21,1222a a a a -+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C . 【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.在△ABC 中,7b =,5c =,3B π∠=,则a 的值为 A .3 B .4C .7D .8【答案】D 【解析】 【分析】根据题中所给的条件两边一角,由余弦定理可得2222cos b a c ac B =+-,代入计算即可得到所求的值.因为7,5,3b c B π==∠=,由余弦定理可得2222cos b a c ac B =+-,即214925252a a =+-⨯⨯,整理得25240a a --=, 解得8a =或5a =-(舍去),故选D. 【点睛】该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,解三角形所用的就是正弦定理和余弦定理,结合题中的条件,选择适当的方法求得结果.5.将函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象向右平移6π个单位长度后,所得图象关于y 轴对称,且1π2f ω⎛⎫=- ⎪⎝⎭,则当ω取最小值时,函数()f x 的解析式为( )A .()sin 26f x x π⎛⎫=+⎪⎝⎭B .()sin 2π6f x x ⎛⎫=- ⎪⎝⎭C .()sin 4π6f x x ⎛⎫=+ ⎪⎝⎭D .()sin 4π6f x x ⎛⎫=- ⎪⎝⎭【答案】C 【解析】 【分析】由题意利用函数()sin y A x ωφ=+的图象变换规律,可得所得函数的解析式,由12f πω⎛⎫=- ⎪⎝⎭,求出φ,再根据所得图象关于y 轴对称求出ω,可得()f x 的解析式.【详解】解:将函数()()sin (0,)2f x x πωφωφ=+><的图象向右平移6π个单位长度后,可得sin 6y x ωπωφ⎛⎫=-+ ⎪⎝⎭的图象;∵所得图象关于y 轴对称,∴62k ωππφπ-+=+,k Z ∈.∵()1sin sin 2f ππφφω⎛⎫=-=+=- ⎪⎝⎭,即1sin 2φ=,26ππφφ<=,. ∴63k ωπππ-=+,620k ω=-->, 则当ω取最小值时,取1k =-,可得4ω=, ∴函数()f x 的解析式为()sin 46f x x π⎛⎫=+⎪⎝⎭.【点睛】本题主要考查函数()sin y A x ωφ=+的图象变换规律,正弦函数的性质,属于中档题.6.已知函数()()sin 3cos 0x f x x ωωω=->,若集合()(){}0,1x f x π∈=-含有4个元素,则实数ω的取值范围是( )A .35,22⎡⎫⎪⎢⎣⎭B .35,22⎛⎤ ⎥⎝⎦C .725,26⎡⎫⎪⎢⎣⎭D .725,26⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】化简f (x )的解析式,作出f (x )的函数图象,利用三角函数的性质求出直线y=﹣1与y=f (x )在(0,+∞)上的交点坐标,则π介于第4和第5个交点横坐标之间. 【详解】 f (x )=2sin (ωx ﹣3π), 作出f (x )的函数图象如图所示:令2sin (ωx ﹣3π)=﹣1得ωx ﹣3π=﹣6π+2kπ,或ωx ﹣3π=76π+2kπ, ∴x=6πω+2k πω,或x=32πω+2k πω,k ∈Z , 设直线y=﹣1与y=f (x )在(0,+∞)上从左到右的第4个交点为A ,第5个交点为B , 则x A =322ππωω+,x B =46ππωω+, ∵方程f (x )=﹣1在(0,π)上有且只有四个实数根, ∴x A <π≤x B ,即322ππωω+<π≤46ππωω+,解得72526ω≤<. 故选B . 【点睛】本题考查了三角函数的恒等变换,三角函数的图象与性质,属于中档题.7.在ABC ∆中,060,10,A BC D ∠==是边AB 上的一点,2,CD CBD =∆的面积为1,则BD 的长为( )A .32B .4C .2D .1【答案】C 【解析】 11210sin 1sin 25BCD BCD ⨯⨯⨯∠=∴∠= 22222102210425BD BD ∴=+-⨯⨯⨯=∴=,选C8.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =( )A .3155AB AC + B .2155AB AC + C .481515AB AC + D .841515AB AC + 【答案】D 【解析】 【分析】设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得cos DAE ∠,由此得到45AF AD =,进而利用平面向量加法和减法的线性运算,将45AF AD =表示为以,AB AC 为基底来表示的形式. 【详解】设6BC =,则2AB AC BD DE EC =====,AD AE ===,101044cos 2105DAE +-∠==⨯, 所以45AF AF AD AE ==,所以45AF AD =. 因为()1133AD AB BC AB AC AB =+=+-2133AB AC =+, 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭. 故选:D 【点睛】本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.9.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则ab=( )A .B .2CD .1【答案】B 【解析】 【分析】由正弦定理及题设可知,sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,又A B C π++=,可得sin 2sin A B =,再由正弦定理,可得解【详解】由正弦定理:2sin sin b cR B C==,又cos cos 2b C c B b += 得到sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=在ABC ∆中,A B C π++=故sin()2sin A B π-=,即sin 2sin A B =故sin 2sin a A b B == 故选:B 【点睛】本题考查了正弦定理在边角互化中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题10.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( )A .12B .14C.4D.2【答案】A 【解析】 【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x +sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 2111cos 22223x x π⎛⎛⎫-=-+ ⎪ ⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.11.已知1tan 4,tan θθ+=则2sin ()4πθ+=( )A .15 B .14C .12D .34【答案】D 【解析】 【分析】根据同角三角函数的关系化简1tan 4tan θθ+=成关于正余弦的关系式,再利用降幂公式与诱导公式化简2sin ()4πθ+求解即可.【详解】由题, 1tan 4,tan θθ+=则22sin cos sin cos 444sin cos 1cos sin sin cos θθθθθθθθθθ++=⇒=⇒=,故1sin 22θ=. 所以2sin ()4πθ+=1cos 222πθ⎛⎫-+ ⎪⎝⎭1sin 2324θ+==. 故选:D 【点睛】本题主要考查了三角函数的公式运用,在有正切函数时可考虑转化为正余弦的关系进行化简,属于基础题.12.已知π1cos 25α⎛⎫-= ⎪⎝⎭,则cos2α=( )A .725B .725-C .2325D .2325-【答案】C 【解析】 【分析】由已知根据三角函数的诱导公式,求得sin α,再由余弦二倍角,即可求解. 【详解】 由π1cos α25⎛⎫-=⎪⎝⎭,得1sin α5=,又由2123cos2α12sin α122525=-=-⨯=. 故选C . 【点睛】本题主要考查了本题考查三角函数的化简求值,其中解答中熟记三角函数的诱导公式及余弦二倍角公式的应用是解答的关键,着重考查了推理与计算能力,属于基础题.13.已知2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,则tan 14πα⎛⎫-= ⎪⎝⎭( )A .53-B .35C .35D .53【答案】B 【解析】 【分析】根据诱导公式计算得到35tan 73πα⎛⎫+= ⎪⎝⎭,故3tan tan 1472πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,解得答案. 【详解】由诱导公式可知24333sin 3sin 33sin 777πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 又2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+⎪ ⎪⎝⎭⎝⎭得333sin 5cos 77ππαα⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭, 所以35tan 73πα⎛⎫+= ⎪⎝⎭,313tan tan 314725tan 7πππααπα⎡⎤⎛⎫⎛⎫-=+-=-=- ⎪⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪⎝⎭. 故选:B . 【点睛】本题考查了三角恒等变换,意在考查学生的计算能力和转化能力.14.函数()22sin 3cos 2f x x x =+-,2,36x ππ⎡⎤∈-⎢⎥⎣⎦的值域为( ) A .40,3⎡⎤⎢⎥⎣⎦B .41,3⎡⎤⎢⎥⎣⎦C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】化简得到()23sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】根据22sin cos 1x x +=,得()23sin 2sin 1f x x x =-++,2,36x ππ⎡⎤∈-⎢⎥⎣⎦, 令sin t x =,由2,36x ππ⎡⎤∈-⎢⎥⎣⎦,得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦, 故[]0,1t ∈,有2321y t t =-++,[]0,1t ∈,二次函数对称轴为13t =, 当13t =时,最大值43y =;当1t =时,最小值0y =, 综上,函数()f x 的值域为40,3⎡⎤⎢⎥⎣⎦. 故选:A . 【点睛】本题考查了三角函数值域,换元可以简化运算,是解题的关键.15.已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若121cos 4F MF ∠=,122MF MF =,则此双曲线渐近线方程为( )A.y =B.3y x =± C .y x =± D .2y x =±【答案】A【解析】【分析】 因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案.【详解】双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点 ∴ 121222MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:∴ 12121222122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅可得:2221(2)(4)(2)2424c a a a a =+-⋅⋅⋅化简可得:2c a =由双曲线性质可得:22222243b c a a a a =-=-=可得:b =双曲线渐近线方程为:b y x a=± 则双曲线渐近线方程为: y =故选:A.【点睛】本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.16.函数2()sin cos 2cos f x a x a x x =+-的图象关于直线4πx =-对称,则()f x 的最大值为( )A .2BC.D或【答案】D【解析】【分析】根据函数2()sin cos 2cos f x a x a x x =+-的图象关于直线4πx =-对称,则有()(0)2f f π-=,解得a ,得到函数再求最值. 【详解】因为函数2()sin cos 2cos f x a x a x x =+-的图象关于直线4πx =-对称, 所以()(0)2f f π-=, 即220a a +-=,解得2a =-或1a =,当2a =-时,()sin 2cos 2cos 44f x x x x x π⎛⎫=--=- ⎪⎝⎭,此时()f x 的最大值为;当1a =时,()sin cos 2cos 4f x x x x x π⎛⎫=+-=- ⎪⎝⎭,此时()f x ;综上()f x 或.故选:D【点睛】本题主要考查三角函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.17.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项.【详解】充分性:由余弦定理,2222cos c a b ab C =+-,所以2ab c >,即222cos ab a b ab C >+-, 整理得,2212cos a b C ab++>,由基本不等式,222a b ab ab+≥=, 当且仅当a b =时等号成立,此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证; 必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯, 故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立; 故p 是q 的充分不必要条件.故选:A【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.18.若θ是第二象限角,则下列选项中能确定为正值的是( ) A .sinB .cosC .tanD .cos2θ【答案】C【解析】【分析】直接利用三角函数象限角的三角函数的符号判断即可.【详解】由θ是第二象限角可得为第一或第三象限角,所以tan >0.故选C【点睛】本题考查三角函数值的符号的判断,是基础题.19.化简21sin 352sin 20︒︒-=( )A .12B .12-C .1-D .1【答案】B【解析】【分析】利用降次公式和诱导公式化简所求表达式,由此求得正确结论.【详解】依题意,原式1cos7011cos701sin 20122sin 202sin 202sin 202--==-⨯=-⨯=-,故选B. 【点睛】本小题主要考查三角函数降次公式,考查三角函数诱导公式,属于基础题.20.关于函数()()()sin tan cos tan f x x x =-有下述四个结论:①()f x 是奇函数;②()f x 在区间0,4π⎛⎫ ⎪⎝⎭单调递增; ③π是()f x 的周期;④()f x 的最大值为2.其中所有正确结论的个数是( )A .4B .3C .2D .1【答案】C【解析】【分析】计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案.【详解】 ()()()sin tan cos tan f x x x =-,()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,所以()f x 为非奇非偶函数,①错误; 当0,4x π⎛⎫∈ ⎪⎝⎭时,令tan t x =,()0,1t ∈, 又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛⎫∈ ⎪⎝⎭时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,4π⎛⎫ ⎪⎝⎭单调递增,所以②正确; ()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=, 所以π是()f x 的周期,所以③正确;假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k ππ=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于2,所以④错误.故选:C.【点睛】本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.。
高考数学(理)总复习:解三角形(解析版)

高考数学(理)总复习:解三角形题型一 利用正、余弦定理解三角形 【题型要点解析】关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【例1】△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2,(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π,sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B )=36-2×172×⎪⎭⎫ ⎝⎛+17151 =4.所以b =2.题组训练一 利用正、余弦定理解三角形1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为( )A.3B.322 C .2 2D .2 3【解析】 ∵在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3①,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴(b +c )2=a 2+2bc (1+cos A )=4+6×⎪⎭⎫⎝⎛+311=12, ∴b +c =23②.由①②得b =c =3,故选A. 【答案】 A2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.【解析】 ∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B . 由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35. 【答案】 353.已知△ABC 是斜三角形,内角A ,B ,C 所对的边的长分别为a ,b ,c .若c sin A =3a cos C .(1)求角C ;(2)若c =21,且sin C +sin(B -A )=5sin 2A ,求△ABC 的面积.【解析】 (1)根据a sin A =c sin C,可得c sin A =a sin C , 又∵c sin A =3a cos C ,∴a sin C =3a cos C , ∴sin C =3cos C ,∴tan C =sin Ccos C =3,∵C ∈(0,π),∴C =π3.(2)∵sin C +sin(B -A )=5sin 2A ,sin C =sin (A +B ), ∴sin (A +B )+sin (B -A )=5sin 2A , ∴2sin B cos A =2×5sin A cos A . ∵△ABC 为斜三角形, ∴cos A ≠0,∴sin B =5sin A . 由正弦定理可知b =5a ,① ∵c 2=a 2+b 2-2ab cos C ,∴21=a 2+b 2-2ab ×12=a 2+b 2-ab ,②由①②解得a =1,b =5,∴S △ABC =12ab sin C =12×1×5×32=534.题型二 正、余弦定理的实际应用 【题型要点解析】应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【例2】某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE .为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值.【解析】 (1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中, BE =BD 2+DE 2=335(km). 故道路BE 的长度为335km.(2)设∠ABE =α,∵∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE =335sinπ3=65,∴AB =65sin ⎪⎭⎫⎝⎛-απ32,AE =65sin α.∴S △ABE =12AB ·AE sin π3=9325sin ⎪⎭⎫⎝⎛-απ32·sin α =9325⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-4162sin 21πα≤9325⎪⎭⎫ ⎝⎛+4121 =273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE面积的最大值为273100km 2题组训练二 正、余弦定理的实际应用1.如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.【解析】设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2×3h ×h 3×⎪⎭⎫⎝⎛-21,解得h =1039,故塔的高度为1039 m.【答案】 10392.如图,在第一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值;(2)求P 到海防警戒线AC 的距离. 【解析】 (1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20, cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .∵cos ∠P AB =cos ∠P AC , ∴3x +325x =25x,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米. 题型三 三角函数与解三角形问题 【题型要点】解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【例3】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sin A -sin C b =sin A -sin Ba +c .(Ⅰ)求C ;(Ⅱ)若cos A =17,求cos(2A -C )的值.【解析】 (Ⅰ)由sin A -sin C b =sin A -sin B a +c 及正弦定理得a -c b =a -ba +c ,∴a 2-c 2=ab -b 2,整理得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又0<C <π,所以C =π3.(Ⅱ)由cos A =17知A 为锐角,又sin 2A +cos 2A =1,所以sin A =1-cos 2A =437,故cos2A=2cos 2A -1=-4749,sin2A =2sin A cos A =2×437×17=8349,所以cos(2A -C )=cos ⎪⎭⎫ ⎝⎛-32πA =cos2A cos π3+sin2A sin π3=-4749×12+8349×32=-2398.题组训练三 三角函数与解三角形问题已知函数f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边为a ,b ,c ,已知f (A )=32,a =2,B =π3,求△ABC 的面积.【解析】 (1)f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x =sin 2x cos π6+cos 2x sin π6+cos 2x=32sin 2x +32cos 2x =3⎪⎪⎭⎫ ⎝⎛+x x 2cos 232sin 21 =3sin ⎪⎭⎫⎝⎛+32πx . 令-π2+2k π≤2x +π3≤π2+2k π⇒-5π12+k π≤x +π3≤π12+k π,k ∈Z .f (x )的单调递增区间为:⎥⎦⎤⎢⎣⎡++-ππππk k 12,125,k ∈Z .(2)由f (A )=32,sin ⎪⎭⎫ ⎝⎛+32πA =12, 又0<A <2π3,π3<2A +π3<5π3,因为2A +π3=5π6,解得:A =π4.由正弦定理a sin A =bsin B ,得b =6,又由A =π4,B =π3可得:sin C =6+24.故S △ABC =12ab sin C =3+32.题型四 转化与化归思想在解三角形中的应用 【题型要点】利用正弦、余弦定理解三角形的模型示意图如下:【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积. 【解析】 (1)证明:a cos 2C 2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b ,即a (1+cos C )+c (1+cos A )=3b . ①由正弦定理得:sin A +sin A cos C +sin C +cos A sin C =3sin B , ② 即sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C =2sinB.由正弦定理得,a +c =2b , ③ 故a ,b ,c 成等差数列.(2)由∠B =60°,b =4及余弦定理得: 42=a 2+c 2-2ac cos 60°,∴(a +c )2-3ac =16, 又由(1)知a +c =2b ,代入上式得4b 2-3ac =16. 又b =4,所以ac =16, ④∴△ABC 的面积S =12ac sin B =12ac sin 60°=4 3.题组训练四 转化与化归思想在解三角形中的应用 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.【解析】 (1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =7+1-427=277. (2)设∠BAC =α,则α=∠BAD -∠CAD . 因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =217,sin ∠BAD =1-cos 2∠BAD =32114. 于是sin ∠BAC =sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD ·sin ∠CAD =32114×277-⎪⎪⎭⎫ ⎝⎛-1417×217=32. 在△ABC 中,由正弦定理得,BC =AC ·sin ∠BACsin ∠CBA=7×32216=3. 【专题训练】 一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b 2=a 2+bc ,A =π6,则内角C 等于( )A.π6 B.π4 C.3π4D.π4或3π4【解析】 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,即a 2-b 2=c 2-2bc cos A ,由已知,得a 2-b 2=-bc ,则c 2-2bc cos π6=-bc ,即c =(3-1)b ,由正弦定理,得sin C=(3-1)sin B =(3-1)sin ⎪⎭⎫⎝⎛-C 65π, 化简,得sin C -cos C =0,解得C =π4,故选B.【答案】 B2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4 D .2【解析】 法一 由余弦定理可得(22)2=22+a 2-2×2×a cos π4,即a 2-22a -4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.【答案】 A3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43C .-43D .-34【解析】 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.【答案】 C4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223B.24 C.64D.63【解析】 依题意得:BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中, BC sin ∠BDC =BD sin C ,则4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64,选C.【答案】 C5.如图所示,为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+303) mB .(30+153) mC .(15+303) mD .(15+153) m【解析】 设建筑物高度为h ,则h tan 30°-h tan 45°=60,即(3-1)h =60,所以建筑物的高度为h =(30+303)m.【答案】 A6.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则三角形ABC 中最小角的正弦值等于( )A.45B.34C.35D.74【解析】 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0.∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴三角形ABC 中最小角为角A , ∴cos A =b 2+c 2-a22bc =169a 2+259a 2-a 22×43×53a 2=45,∴sin A =35,故选C. 【答案】 C 二、填空题7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________.【解析】 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sinC =32,由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34. 【答案】348.已知△ABC 中,AB =1,sin A +sin B =2sin C ,S △ABC =316sin C ,则cos C =________. 【解析】 ∵sin A +sin B =2sin C ,由正弦定理可得a +b =2c .∵S △ABC =316sin C ,∴12ab sin C =316sin C ,sin C ≠0,化为ab =38.由余弦定理可得c 2=a 2+b 2-2ab cos C =(a +b )2-2ab-2ab cos C ,∴1=(2)2-2×38(1+cos C ),解得cos C =13.【答案】139.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________.【解析】 由正弦定理得(2+b )(a -b )=(c -b )c , 即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3. 【答案】310.如图,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是________.【解析】 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DCsin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎪⎪⎭⎫ ⎝⎛+θθcos 23sin 23=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.【答案】 (6,43] 三、解答题11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. (1)求b 和sin A 的值;(2)求sin ⎪⎭⎫⎝⎛+42πA 的值. 【解析】 (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎪⎭⎫⎝⎛+42πA =sin 2A cos π4+cos 2A sin π4=7226. 12.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.【解析】(1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD=7×27732=433.。
最新高考专题 解三角形(选填压轴题)(解析版)(全国通用版)

专题14 解三角形(选填压轴题)一、单选题1.(2021·吉林四平·高三月考(理))在ABC ∆中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( )A .6B .C .12D .【答案】C【详解】如图,设设AC x =,BAC θ∠=,则由正弦定理可得sin sin BD AB BAD ADB =∠∠①,sin sin CD AC CAD ADC=∠∠②,又ADB ADC π∠+∠=,所以sin sin ADB ADC ∠=∠,①②式联立可得21AB AC =,则2AB x =,则211sin 2sin sin 22ABC S AB AC BAC x x x θθ=⋅⋅∠=⋅⋅=⋅△, 对ABC ,由余弦定理可得22222536cos 24AB AC BC x BAC AB AC x +--∠==⋅, 则()22422242424425362536036sin 1cos 1416x x x S x x x x x θθ⎛⎫⎛⎫--+ ⎪=⋅=⋅-=⋅-=- ⎪ ⎪⎝⎭⎝⎭ ()()()242242219993603640+14420256161616x x x x x ⎡⎤=--+=--=---⎢⎥⎣⎦, 当220x =时,2S 有最大值,()2max 925614416S =⨯=,所以max 12S =, 故选:C 2.(2021·全国高三专题练习)如图,已知点P 为边长等于4的正方形所在平面外的动点,2PA =,PA 与平面ABCD 所成角等于45,则BPD ∠的大小可能是( )A .6πB .3πC .2πD .56π 【答案】C【详解】 过点P 作PO ⊥平面ABCD ,连接OA 、OB 、OD ,则直线PA 与平面ABCD 所成的角为45PAO ∠=,则sin PO PA PAO =∠PA ⊥平面ABCD ,OA 、OB 、OD ⊂平面ABCD ,PA OA ∴⊥,PA OB ⊥,PA OD ⊥,设OAB θ∠=,则2OAD πθ∠=-,在OAB中,由余弦定理得2222cos 18OB OA AB OA AB θθ=+-⋅=-,同理可得218OD θ=-,由勾股定理可得22220PB PO OB θ=+=-,同理可得220PD θ=-,在PBD △中,2228sin cos cos 2PB PD BDBPD PB PD θθ-++-∠==⋅=1sin cos θθ+ ()[]12sin cos 12sin 1,34πθθθ⎛⎫-+=-+∈- ⎪⎝⎭.①当)1sin cos 0θθ+=时,cos 0BPD ∠=;②当)(]1sin cos 0,3θθ+∈时,令)1sin cos s θθ=+,则sin cos θθ+=cos BPD ∠==, 函数()21362f s s s =++在(]0,3s ∈上单调递减,此时30cos 7BPD <∠≤; ③当)(]1sin cos 1,0θθ+∈-,令)1sin cos s θθ=+,则sin cos θθ+=cos BPD ∠=== 令(]1,1t s =∈-∞-,则2213621362t t s s++=++, 二次函数()21362g t t t =++在(],1t ∈-∞-时单调递减,则213629t t ++≥,此时,1cos 03BPD -≤∠<. 综上所述,cos BPD ∠的取值范围是13,37⎡⎤-⎢⎥⎣⎦. 因此,BPD ∠的可能取值为2π. 故选:C. 3.(2021·全国高三专题练习)已知ABC ∆的三边分别为,,a b c ,若满足22228a b c ++=,则ABC ∆面积的最大值为( )ABCD 【答案】B【详解】因为a 2+b 2+2c 2=8,所以22282a b c +=-,由余弦定理得222283cos 22a b c c C ab ab+--==, 即22cos 83ab C c =-①由正弦定理得in 12s S ab C =,即2sin 4ab C S =②由①,②平方相加得()()()()()222222222483482ab c S a b c =-+≤+=-, 所以()()()()2222222222116556448283165525c c S c c c c ⎛⎫-+≤---=-≤= ⎪⎝⎭, 即245S ≤,所以S ≤, 当且仅当22a b =且221655c c -=即222128,55a b c ===时,取等号. 故选:B4.(2021·全国高三专题练习)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,其中B 为钝角,且满足2b =,sin cos 2b A b A =,若点D 与点B 在AC 的两侧,且A ,B ,C ,D 四点共圆,则四边形ABCD 面积的最大值为( )A.32B.CD.【答案】C【详解】由sin cos 2b A b A =,得2(1cos 2)sin 2sin sin b A A b A A -=⋅∴=,,由正弦定理得222sin sin B A A =(0,)A π∈sin B ∴=又B 为钝角,23B π∴=,又,,,A B C D 四点共圆 3D π∴=,在ACD △中,由余弦定理得:222222cos 2AC AD DC AD DC DAD DC AD DCAD DC AD DCAD DC =+-⋅=+-⋅≥⋅-⋅=⋅即2AD DC AC ⋅≤,当且仅当AD DC =时,等号成立.同理,在ABC ∆中,23AC AB BC ≥⋅,即213AB BC AC ⋅≤,211sin sin 223ADC S AD DC D AC π∴=⋅≤2112sin sin 263ABCS AB BC B AC π=⋅≤=, ∴四边形ABCD故选:C .5.(2021·全国高三专题练习(文))已知在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且6a =,点O 为其外接圆的圆心.已知·15BO AC =,则当角C 取到最大值时ABC ∆的面积为A.B.CD.【答案】A【详解】 设AC 中点为D ,则()BO AC BD DO AC ⋅=+⋅ BD AC =⋅ ()()12BC BA BC BA =+⋅- 221122BC BA =-,22111522a c ∴-=,即c = 由c a <知角C 为锐角,故222cos 2a b c C ab +-= 2301301212b b b b +⎛⎫==+ ⎪⎝⎭1212b ⨯=,当且仅当30b b =,即b =cos C 最小,又cos y x =在0,2π⎛⎫ ⎪⎝⎭递减,故C 最大.此时,恰有222a b c=+,即ABC 为直角三角形,ABC 12S bc ==,故选A . 6.(2020·全国高三专题练习)锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2224a b c +=,则cos C的取值范围为( )A .12⎡⎢⎣⎭ B .34⎡⎢⎣⎭C .12⎡⎢⎣⎭ D .34⎡⎢⎣⎭【答案】D【详解】由题意,因为2224a b c +=,所以()22222222233234cos 22884a b a b a b a b c ab C ab ab ab ab ++-++-⋅===≥=, 又由222222222222444a b a b a b b a a b a b ⎧++>⎪⎪+⎪+>⎨⎪⎪++>⎪⎩,得223553b a <<b a <<所以()222222222334cos 2288a b a b a b a b c a b C ab ab ab b a ++-++-⎛⎫====+ ⎪⎝⎭,令b x a =,则x ∈⎝⎭, 所以函数()318f x x x ⎛⎫=+ ⎪⎝⎭在⎫⎪⎪⎝⎭单调递减,在⎛ ⎝⎭单调递增,又f f ==⎝⎭⎝⎭()314f =,所以3cos 4C ⎡∈⎢⎣⎭. 故选:D.7.(2020·全国高三专题练习)在ABC ∆中,22AB AC ==,,P Q 为线段BC 上的点,且BP PQ QC ==.若59AP AQ ⋅=,则BAC ∠=( ) A .150B .120 C .60 D .30【答案】B【详解】 不妨设||||||,3BP PQ QC x BC x ===∴=()()AP AQ AB BP AC CQ AB AC BP AC AB CQ BP CQ∴⋅=+⋅+=⋅+⋅+⋅+⋅ 22252cos 395cos 18AB AC BP AC AB BP BP BPAB AC BP BC BP BPABC x x ABC x =⋅+⋅-⋅-⋅=⋅+⋅-⋅=∠+-=∴∠=-+ 由余弦定理:2419cos 4x ABC +-∠=联立得到:x =1cos 1202o ABC ABC ∴∠=-∴∠= 故选:B8.(2020·全国高三专题练习)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,若222sin()S A C b c +=-,则1tan 2tan()C B C +-的最小值为( ) AB .2C .1 D.【答案】A【详解】 因为222sin()S A C b c +=-,即222sin S B b c =-, 所以22sin sin ac B B b c =-,因为sin 0B ≠, 所以22b c ac =+,由余弦定理2222cos b a c ac B =+-,可得2cos a c B c -=,再由正弦定理得sin 2sin cos sin A C B C -=,因为sin 2sin cos sin()2sin cos sin()A C B B C C B B C -=+-=-, 所以sin()sin B C C -=,所以B C C -=或B C C π-+=,得2B C =或B π=(舍去).因为ABC ∆是锐角三角形, 所以02022032C C C ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,得64C ππ<<,即tan C ∈,所以11tan tan 2tan()2tan C C B C C+=+≥-当且仅当tan C =,取等号. 故选:A9.(2020·浙江高三专题练习)边长为2的等边ABC ∆和有一内角为30的直角1ABC ∆所在半平面构成60︒的二面角,则下列不可能是线段1CC 的取值的是( )ABCD【答案】D【详解】(1) 当1130,90C AB C BA ∠=∠=时,空间位置关系如下图所示:过C 作CE AB ∥,且EB AB ⊥则1C BE ∠即为二面角1C AB C --的平面角所以160C BE ∠=由题意可知1C B AB ==BE ==在1C BE ∆中,由余弦定理可知22211112cos C E C B BE C B BE C BE =+-⨯∠代入可得2147326033C E =+-= 而190C EC ∠=所以1C C ===(2)当1130,90AC B C BA ∠=∠=时,空间位置关系如下图所示:过C 作CF AB ∥,且FB AB ⊥则1C BF ∠即为二面角1C AB C --的平面角所以160C BF ∠=由题意可知1C B =,BF ==在1C BF ∆中,由余弦定理可知22211112cos C F C B BF C B BF C BF =+-⨯∠代入可得2112329C F =+-⨯=而190C FC ∠=所以1C C =(3) 当1130,90C AB AC B ∠=∠=时,空间位置关系如下图所示:过1C 作1C G AB ⊥交AB 于G .过C 作CH AB ∥,且GH AB ⊥则1C GH ∠即为二面角1C AB C --的平面角所以160C GH ∠= 由题意可知111,2C B AB ==11C G B ==,GH BC ==1142CH AB == 在1C GH ∆中,由余弦定理可知22211112cos C H C G GH C G GH C GH =+-⨯∠代入可得2139326044C H =+-=所以1C C== 综上可知, 线段1CC在四个选项中,故选:D 10.(2020·全国高三专题练习)在ABC ∆中,角A ,B ,C 所对应的边分别为,,a b c ,若4ac =,sin 2sin cos 0B C A+=,则ABC ∆面积的最大值为A .1B C .2 D .4【答案】A【详解】由正弦定理得:2cos 0b c A += 由余弦定理得:222202b c a b c bc +-+⋅=,即2222b a c=- 22222222232cos 224a c a c a c b a c B ac ac ac-+-+-+===≥=当且仅当2c =,2b =2a =0,6B π⎛⎤∴∈ ⎥⎝⎦,1sin 2B ∴≤ 则111sin 41222ABC S ac B ∆=≤⨯⨯=,所以ABC ∆面积的最大值1. 故选A . 11.(2020·全国高三专题练习)在ABC ∆中,30B =,3BC =,AB =点D 在边BC 上,点,B C 关于直线AD 的对称点分别为,B C '',则BB C ''∆的面积的最大值为ABCD【答案】D【详解】由余弦定理可得AC 2=AB 2+BC 2﹣2AB •BC •cos B =12+9﹣2×3=3, ∴AC =AC 2+BC 2=AB 2,∴AC ⊥BC ,以C 为原点,以CB ,CA 为坐标轴建立平面直角坐标系,如图所示: 设直线AD 的方程为y =kx当D 与线段AB 的端点重合时,B ,B ',C '在同一条直线上,不符合题意, ∴则k <,设B ′(m ,n ),显然n <0,则32213n m k n m k +⎧=⋅⎪⎪⎨⎪=-⎪-⎩,解得n = ∵CC ′∥BB ′,∴S △BB ′C ′=S △BB ′C 11322BC n =⋅⋅=⨯= 令f (k)=(k <),则f ′(k)()222333(1)k k +-=+, 令f ′(k )=0可得k =k = ∴当k <时,f ′(k )>0,当k <时,f ′(k )<0, ∴当k =f (k )取得最大值f(=. 故选D .12.(2020·岳麓·湖南师大附中高三三模(理))设a ,b ,c 分别是ABC 的内角A ,B ,C 的对边,已知()()()()sin sin sin b c A C a c A C ++=+-,设D 是BC 边的中点,且ABC ()AB DA DB ⋅+等于( )A .2B .4C .4-D .2-【答案】A 【详解】∵()()()()sin sin sin b c A C a c A C ++=+-,,∴由正弦定理可得:()()b a c b c a c +=+-(),整理可得:b 2+c 2﹣a 2=-bc ,∴由余弦定理可得:cosA=12-,∴由A ∈(0,π),可得:A=23π,又ABC 即1223bcsinπ∴bc=4,又()()()••AB DA DB DB DA DA DB +=-+=2DB -2DA =24CB -()24AB AC+=()24AB AC --()24AB AC +=4?4AB AC-=•AB AC -=-bccosA=2. 故选A. 二、填空题13.(2021·上海市大同中学高二月考)如图,在棱长为1的正方体1111ABCD A B C D -中,若点P 是棱上一点,则满足1PA PC +=P 有__________个.【答案】18 【详解】若P 在棱AD ,连接1DC ,则在直角三角形1ADC 中,有1cos DAC ∠=在1APC 中,由余弦定理有 22132PC AP AP =+-故22132PC AP AP =+-,结合12PA PC +=)523513636AP =<<,故棱AD 上仅存在一点,满足1PA PC +=若P 在棱1DD =27181804DP DP -+=,故1836DP ±=181********++⨯<=,180136-<<,故棱1DD 上仅存在两个不同的点满足1PA PC +=根据正方体的对称性,可得正方体的棱上共存在18个点满足1PA PC +=故答案为:18.14.(2021·深圳市龙岗区布吉中学高一期中)已知ABC ∆的内角,,A B C 的对边分别为,,a b c .角B 为钝角.设ABC ∆的面积为S ,若()2224bS a b c a =+-,则sin sin A C +的最大值是____________.【答案】98【详解】 由题设,1sin 2S ac B =,则2222sin ()b c ab a c B a +=-, ∴222sin cos sin()22B A A bc b c a π-=+==-,又 B 为钝角即A 为锐角,∴2B A ππ+-=,即2B A π=+,又()C A B π=-+,∴cos cos()sin 2B A A π=+=-且sin sin()cos 2B A A π=+=, 而22sin sin sin sin()sin (1cos )cos sin sin cos cos A C A A B A B A B B B B+=++=++=--22191cos 2cos 2(cos )48B B B =--=-++,∴当1cos 4B =-时,sin sin A C +的最大值为98.故答案为:9815.(2021·湖北高二期末)法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =,以,,AB BC AC 为边向外作三个等边三角形,其外接圆圆心依次为123,,O O O ,若三角形123O O O ABC 的周长最小值为___________ 【答案】6 【详解】如图,令△ABC 角A ,B ,C 所对边长分别为a ,b ,c ,,,ABC CAB BCA '都是正三角形,123,,O O O 分别为其中心,△O 1AB 中,111120,30AO B O AB O BA ∠=∠=∠=,由正弦定理得111sin sin AO AB ABO AO B =∠∠,则1AO =,同理3AO =,正△123O O O 面积22131313sin 6024S O O O =⋅⋅==132O O =,而60BAC ∠=,则13120O AO ∠=,∴△13O AO 中,由余弦定理得:222131313132cos O O AO AO AO AO O AO =+-⋅⋅∠,有22142()3332b c bc =+-⋅⋅-,则2212b c bc ++=,△ABC 中,由余弦定理得2222cos a b c bc BAC =+-∠,则a ==而b c +=221223b c bc bc bc bc =++≥+=,得04bc <≤,∴a b c ++=x bc =,则()f x =(0,4]x ∈,∴()f x '(0,4]x ∈()0f x '<,∴()f x 在(0,4]是单调递减,4x =时(4)6f =,故三角形ABC 的周长最小值是6. 故答案为:616.(2021·广东高三月考)一条形“标语”挂在墙上,把“标语”看作线段AB ,射线AB 与地面交点为D ,且AB 与地面垂直,17AD =米,10BD =米,某人直立看“标语”AB ,眼睛C 距离地面1米,当ACB∠最大时,此人的脚到D 点的距离为______米. 【答案】12 【详解】由题设,可得如下示意图:7,10,1AB BD CE DF ====,且ACB ACF BCF ∠=∠-∠,∴tan tan tan tan()1tan tan ACF BCFACB ACF BCF ACF BCF∠-∠∠=∠-∠=+∠⋅∠,若设DE CF x ==米,则169tan ,tan AF BF ACF BCF CF x CF x∠==∠==, ∴277tan 1441441x ACB x x x∠==++,而0x >,∴77tan 14424ACB x x ∠==+当且仅当12x =时等号成立. ∴由题意,[0,)2ACB π∠∈最大时,有7tan 24ACB ∠=,此时人的脚到D 点的距离为12米. 故答案为:12.17.(2021·江苏高三开学考试)已知等边ABC ∆的边长为1,点D ,E ,F 分别在边AB ,BC ,AC上,且13ADFDEFABC SSS ==.若AD x =,CE y =,则yx的取值范围为________.【答案】31[,2][0,]22【详解】 由题1sin 23ABCS AB AC π=⋅⋅⋅=,又1sin 23ADFS AD AF x AF π=⋅⋅=⋅, 13ADFABC SS =,得13AF x =,则113CF x=-,又CE y =,则1BE y =-, 1BD x =-,由13ADFDEFABCSSS ==,则13BDEEFCABCSSS +=,11)(1)(1)33x y y x ---= 得11(1)(1)(1)33x y y x --+-=,222313x xy x -=-又01x ≤≤,1013x ≤≤,得11,013x y ≤≤≤≤, 则2223013x x x-≥-,得13x ≤<213x ≤≤,又2223113x xx -≤-,得221031x x -≥-, 得1132x ≤≤或213x ≤≤, 设y k x =,则22313x k x -=-,1132x ≤≤或213x ≤≤令()k g x ==22313x x --,1132x ≤≤或213x ≤≤,22222212()2()34133()11()3()33x x x x x g x x x ----+'==---22(31)(1)013()3x x x --=->- 故()g x 在112[,],[,1]323单调递增,得31()[,2][0,]22g x ∈,即31[,2][0,]22k ∈,故答案为:31[,2][0,]2218.(2021·全国高三专题练习)在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,若()()3 1cosA sinB sin A cosB -=+,6ac +=,则ABC ∆的面积的最大值为________【答案】【详解】()()3cos sin sin 1cos A B A B -=+,3sin sin sin cos cos sin sin sin B A A B A B A C =++=+,∴由正弦定理可得:36b a c =+=, ∴解得2b =.6a c +=,6a c ∴=+≥9ac ≤(当且仅当3a c ==时等号成立),2222()2416cos 22a c b a c ac acB ac ac ac +-+---∴===,可得sin B ==11csin 22S a B ac ∴==⨯≤3a c ==时等号成立). 故答案为:19.(2021·浙江高三期末)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,如果对任意的实数λ,λ-≥BA BC BC 恒成立,则c bb c+的取值范围是______【答案】⎡⎣【详解】设E 为直线BC 上任意一点,且BE BC λ=则λ-=-=BA BC BA BE EA ∴≥EA BC 恒成立 又min EA 为边BC 的高h ∴≥h a 恒成立 2111sin 222∆∴==≥ABC S ah bc A a 2sin ∴≤a bc A 由余弦定理可得:2222cos a b c bc A =+- 222cos sin ∴+-≤b c bc A bc A()222cos sinsin 2cos ϕ++∴+=≤=+=+c b b c bc A bc A A A A b c bc bc,其中tan 2ϕ=∴+c bb c 2c b b c+≥(当且仅当b c =时取等号)⎡∴+∈⎣c b b c本题正确结果:⎡⎣20.(2021·全国高三专题练习)设ABC ∆的内角A B C ,,的对边长a b c ,,成等比数列,()1cos cos 2A CB --=,延长BC 至D ,若2BD =,则ACD ∆面积的最大值为__________.【详解】()cos cos A C B -- ()()1cos cos 2A C A C =-++=, 1cos cos 4A C ∴=,① 又,,a b c 成等比数列,2b ac ∴=, 由正弦定理可得2sin sin sin B A C =,② ①-②得21sin cos cos sin sin 4B AC A C -=-()cos cos A C B =+=-,21cos 1cos 4B B ∴+-=-,解得1cos ,23B B π==, 由()1cos cos 2A CB --=, 得()1cos cos 12A CB -=+=, 0,A C A B -==,ABC ∆为正三角形,设正三角形边长为a , 则2CD a =-,1sin1202ACD S AC CD ∆=⋅()()1222a a a =-=- ()224a a ⎡⎤+-⎣⎦≤=,1a =时等号成立.即ACD ∆。
高考数学压轴专题专题备战高考《三角函数与解三角形》难题汇编及答案

【点睛】
本题考查三角函数的周期变换和平移变换的问题,关键是能够准确掌握变换原则,得到变换后的函数解析式.
18.已知函数 ( , )的最小正周期为 ,且其图象向左平移 个单位后,得到函数 的图象,则函数 的图象()
A.关于直线 对称B.关于直线 对称
C.关于点 对称D.关于点 对称
【答案】C
【解析】
C.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
D.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
【答案】D
【解析】
【分析】
根据三角函数的周期变换和左右平移变换依次得到各选项中所得的函数解析式,从而得到正确选项.
【详解】
中,将 横坐标缩短到原来的 倍得: ;向右平移 个单位长度后得: , 错误;
中,将 横坐标伸长到原来的 倍得: ;向右平移 个单位长度后得: , 错误;
中,将 横坐标缩短到原来的 倍得: ;向左平移 个单位长度后得: , 错误;
中,将 横坐标伸长到原来的 倍得: ;向左平移 个单位长度后得: , 正确.
故选:A.
【点睛】
本题主要考查曲线及直线的极坐标方程与直角坐标方程的转化,以及圆关于过圆心的直线对称的知识,属于中等难度题目.
当求出 后,要及时判断出 ,便于三角形的初步定型,也为排除 提供了依据.如果选择支中同时给出了 或 ,会增大出错率.
17.已知曲线 , ,则下面结论正确的是()
A.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线
B.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线
高考数学高考数学压轴题 三角函数与解三角形多选题分类精编附答案

高考数学高考数学压轴题 三角函数与解三角形多选题分类精编附答案一、三角函数与解三角形多选题1.已知函数()2sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭且对于R x ∀∈都有144f x f x ππ⎛⎫-=- ⎪⎛⎫⎝⎭+ ⎪⎝⎭成立.现将函数()2sin 6f x x πω⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度,再把所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数066g x g x ππ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭B .函数()g x 相邻的对称轴距离为πC .函数23g x π⎛⎫+ ⎪⎝⎭是偶函数 D .函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增 【答案】ABCD 【分析】先利用已知条件求出()f x 的周期T π=,即可得2ω=,再利三角函数图象的平移伸缩变换得()g x 的解析式,在逐一判断四个选项的正误即可得正确选项. 【详解】因为对于R x ∀∈都有144f x f x ππ⎛⎫-=-⎪⎛⎫⎝⎭+ ⎪⎝⎭成立 所以()12f x f x π=-⎛⎫+ ⎪⎝⎭,()12f x f x ππ⎛⎫+=- ⎪+⎝⎭, 所以()()()11f x f x f x ππ=-=+-+对于R x ∀∈都成立, 可得()f x 的周期T π=,所以22Tπω==, 所以()2sin 26f x x π⎛⎫=+⎪⎝⎭, 将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位长度,可得 2sin 22sin 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再把所有点的横坐标伸长到原来的2倍可得()2sin 6g x x π⎛⎫=- ⎪⎝⎭,对于选项A:()2sin 2sin 2sin 2sin 0666666g x g x x x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫-++=--++-=-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故选项A 正确;对于选项B :函数()g x 周期为221T ππ==,所以相邻的对称轴距离为2Tπ=,故选项B正确;对于选项C :222sin 2sin 2cos 3362g x x x x ππππ⎛⎫⎛⎫⎛⎫+=+-=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭是偶函数,故选项C 正确; 对于选项D :当63x ππ≤≤,066x ππ≤-≤,所以函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,故选项D 正确, 故选:ABCD 【点睛】关键点点睛:本题解题的关键点是由144f x f x ππ⎛⎫-=-⎪⎛⎫⎝⎭+ ⎪⎝⎭恒成立得出 ()()f x f x π=+可得ω的值,求出()f x 的解析式.2.在单位圆O :221x y +=上任取一点()P x y ,,圆O 与x 轴正向的交点是A ,将OA 绕原点O 旋转到OP 所成的角记为θ,若x ,y 关于θ的表达式分别为()x fθ=,()y g θ=,则下列说法正确的是( )A .()x f θ=是偶函数,()y g θ=是奇函数;B .()x f θ=在()0,π上为减函数,()y g θ=在()0,π上为增函数;C .()()1fg θθ+≥在02πθ⎛⎤∈ ⎥⎝⎦,上恒成立;D .函数()()22t f g θθ=+.【答案】ACD 【分析】依据三角函数的基本概念可知cos x θ=,sin y θ=,根据三角函数的奇偶性和单调性可判断A 、B;根据辅助角公式知()()4f g πθθθ⎛⎫+=+ ⎪⎝⎭,再利用三角函数求值域可判断C ;对于D ,2cos sin2t θθ=+,先对函数t 求导,从而可知函数t 的单调性,进而可得当1sin 2θ=,cos θ=时,函数t 取得最大值,结合正弦的二倍角公式,代入进行运算即可得解. 【详解】由题意,根据三角函数的定义可知,x cos θ=,y sin θ=, 对于A ,函数()cos fθθ=是偶函数,()sin g θθ=是奇函数,故A 正确;对于B ,由正弦,余弦函数的基本性质可知,函数()cos f θθ=在()0,π上为减函数,函数()sin g θθ=在0,2π⎛⎫⎪⎝⎭为增函数,在,2ππ⎛⎫⎪⎝⎭为减函数,故B 错误; 对于C ,当0θπ⎛⎤∈ ⎥2⎝⎦,时,3,444πππθ⎛⎤+∈ ⎥⎝⎦()()cos sin 4f g πθθθθθ⎛⎫+=+=+∈ ⎪⎝⎭,故C 正确;对于D ,函数()()222cos sin2t fg θθθθ=+=+,求导22sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)t θθθθθθ'=-+=-+-=--+, 令0t '>,则11sin 2θ-<<;令0t '<,则1sin 12θ<<, ∴函数t 在06,π⎡⎤⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦上单调递增,在5,66ππ⎛⎫⎪⎝⎭上单调递减,当6πθ=即1sin 2θ=,cos 2θ=时,函数取得极大值1222t =⨯=又当2θπ=即sin 0θ=,cos 1θ=时,212012t =⨯+⨯⨯=,所以函数()()22t f g θθ=+,故D 正确.故选:ACD. 【点睛】方法点睛:考查三角函数的值域时,常用的方法:(1)将函数化简整理为()()sin f x A x ωϕ=+,再利用三角函数性质求值域; (2)利用导数研究三角函数的单调区间,从而求出函数的最值.3.设函数()sin 6f x M x πω⎛⎫=+ ⎪⎝⎭(0,0)M ω>>的周期是π,则下列叙述正确的有( )A .()f x 的图象过点10,2⎛⎫ ⎪⎝⎭B .()f x 的最大值为MC .()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递减 D .5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心 【答案】BCD 【分析】已知只有周期的条件,只能求出ω,其中M 未知;A 选项代值判定;B 选项由解析式可知;C 选项由()f x 的单调递减区间在32,2,22k k k Z ππππ⎛⎫++∈ ⎪⎝⎭上化简可得;D 选项由()f x 的对称中心为(),0,k k Z π∈化简可得. 【详解】 由题可知2T ππω==,解得2ω=,即()sin 26f x M x π⎛⎫=+ ⎪⎝⎭当0x =时,()0sin 20sin 662Mf M M ππ⎛⎫=⨯+== ⎪⎝⎭,故选项A 错误; 因为()sin 26f x M x π⎛⎫=+ ⎪⎝⎭,所以最大值为M ,故选项B 正确;由解析式可知()f x 在3222,262k x k k Z πππππ+≤+≤+∈ 即2,63x k k ππππ⎡⎤∈++⎢⎥⎣⎦上单调递减,当0k =时,选项C 正确; 由解析式可知()f x 的对称中心的横坐标满足26x k ππ+=,即212k x ππ=- 当1k =时,512x π=,对称中心为5,012π⎛⎫⎪⎝⎭,故选项D 正确. 故选:BCD 【点睛】本题考查()()sin f x A x =+ωϕ型三角函数的性质,其中涉及最值、对称轴、对称中心,属于较难题.4.已知函数()()()sin 0,0,0πf x A x B A ωϕωϕ=++>><<的部分自变量、函数值如下表所示,下列结论正确的是( ).A .函数解析式为()5π3sin 226f x x ⎛⎫ ⎝=⎪⎭++ B .函数()f x 图象的一条对称轴为2π3x =- C .5π,012⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D .函数()f x 的图象左平移π12个单位,再向下移2个单位所得的函数为奇函数 【答案】ABD 【分析】首先根据表格,利用最值求A 和B ,再根据周期求ω,以及根据最小值点求ϕ,求得函数的解析式,再分别代入23x π=-和512x π=-,判断BC 选项,最后根据平移规律求平移后的解析式. 【详解】由表格可知,2B =, 函数的最大值是5,所以25A B A +=+=,即3A =, 当3x π=时,函数取得最小值,最小值点和相邻的零点间的距离是71234πππ-=,所以12244ππωω⨯=⇒=, 当3x π=时,322,32k k Z ππϕπ⨯+=+∈,解得:526k πϕπ=+,0ϕπ<<, 56πϕ∴=,所以函数()53sin 226f x x π⎛⎫=++ ⎪⎝⎭,故A 正确; B.当23x π=-时,252362πππ⎛⎫⨯-+=- ⎪⎝⎭,能使函数取得最小值,所以23x π=-是函数的一条对称轴,故B 正确; C.当512x π=-时,5520126ππ⎛⎫⨯-+= ⎪⎝⎭,此时2y =,所以5,212π⎛⎫- ⎪⎝⎭是函数的一个对称中心,故C 不正确; D.函数向左平移12π个单位后,再向下平移2个单位后,得()53sin 2223sin 23sin 2126y x x x πππ⎡⎤⎛⎫=+++-=+=- ⎪⎢⎥⎝⎭⎣⎦,函数是奇函数,故D 正确.故选:ABD 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证次区间是否是函数sin y x =的增或减区间.5.函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则下列结论正确的是( )A .1()2sin 36f x x π⎛⎫=-⎪⎝⎭ B .若把()f x 的横坐标缩短为原来的23倍,纵坐标不变,得到的函数在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位,则所得函数是奇函数 D .函数()y f x =的图象关于直线4x π=-对称【答案】ACD 【分析】根据函数的图象求出函数的解析式,得选项A 正确; 求出213263x πππ--得到函数在[],ππ-上不是增函数,得选项B 错误;求出图象变换后的解析式得到选项C 正确; 求出函数的对称轴方程,得到选项D 正确. 【详解】 A, 如图所示:1732422T πππ=-=, 6T π∴=,∴2163πωπ==, (2)2f π=,∴2(2)2sin()23f ππϕ=+=,即2sin()13πϕ+=, ∴22()32k k Z ππϕπ+=+∈, ∴2()6k k Z πϕπ=-∈,||ϕπ<,∴6πϕ=-,∴1()2sin()36f x x π=-,故选项A 正确;B, 把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数12sin()26y x π=-,[x π∈-,]π,∴213263x πππ--,∴12sin()26y x π=-在[π-,]π上不单调递增,故选项B 错误;C, 把()y f x =的图象向左平移2π个单位,则所得函数12sin[()]2sin 3223xy x ππ=-+=,是奇函数,故选项C 正确; D, 设1,,32,362x k k Z x k πππππ-=+∈∴=+当24k x π=-⇒=-,所以函数()y f x =的图象关于直线4x π=-对称,故选项D 正确.故选:ACD 【点睛】方法点睛:求三角函数的解析式,一般利用待定系数法,一般先设出三角函数的解析式sin()y A wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.6.设M 、N 是函数()()()2sin 0,0f x x ωϕωϕπ=+><<的图象与直线2y =的交点,若M 、N 两点距离的最小值为6,1,22P ⎛⎫- ⎪⎝⎭是该函数图象上的一个点,则下列说法正确的是( )A .该函数图象的一个对称中心是()7,0B .该函数图象的对称轴方程是132x k =-+,Z k ∈ C .()f x 在71,23⎡⎤--⎢⎥⎣⎦上单调递增 D .()2cos 36x f x ππ⎛⎫=+ ⎪⎝⎭ 【答案】ABD 【分析】根据函数()f x 的基本性质求出函数()f x 的解析式,可判断D 选项的正误,利用余弦型函数的对称性可判断AB 选项的正误,利用余弦型函数的单调性可判断C 选项的正误. 【详解】因为M 、N 是函数()()()2sin 0,0f x x ωϕωϕπ=+><<的图象与直线2y =的交点,若M 、N 两点距离的最小值为6,则函数()f x 的最小正周期为6T =,23T ππω∴==, 所以,()2sin 3x f x πϕ⎛⎫=+⎪⎝⎭, 将点P 的坐标代入函数()f x 的解析式,可得12sin 226f πϕ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,则sin 16πϕ⎛⎫-= ⎪⎝⎭.0ϕπ<<,5666πππϕ∴-<-<,则62ππϕ-=,23πϕ∴=,()22sin 2sin 2cos 3336236f x x x x πππππππ⎛⎫⎛⎫⎛⎫∴=+=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 选项正确;对于A 选项,()7572cos 2cos 0362f πππ⎛⎫=+== ⎪⎝⎭,A 选项正确; 对于B 选项,由()36x k k Z πππ+=∈,解得()132x k k Z =-+∈, 所以,函数()f x 的图象的对称轴方程是132x k =-+,k Z ∈,B 选项正确;对于C 选项,当71,23x ⎡⎤∈--⎢⎥⎣⎦时,3618x ππππ-≤+≤,所以,函数()f x 在区间71,23⎡⎤--⎢⎥⎣⎦上不单调,C 选项错误. 故选:ABD.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+或()cos y A x ωϕ=+形式,再求()sin y A ωx φ=+或()cos y A x ωϕ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =或cos y x =的相应单调区间内即可,注意要先把ω化为正数.7.已知函数()cos f x x x =-,则下列说法正确的是( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称B .()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 C .()f x 在()0,2π上有且仅有1个最小值点 D .()f x 的值域为[]1,2- 【答案】BC 【分析】利用特殊值法可判断A 选项的正误;化简函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上的解析式,利用正弦型函数的单调性可判断B 选项的正误;由()()f x f x π+=可得()f x 的周期为π,再在[]0,π上讨论函数()f x 的单调性、最值,可判断CD 选项的正误.【详解】对于A 选项,因为06f π⎛⎫-= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭62f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象不关于点,06π⎛⎫⎪⎝⎭中心对称,故A 错误;对于B 选项,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=+=+ ⎪⎝⎭,27,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,()()()cos sin cos f x x x x x πππ+=+-+=--()cos x x f x =-=,所以π为函数()f x 的周期.当0,2x π⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=-=- ⎪⎝⎭,,663x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,()()min01f x f ==-,()max 2f x f π⎛⎫== ⎪⎝⎭由B 选项可知,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()max 2f x f π⎛⎫== ⎪⎝⎭()()min1f x f π==-.所以,函数()f x 在()0,2π上有且只有1个最小值点,C 选项正确;对于D 选项,由C 选项可知,函数()f x 的值域为⎡-⎣,D 选项错误.故选:BC. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).8.将函数cos 2y x =的图象上所有点向左平移6π个单位长度,再向下平移1个单位长度,得到函数()y f x =的图象,则( ) A .()f x 的图象的对称轴方程为()62k x k Z ππ=-+∈ B .()f x 的图象的对称中心坐标为(),0212k k Z ππ⎛⎫+∈ ⎪⎝⎭ C .()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭D .()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】AC 【分析】首先根据图象平移求函数()y f x =的解析式,再根据整体代入的方法判断函数的对称性和单调区间. 【详解】cos 2y x =的图象上所有点向左平移π6个单位长度,得到cos 26y x π⎛⎫=+ ⎪⎝⎭,再向下平移1个单位长度后得到()cos 213y f x x π⎛⎫==+- ⎪⎝⎭,对于A ,令23x k ππ+=,解得,62k x k Z ππ=-+∈,函数的对称轴是,62k x k Z ππ=-+∈,故A 正确; 对于B ,令232x k πππ+=+,解得:,122k x k Z ππ=+∈,所以函数的对称中心,1,122k k Z ππ⎛⎫+-∈ ⎪⎝⎭,故B 不正确; 对于C ,令2223k x k ππππ-+≤+≤,解得:236k x k ππ-+π≤≤-+π,所以函数的单调递增区间是2,,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,由于单点不具有单调性,所以()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭也正确,故C 正确;对于D ,令2223k x k ππππ≤+≤+,解得:63k x k ππππ-+≤≤+,所以函数单调递减区间是,63k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,故D 不正确.故选:AC 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.9.已知函数()()tan (0)6ωωπ=->f x x ,则下列说法正确的是( ) A .若()f x 的最小正周期是2π,则12ω=B .当1ω=时,()f x 的对称中心的坐标为()π0()6π+∈Z k k , C .当2ω=时,π2π()()125-<f f D .若()f x 在区间()π3π,上单调递增,则203ω<≤ 【答案】AD 【分析】根据正切函数的性质,采用整体换元法依次讨论各选项即可得答案. 【详解】解:对于A 选项,当()f x 的最小正周期是2π,即:2T ππω==,则12ω=,故A 选项正确;对于B 选项,当1ω=时,()()tan 6f x x π=-,所以令,62k x k Z ππ-=∈,解得:,62k x k Z ππ=+∈,所以函数的对称中心的坐标为()0()62k k ππ+∈Z ,,故B 选项错误; 对于C 选项,当2ω=时,()()tan 26f x x π=-,()()()()ππ10tan 2tan tan 12126330f πππ⎡⎤-=⨯--=-=-⎢⎥⎣⎦,()()()2π2π1911tan 2tan tan 5563030f πππ=⨯-==-,由于tan y x =在,02π⎛⎫- ⎪⎝⎭单调递增,故()()π2π125f f ->,故C 选项错误; 对于D 选项,令,262k x k k Z ππππωπ-+<-<+∈,解得:233k k x ππππωωωω-+<<+ 所以函数的单调递增区间为:2,,33k k k Z ππππωωωω⎛⎫-++∈ ⎪⎝⎭,因为()f x 在区间()π3π,上单调递增,所以33,23k k Z k πππωωπππωω⎧-+≤⎪⎪∈⎨⎪+≥⎪⎩,解得:213,3k k k Z ω-+≤≤+∈,另一方面,233T ππππω=≥-=,32ω≤,所以2332k +≤,即56k ≤,又因为0>ω,所以0k =,故203ω<≤,故D 选项正确.故选:AD 【点睛】本题考查正切函数的性质,解题的关键在于整体换元法的灵活应用,考查运算求解能力,是中档题.其中D 选项的解决先需根据正切函数单调性得213,3k k k Z ω-+≤≤+∈,再结合233T ππππω=≥-=和0>ω得0k =,进而得答案.10.已知函数()()cos 22f x x πϕϕ⎛⎫=+<⎪⎝⎭,()()124F x f x f x π⎛⎫=+ ⎪⎝⎭为奇函数,则下述四个结论中说法正确的是( )A .tan 3ϕ=B .()f x 在[],a a -上存在零点,则a 的最小值为6π C .()F x 在3,44ππ⎛⎫⎪⎝⎭上单调递增 D .()F x 的图象可由()f x 的图象向左平移2π个单位得到 【答案】ABC 【分析】首先得到()()1224F x f x f x π⎛⎫=++ ⎪⎝⎭的解析式,再根据函数的奇偶性求出参数ϕ,最后结合三角函数的性质一一验证即可. 【详解】解:因为()cos(2)f x x ϕ=+,所以11()()+cos(2))cos 22423F x f x f x x x x ππϕϕϕ⎛⎫⎛⎫==++=++ ⎪ ⎪⎝⎭⎝⎭, 因为()F x 为奇函数,则(0)0F =,即cos 03πϕ⎛⎫+= ⎪⎝⎭,所以32k ππϕπ+=+,k Z ∈,因为||2ϕπ<,所以6π=ϕ;对于A ,tan tan63πϕ==,故A 正确; 对于B ,令()cos 206f x x π⎛⎫=+= ⎪⎝⎭,得26k x ππ=+,k ∈Z ,若()f x 在[,]a a -上存在零点,则0a >且a 的最小值为6π,故B 正确; 对于C ,()cos 2sin 263F x x x ππ⎛⎫=++=- ⎪⎝⎭,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,2,232x ππ⎛⎫∈ ⎪⎝⎭,则()F x 在3,44ππ⎛⎫⎪⎝⎭上单调递增,故C 正确. 对于D ,因为()cos 26f x x π⎛⎫=+⎪⎝⎭, ()cos 266F x x ππ⎡⎤⎛⎫=++⎪⎢⎥⎝⎭⎣⎦,根据“左加右减”,()F x 的图象可由()f x 的图象向左平移6π个单位得到,故D 错误.故选:ABC . 【点睛】关键点点睛:本题解答的关键是先根据()()124F x f x f x π⎛⎫=++ ⎪⎝⎭为奇函数,确定参数ϕ的值,再结合三角函数的性质逐一判断即可.。
高考数学压轴专题2020-2021备战高考《三角函数与解三角形》真题汇编及答案

数学高考《三角函数与解三角形》试题含答案一、选择题1.已知()0,απ∈,3sin 35πα⎛⎫+= ⎪⎝⎭,则cos 26πα⎛⎫+= ⎪⎝⎭( ) A .2425B .2425-C .725D .725-【答案】B 【解析】 【分析】根据余弦的二倍角公式先利用sin 3πα⎛⎫+ ⎪⎝⎭求得2cos 23πα⎛⎫+ ⎪⎝⎭.再由诱导公式求出sin 26πα⎛⎫+ ⎪⎝⎭,再利用同角三角函数关系中的平方关系求得cos 26πα⎛⎫+ ⎪⎝⎭.根据角的取值范围,舍去不合要求的解即可. 【详解】 因为3sin 35πα⎛⎫+= ⎪⎝⎭ 由余弦二倍角公式可得22237cos 212sin 1233525ππαα⎛⎫⎛⎫⎛⎫+=-+=-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 而2cos 2cos 2sin 23626ππππααα⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以27sin 2cos 26325ππαα⎛⎫⎛⎫+=-+=- ⎪⎪⎝⎭⎝⎭由同角三角函数关系式可得24cos 2625πα⎛⎫+==± ⎪⎝⎭ 因为()0,απ∈ 则4,333πππα⎛⎫+∈ ⎪⎝⎭,而3sin 035πα⎛⎫+=>⎪⎝⎭ 所以,33ππαπ⎛⎫+∈ ⎪⎝⎭则,33ππαπ⎛⎫+∈ ⎪⎝⎭所以22,233ππαπ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭32,3262ππππα⎛⎫⎛⎫+-∈ ⎪ ⎪⎝⎭⎝⎭,即32,662πππα⎛⎫+∈ ⎪⎝⎭又因为7sin 20625πα⎛⎫+=-< ⎪⎝⎭,所以32,62ππαπ⎛⎫+∈ ⎪⎝⎭故cos 206πα⎛⎫+< ⎪⎝⎭所以24cos 2625πα⎛⎫+=- ⎪⎝⎭ 故选:B 【点睛】本题考查了同角三角函数关系式及诱导公式的化简应用,三角函数恒等变形及角的范围确定,综合性较强,属于中档题.2.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2πB .3π C .4π D .6π 【答案】C 【解析】 【分析】设AE BF a ==,13B EBF EBFV S B B '-'=⨯⨯,利用基本不等式,确定点E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解. 【详解】设AE BF a ==,则()()23119333288B EBFa a V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=352AF =2292A F AA AF ''=+=,1322EF AC ==,因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 93222222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫ ⎪⎝⎭, ∴3,3,32A F ⎛⎫'=--⎪⎝⎭,()3,3,0AC =-, 所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯,所以异面直线A F '与AC 所成的角为4π. 故选:C 【点睛】本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.3.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.4.函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象可由函数2cos 2y x x =-的图象( ) A .向右平移3π个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到 B .向右平移6π个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到 C .向左平移3π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到 D .向左平移6π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到 【答案】D 【解析】 【分析】合并cos2y x x =-得:2sin 26y x π⎛⎫=- ⎪⎝⎭,利用平移、伸缩知识即可判断选项。
高考常考题型:解三角形

高考常考题型:解三角形三年⾼考考频统计2019地区年2020年2021年分值占⽐选填解答选填解答选填解答全国I11177,9,16☆-//11.33%全国II9,10,15-217//11.33%全国III12☆187,9-//11.33%全国甲////8,9,16☆-10.00%全国⼄////7,9,15-10.00%新⾼考I//10,15174,61914.67%浙江141813188,141814.67%注:带☆的题⽬为压轴题.知识精讲⼀、正弦定理在⼀个三⻆形中,各边的⻓和它所对⻆的正弦的⽐相等,即在中,.【注】为外接圆的半径.⼆、余弦定理三⻆形任何⼀边的平⽅等于其他两边平⽅和减去这两边与它们夹⻆余弦的积的两倍,即,,.余弦定理的变形:,,.三、三⻆形⾯积公式在中,设⻆,,的对边分别为,,.,,边上的⾼分别为,,,为的⾯积,则,.四、三⻆形内⻆关系式1.三⻆形内⻆和定理:在中,.2.内⻆正弦关系:,,. 3.内⻆余弦关系:,,.在中,,,,则 () A.或 B. C.或D. 答案:C由正弦定理得,则因为,且所以或解答:由故选:C .题意知,,,经典例题关卡1正余弦定理解三角形 例1(2021·全国卷甲卷【文】)中,已知,,,则在()A.B.C.D.练1~练3题型精练 例2(2021·全国卷乙卷【理】)记的内⻆的对边分别为⾯积为.,,,,,,,,则关卡2边角互化 例3(2018·全国I 【文】)的内⻆的对边分别为,,则的⾯积为.,,,,.已知例4在中,内⻆的对边分别为,,,,,若,且,则()A.B.C.D.练4~练6题型精练经典例题关卡3三角形的最值问题 例5在中,⻆所对应的边分别为,,,,,,.(1)求三⻆形周⻓的取值范围;(2)求三⻆形⾯积的取值范围;(3)若是锐⻆三⻆形,求的取值范围;(4)求的取值范围.练7~练10题型精练知识模块三多三角形问题知识精讲⼀、中线定理如图,在中, 为的中点,则有.⼆、⻆分线定理如图,在中,⻆的平分线为,则有.在中,边上的中线则的⻓,,, 是() A.B.C.D. 将,,,代⼊可得故选:答案:B解答:由B .题意知,由中线定理可得经典例题关卡4三角形中的中线问题 例6 (2021·上海静安区期中)在中,若边上的中线的⻓为则.,,,练11~练12题型精练186⼤招之49:中线定理快数学 — ⼤招速递7(2021·云南昆明市模拟)中,,点在上,且,,,则的⻓为()A.B.C.D. 关卡5三角形中的角平分线问题 8 (2021·云南昆明市一模【理】)在中,是上的点,平分若,,,,则的⾯积为.练13~练14题型精练18650:⻆分线定理9(2021·安徽模拟【理】)已知中⻆所对的边分别为为边上⼀点,且为的⻆平分线,若.,,,,,,,则最小值为。
2021年高考数学压轴必刷题(第三辑)专题02解三角形劣构性解答题突破B辑(解析版)

2021年高考数学压轴必刷题(第三辑)专题02解三角形劣构性解答题突破B 辑1.已知函数21()cos cos 2222x x x f x =++. (1)求函数()f x 的最小正周期;(2)将函数()y f x =的图象上的各点________;得到函数()y g x =的图象,当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,方程()g x a =有解,求实数a 的取值范围.在①、②中选择一个,补在(2)中的横线上,并加以解答. ①向左平移32π个单位,再保持纵坐标不变横坐标缩小为原来的一半; ②纵坐标保持不变横坐标缩小为原来的一半,再向右平移4π个单位. 【答案】(1)2π;(2)若选①,30,2a ⎡⎤∈⎢⎥⎣⎦;若选②,30,2a ⎡⎤∈⎢⎥⎣⎦.(1)()11()1cos sin 1226f x x x x π⎛⎫=+++=++ ⎪⎝⎭,最小正周期为2π; (2)选①时,()3sin 211cos 2266g x x x πππ⎛⎫⎛⎫=+++=-+ ⎪ ⎪⎝⎭⎝⎭, 由,64x ππ⎡⎤∈-⎢⎥⎣⎦,得22,663x πππ⎡⎤+∈-⎢⎥⎣⎦,故1cos 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,()30,2g x ⎡⎤∈⎢⎥⎣⎦,()g x a =有解,故30,2a ⎡⎤∈⎢⎥⎣⎦. 选②时,()sin 211sin 2463g x x x πππ⎡⎤⎛⎫⎛⎫=-++=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦由,64x ππ⎡⎤∈-⎢⎥⎣⎦,得22,336x πππ⎡⎤-∈-⎢⎥⎣⎦,故1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,3()0,2g x ⎡⎤∈⎢⎥⎣⎦ ()g x a =有解,故30,2a ⎡⎤∈⎢⎥⎣⎦.2.在①sinsin sin A b cB C b a+=--,②c a =2S CB =⋅这三个条件中任选一个,补充在下面的横线上,并加以解答,在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 为ABC 的面积. (1)求角C 的大小;(2)点D 在CA 的延长线上,且A 为CD 的中点,线段BD 的长度为2,求ABC 的面积S 的最大值. (注:如果选择多个条件分别作答,按第一个解答计分.)【答案】(1)答案见解析;(2 (1)选①:sin sin sin A b c B C b a +=--,∵由正弦定理得a b cb c b a+=--,∴()()()a b a b c b c -=+-,即222a b c ab +-=,∴1cos 2C =, ∵(0,)C π∈,∴3C π=.选②:由正弦定理得sinsin C A =sin 0A ≠cos 1C C =+, 12sin 1,sin 662C C ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,∵(0,)C π∈,∴5,666C πππ⎛⎫-∈- ⎪⎝⎭,∴66C ππ-=,∴3C π=.选③:2,sin cos S CB ab C C =⋅=,∴tan C =(0,)C π∈,∴3C π=,(2)在BCD △中,由余弦定理知222(2)22cos602a b a b +-⨯⨯=︒⨯, ∴224242222a b ab a b ab ab +-=⋅⋅-=,∴2ab ,当且仅当2a b =. 即2,1a b ==时取等号,此时ab 的最大值为2,面积1sin 2S ab C ==3.现给出两个条件:①2c b =2a cos B ,②(2b )cos A =cos C .从中选出一个条件补充在下面的问题中,并以此为依据求解问题:在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若有_______, (1)求A ;(2)若a =1,求△ABC 面积的最大值.【答案】条件选择见解析(1)6π;(2)12.选择条件:①2c b =2a cos B ,(1)∵由余弦定理可得2c =2a cos B =2a •2222a c b ac+-,∴整理可得c 2+b 2﹣a 2=,可得cos A 2222b c a bc +-===, ∵A ∈(0,π),∴A 6π=.(2)∵a =1,A 6π=,∴由余弦定理a 2=b 2+c 2﹣2bc cos A ,可得1)2=b 2+c 2﹣2bc∴4﹣=b 2+c 2≥2bc ,可得bc ≤2, ∴S △ABC 12=bc sin A 1112222≤⨯⨯=,即△ABC 面积的最大值为12.选择条件:②(2b c )cos A =cos C .(1)∵由题意可得2b cos A =cos C cos A ,∴2sin B cos A =A cos C +sin C cos A )=A +C )=B ,∵sin B ≠0,∴可得cos A 2=A ∈(0,π),∴A 6π=.(2)∵a =1,A 6π=,∴由余弦定理a 2=b 2+c 2﹣2bc cos A ,可得1)2=b 2+c 2﹣2bc •2,∴4﹣=b 2+c 2≥2bc ,可得bc ≤2, ∴S △ABC 12=bc sin A 1112222≤⨯⨯=,即△ABC 面积的最大值为12.4.在ABC 中,若a 、b 、c 分别是内角A 、B 、C 的对边,已知ABC 同时满足下列4个条件中的3个:①1sin22B =;②2220a b c ab +-+=;③b = 3c =. (1)请指出这3个条件,并说明理由; (2)求sin A .【答案】(1)ABC 满足①,③,④;理由见解析;(2)38+. (1)ABC 同时满足条件①,③,④. 理由如下:若ABC 同时满足①,②. 因为1sin22B =,且(0,)22B π∈,所以=26B π,即3B π= 因为2221cos 22a b c C ab +-==-,且(0,)C π∈,所以23C π= 所以B C π+=,矛盾所以ABC 只能同时满足③,④.因为b c >,所以B C >,故ABC 不满足② 故ABC 满足①,③,④(2)在ABC 中,b =3c =,3B π=由正弦定理知:sin sin b c B C =,所以sin 3sin 4c B C b ==又因为B C >,所以(0,)2C π∈,cos 4C =所以133sin sin()sin()324248A B C C π=+=+=⨯+⨯=.5.已知函数()()2cos cos sin f x x x x x =+-. (Ⅰ)求函数()f x 的单调递增区间和最小正周期; (Ⅰ)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于x 的不等式()f x m ≥______,求实数m 的取值范围. 请选择①和②中的一个条件,补全问题(Ⅰ),并求解.其中,①有解;②恒成立.【答案】(Ⅰ)单调递增区间为:,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;T π=;(Ⅱ)答案见解析.(Ⅰ)解:因为()()222cos cos sin cos cos sin f x x x x x x x x x =+-=+-2cos 22sin 26π⎛⎫=+=+ ⎪⎝⎭x x x .所以函数()f x 的最小正周期T π=; 因为函数sin y x =的单调增区间为2,222k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,所以222262k x k πππππ-+≤+≤+,k Z ∈,解得36k x k ππππ-+≤≤+,k Z ∈,所以函数()f x 的单调增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(Ⅱ)解:若选择①由题意可知,不等式()f x m ≥有解,即()max m f x ≤; 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当262x ππ+=,即6x π=时,()f x 取得最大值,且最大值为26f π⎛⎫=⎪⎝⎭, 所以2m ≤;若选择②由题意可知,不等式()f x m ≥恒成立,即()min m f x ≤. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤. 故当7266x ππ+=,即2x π=时,()f x 取得最小值,且最小值为12f π⎛⎫=- ⎪⎝⎭. 所以1m ≤-.6.在①函数()()sin 20,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移6π个单位长度得到()g x 的图像,()g x 图像关于,012π⎛⎫⎪⎝⎭对称;②函数()()12cos sin 062f x x x πωωω⎛⎫=+-> ⎪⎝⎭这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,求a 的取值范围; (2)求函数()f x 在[]0,2π上的单调递增区间.【答案】(1),63ππ⎡⎤⎢⎥⎣⎦;(2)06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.方案一:选条件①由函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,解得1ω=, 所以()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤, 所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤, 所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦. 方案二:选条件②: 由()12cos sin 62f x x x πωω⎛⎫=+- ⎪⎝⎭12cos sin cos cos sin 662x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 2cos 2222x x x x x ωωωωω=+-=+sin 26x πω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,所以1ω=, 可得()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x,又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤, 所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤, 所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.7.在①222,b ac a c +=+cos B sin ,b A =2,B cosB +=这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ⅠABC 的内角A ,B ,C 的对边分别为a ,b ,c ,________,,4A b π==(1)求边a ; (2)求ⅠABC 的面积.【答案】(1)3;(2)36+. 若选择①222b ac a c +=+,(1)由余弦定理2221cos 22a cb B ac +-==,因为(0,)B π∈,所以3B π=.由正弦定理sin sin a bA B=得sin sin 3b A a B π===,所以3a =. (2)因为,43A B ππ==,所以54312C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△.所以36ABC S +=△cos sin B b A =.(1cos sin sin A B B A =, 因为sin 0A ≠sin ,tan B B B == 因为(0,)B π∈,所以3B π=;由正弦定理sin sin a bA B=得sin sin 32b A a B π===,所以3a =. (2)因为,43A B ππ==,所以54312C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△.所以36ABC S +=△cos 2B B +=, (1)由和角公式得2sin 26B π⎛⎫+= ⎪⎝⎭,所以sin 16B π⎛⎫+= ⎪⎝⎭. 因为(0,)B π∈,所以7,666B πππ⎛⎫+∈ ⎪⎝⎭, 所以62B ππ+=,所以3B π=;由正弦定理sin sin a bA B=得sin sin 3b A a B π===,所以3a =. (2)因为,43A B ππ==,所以54312C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△.所以36ABC S +=△8.在ABC 中,角,,A B C 的对边分别为,,a b c ,且()cos sin b c A A =-. (1)求角C ;(2)若c =,D 为边BC 的中点,在下列条件中任选一个,求AD 的长度.条件①:ABC 的面积2S =,且B A >;条件②:cos B =(注:如果选择两个条件分别解答,按第一个解答记分) 【答案】(1)3π4C =;(2)AD = (1)由()cos sin b c A A =-可得sin sin cos sin sin B C A C A =-,又()sin sin sin cos cos sin B A C A C A C =+=+,所以sin cos sin sin A C C A =-, 由()0,A π∈可得sin 0A ≠,所以cos sin C C =-即tan 1=-C , 又()0,πC ∈,所以3π4C =; (2)选择条件①: 由ABC 的面积2S=可得1sin 22ab C =,即1222ab ab ⨯=⇒=又2222cos c a b ab C =+-,所以2220a b +=②,联立①②得2a b ⎧=⎪⎨=⎪⎩或2a b =⎧⎪⎨=⎪⎩又B A >,所以2a =,b =,在ACD △中,由余弦定理可得2222cos AD AC CD AC CD C =+-⋅⋅8121132⎛=+-⨯⨯-= ⎝⎭,所以AD = 选择条件②:由cos B =可得sin B ==所以()sin sin sin cos cos sin 10A B C B C B C =+=+=, 在ABC 中,由sin sin sin a b cA B C==== 所以2a =,b =,所以在ACD △中,由余弦定理可得2222cos AD AC CD AC CD C =+-⋅⋅812113⎛=+-⨯⨯= ⎝⎭,所以AD =9.在①()sin sin 2B Ca A Cb ++=,②2221cos cos cos sin sin A B C B C +=++两个条件中任选一个,补充到下面问题中,并解答.在ABC 中,内角,,A B C 的对边分别为,,a b c ,已知_ . (1)求A ; (2)已知函数()(),1cos 40,24f x x A x π⎡⎤⎢⎥⎣=∈⎦-,求()f x 的最小值. 【答案】选择见解析;(1)3A π=;(2)()min 14f x =-. 解:(1)若选择①, 因为()sin sin 2B C a A C b ++= 所以sin sin 22A a B b π⎛⎫=-⎪⎝⎭ 即sin cos2A aB b = 由正弦定理得:sin sin sin cos 2A AB B =. 由于B 为ABC 的内角, 所以sin 0B ≠所以sin cos2A A =, 即2sincoscos 222A A π= 由于A 为ABC 的内角,cos02A∴≠, 所以1sin22A = 又因为(0,)A π∈,所以26A π=,3A π=, 若选择②,因为2221cos cos cos sin sin A B C B C +=++ 所以222sin sin sin sin sin B C A B C +-=. 由正弦定理得:222b c a bc +-=在ABC 中,由余弦定理知:2221cos 22b c a A bc +-== 所以3A π=(2)由(1)知:()1cos 43)2(f x x π=- 因为0,4x π⎡⎤∈⎢⎥⎣⎦所以24,333x πππ⎡⎤-∈-⎢⎥⎣⎦所以1cos 4123πx ⎛⎫-≤-≤ ⎪⎝⎭ 所以当2433x ππ-=即4x π=时,()min 144f x f π⎛⎫=-⎪⎝⎭=.10.在()()sin cos 2sin sin 2sin sin 2sin b B b C A B a B A b c C --+-=①,②这两个条件中任选一个,补充在下列问题中,并解答.已知ABC 的角A ,B ,C 对边分别为a ,b ,c ,c =________.(1)求C ;(2)求ABC 周长的最大值.【答案】条件选择见解析;(1)3C π=;(2)最大值为1()选①因为sin cos b B b C =-,所以边角互化得:sin sin sin cos B C B B C =-, 因为sin 0B ≠,cos 1C C -=, 即1sin 62C π⎛⎫-= ⎪⎝⎭,又因为0C π<<,所以5–666C πππ<-<, 所以66C ππ-=,3C π∴=;选ABC ②,中,角A ,B ,C 的对边分别是a ,b ,c ,()()2sin sin 2sin sin 2sin A B a B A b c C -+-=,∴由正弦定理边角互化得()()2222a a b b b a c -+-=,即222a b c ab +-=,2221cos 22a b c C ab +-∴==,由0C π<<,3C π∴=;.2()由1()知73C c π==,,在三角形ABC 中,由余弦定理得222cos 7a b ab C +-=, 即223a b ab +-=,所以223()()734a b a b ab ++-=≤,所以a b +≤a b =时等号成立. 所以37a b c ++≤,ABC ∴周长的最大值为11.在①222cos cos sin sin sin C A B B C -=-,2sin a B =,③ABC 的面积sin S AB AC A =⋅,三个条件中任选一个,补充在下面的问题中,并作答.(如果选择多个条件作答,则按所选的第一个条件给分)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且角A 为锐角, (1)求角A ;(2)若a =b c +的取值范围.【答案】(1)3π;(2b c <+≤.(1)选①由222cos cos sin sin sin C A B B C -=-, 得()2221sin 1sin sin sin sin C A B B C ---=- 由正弦定理,得222b c a bc +-=.所以2221cos 22b c a A bc +-==因为π02A <<,所以π3A =.2sin a B =2sin sin B A B =,sin 2A =. π02A <<,所以π3A =.选③sin S AB AC A =⋅,则1sin cos sin 2bc A bc A A =. sin 0A ≠,所以1cos 2A =,又π02A <<,所以π3A =.(2)2sin 2sin sin sin sin sin a a b c R B R C B C B C B A A +=+=+==()1sin 2A B B B B ⎫+=++⎪⎪⎝⎭,化简得:π6b c B ⎛⎫+=+⎪⎝⎭. 因为2π03B <<,所以ππ5π666B <+<,1πsin 126B ⎛⎫<+≤ ⎪⎝⎭,b c <+≤.12.在①222cos cos sin sin sin C A B B C -=-,2sin a B =,③ABC 的面积sin S AB AC A =⋅,三个条件中任选一个,补充在下面的问题中,并作答.(如果选择多个条件作答,则按所选的第一个条件给分) 在三角形ABC 中,角,,A B C 所对的边分别是,,a b c ,且角A 为锐角. (1)求角A ;(2)若a =b c +的取值范围.【答案】(1)3π;(2).(1)若选①:由222cos cos sin sin sin C A B B C -=-得:222221sin 1sin sin sin sin sin sin C A A C B B C --+=-=-,由正弦定理得:222a cb bc -=-,即222b c a bc +-=,2221cos 22b c a A bc +-∴==,又A 为锐角,3A π∴=.2sin sin B A B =,()0,B π∈,sin 0B ∴≠,sin A ∴=,又A 为锐角,3A π∴=.若选③:1sin 2S bc A =,又sin cos sin cos sin S AB AC A AB AC A A bc A A =⋅=⋅=,1sin cos sin 2bc A bc A A ∴=, A 为锐角,sin 0A ∴≠,1cos 2A ∴=,3A π∴=. (2)由正弦定理得:sin sin sin c b aC B A====A B C π++=,()1sin sin sin sin cos cos sin sin 33322C A B B B B B B πππ⎛⎫∴=+=+=+=+ ⎪⎝⎭,)3sin sin sin 26b c B C B B B π⎫⎛⎫∴+=+==+⎪ ⎪⎪⎝⎭⎝⎭, 20,3B π⎛⎫∈ ⎪⎝⎭,5,666B πππ⎛⎫∴+∈ ⎪⎝⎭,1sin ,162B π⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦,b c ∴+∈,即b c +的取值范围为.13.从给出的三个条件Ⅰ1a =,Ⅰ2a =,Ⅰ3a =中选出一个合适的条件,补充在下面问题中,并完成解答.已知集合{}{}20,2,0,1,A a B a =+=.(1)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的值;(2)已知__________,若集合C 含有两个元素且满足C A B ⊆⋃,求集合C . 【答案】(1)2a =;(2)答案不唯一,具体见解析.(1)因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B , 当21a +=时,即1a =-, 得{}0,1,1B =,不合题意;当22a a +=时,即1a =-或2a =,得2a =,满足题意;所以2a =;(2)根据题意,若选择条件①,则{}0,1,1B =,不合题意;故可选择条件②或③; 若选择条件②,{}{}0,4,0,1,4A B ==,所以{}0,1,4AB =,所以{}{}{}01,0,4,1,4C C C ===,,若选择条件③{}{}0,5,0,1,9A B ==,所以{}0,1,5,9AB =,所以{}{}{}{}{}{}0,1,0,5,0,9,1,5,1,9,5,9C C C C C C ======14.在①()()()a b a b a c c +-=-,②22cos a c b C -=)cos sin a b C c B -=三个条件中任选一个,补充在下面的问题中,并解决该问题.在ABC 中,内角,,A B C 的对边分别是,,a b c ,且满足 ,b = (1)若4a c +=,求ABC 的面积; (2)求a c +的取值范围.【答案】(1;(2)(a c +∈⎤⎦. 解:若选①,由题意()()()ab a b ac c +-=-,化简得222122a cb ac +-=即1cos ,02B B π=<<, 得3B π=(1)由余弦定理()222cos b a c ac ac B =+--, 得21124222ac ac =--⋅, 解得43ac =11sin sin 223S ac B π==⨯=(2)由正弦定理4sin sin sin 2a cb A C B ==== 又因为23A C π+=, 所以()4sin sin a c A C +=+214sin sin cos 326A A A A A ππ⎫⎛⎫⎛⎫⎛⎫=+-=+=+⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎭, 因为2510,,sin ,1366662A A A πππππ⎛⎫⎛⎤<<<+<+∈ ⎪ ⎥⎝⎭⎝⎦(a c +∈⎤⎦若选②,由22cos a c b C -=,得()2sin sin 2sin cos ,2sin sin 2sin cos A C B C B C C B C -=+-=, 化简得2cos sin sin ,B C C =得1cos ,02B B π=<<,得3B π=.以下与选①同.)cos sin a b C c B -=)sin sin cos sin sin A B C C B -=,()sin sin cos sin sin B C B C C B ⎤+-=⎦化简得tan B B π=<<,得3B π=.以下与选①同.15.在①ANBN=,②AMN S =△,③AC AM =这三个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,3B π=,8c =,点M ,N 是BC 边上的两个三等分点,3BC BM =,______; (1)求AM 的长.(2)求ABC 外接圆半径.【答案】(1)答案见解析;(2)R =. (1)解:若选择条件①因为AN BN=,所以ANBM =设BM t =,所以AN =;又60B =︒,8c =, 所以在ABN 中,2222cos AN AB BN AB BN B =+-⋅,即()22284282cos60t t =+-⨯⨯︒,即:2280t t +-=,所以2t =或-4(舍去).在ABM 中,22222cos 84282cos6052AM AB BM AB BM B =+-⋅=+⨯︒-⨯=,所以AM = 若选择条件②因为点M ,N 是BC边上的三等分点,且AMN S =△,所以ABCS=因为60B =︒,所以11sin 60822ABC S AB BC BC ==⋅︒=⨯⨯△, 所以6BC =,所以2BM =.在ABM 中,22222cos 84282cos6052AM AB BM AB BM B =+-⋅=+⨯︒-⨯=,所以AM = 若选择条件③设BM t =,则3BC t =,在ABM 中,22222222cos 828cos6088AM AB BM AB BM B t t t t =+-⋅=︒=+-⨯+-, 同样在ABC 中,2222222cos 89283cos6064924AC AB BC AB BC B t t t t =+-⋅=+-⨯⨯︒=+-,因为AC AM =,所以2228864924t t t t +-=+-, 所以2t =,在ABM 中,22222cos 84282cos6052AM AB BM AB BM B =+-⋅=+⨯︒-⨯=,所以AM =(2)222222cos 86286cos6052AC AB BC AB BC B =+-⋅=+⨯︒-⨯=,所以AC =由正弦定理可得:2sin sin 603b AC R B ====︒,所以外接圆半径为3R =.16.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且点(),a b 在直线cos sin x y C c B -=上. (1)求B 的值;(2)现给出两个条件:①b =30A =︒,②b =2c a =,从中任选一个解ABC .写出你的选择并以此为依据,并求ABC 的面积. (只需写出一个选定方案并完成即可) 【答案】(1)4B π=;(2)选择见解析;ABC S =△. (1)将(),a b 代入直线方程可得:cos sin a b C c B -=, 利用正弦定理,可得:sin sin cos sin sin A B C C B -=, 所以sin()sin cos sin sin B C B C C B +-=,可得,sin cos cos sin sin cos sin sin B C B C B C C B +-=,化简可得:cos sin sin sin B C C B =,因为sin 0C ≠,即cos sin B B =. 所以4B π=.(2)选择①,712C A B ππ=--=, 由正弦定理可得:sin sin b a B A=122a=,得到1a =. 由余弦定理,2222cos a b c bc A =+-,即212c =+,解得c =或c =(舍去).所以111sin 222ABC S bc A ===△. 选择②,由余弦定理可得:222cos 2a c b B ac +-=,代入可得2222a ⎫+-⎪=解得1a =,c =, ∴sin sin a b A B=,1sin 2A =1sin 2A =,∵a b <,∴A B <,∴6A π=.所以11sin 1222ABC S ac B ==⨯=△. 17.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭只能同时....满足下列三个条件中的两个:①图象上一个最低点为2,23M π⎛⎫-⎪⎝⎭;②函数()f x的图象可由4y x π⎛⎫=- ⎪⎝⎭的图象平移得到;③若对任意x ∈R ,()()()12f x f x f x ≤≤恒成立,且12x x -的最小值为2π. (1)请写出这两个条件序号,并求出()f x 的解析式; (2)求方程()10f x -=在区间[],ππ-上所有解的和. 【答案】(1)①③,()2sin 26f x x π⎛⎫=+⎪⎝⎭;(2)3π-. (1)函数()sin 6f x A x πω⎛⎫=+⎪⎝⎭满足的条件为①③; 理由如下:由题意可知条件①②互相矛盾, 故③为函数()sin 6f x A x πω⎛⎫=+⎪⎝⎭满足的条件之一, 由③可知,函数()f x 的最小正周期为T π=,所以2ω=,故②不合题意, 所以函数()sin 6f x A x πω⎛⎫=+⎪⎝⎭满足的条件为①③;由①可知2A =,所以()2sin 26f x x π⎛⎫=+⎪⎝⎭(2)因为()10f x -=,所以1sin 262x π⎛⎫+= ⎪⎝⎭, 所以()2266x k k Z πππ+=+∈或()52266x k k Z πππ+=+∈, 所以()x k k Z π=∈或()3x k k Z ππ=+∈又因为[],x ππ∈-,所以x 的取值为π-、23π-、0、3π、π, 所以方程()10f x -=在区间[],ππ-上所有的解的和为3π-. 18.在①()2223163c S b a +=-;②5cos 45b C c a +=,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,设ABC 的面积为S ,已知________. (1)求tan B 的值;(2)若42,S =10a =,求b 的值.【答案】(1)34;(2) (1)选择条件①.()2223163c S b a+=-,所以()2221316sin 32⨯+=-c ac B b a , 整理得:()2228sin 3ac B a c b=+-.即2224sin 32a c b B ac+-=⋅. 整理可得3cos 4sin B B =,又sin 0B >.所以cos 0B >,所以sin 3tan cos 4B B B ==.选择条件②.因为5cos 45b C c a +=,由正弦定理得,5sin cos 4sin 5sin B C C A +=,5sin cos 4sin 5sin()B C C B C +=+,即sin (45cos )0C B -=, 在ABC 中,sin 0C ≠,所以cos 45B =,3sin 5B ==,所以3tan 4B =. (2)由3tan 4B =,得3sin 5B =,又42,S =10a =, 则113acsin 1042225S B c ==⨯⨯=,解得14c =. 将42,S =10,a =14c =代入()22226163c S b c a =++-中,得()2222614164231410b ⨯=⨯++-,解得b =19.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,(cos cos )()cos a B C b c A +=+,ABCS=(1)若ABC 还同时满足下列三个条件中的两个:①7a =,②10b =,③8c =,请指出这两个条件,并说明理由;(2)若a =ABC 的周长.【答案】(1)答案见解析;(2)12+ (1)因为(cos cos )()cos a B C b c A +=+, 所以sin (cos cos )(sin sin )cos A B C B C A +=+. 所以sin()sin()A B C A -=-.因为A ,B ,(0,)C π∈,则A B ππ-<-<,B C ππ-<-<, 所以A B C A -=-或()A B C A π-=--或()A B C A π-=---, 所以2A B C =+或C B π-=(舍去)或C B π-=-(舍去), 又因为A B C π++=,所以3A π=,因为ABCS=11sin 222ABC S bc A bc ==⨯=△40bc =.选条件①②:因为sin sin a bA B=10sin B=,所以sin 17B =>,这不可能,所以ABC 不能同时满足①② 选条件②③:这与40bc =矛盾.所以ABC 不能同时满足②③. 选条件①③:因为2222cos a b c bc A =+-, 所以2227828cos 3b b π=+-⨯⨯⨯,所以3b =或5b =,又因为40bc =,所以5b =,所以ABC 同时满足①③.(2)由余弦定理得:(2222cos3b c bc π=+-22()3()120b c bc b c =+-=+-所以12b c +=,所以周长为12+20.在①222b a c +=+,②cosB sin A a b =,③sin B +cos B 这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ⅠABC 的内角A ,B ,C 的对边分别为a ,b ,c ,___________,A =3π,b .(1)求角B ; (2)求ⅠABC 的面积.【答案】条件选择见解析;(1)4B π=;(2解:(1)若选①,222b a c =+,则由余弦定理得222cos 2a c b B ac +-===, 因为(0,)B π∈,所以4B π=若选②,cos sin a B b A =,由正弦定理2sin sin sin a b cR A B C===得 sin cos sin sin A B B A =,又(0,)A π∈,所以sin 0A >,所以cos sin B B = 又(0,)B π∈,tan 1B =,4B π=,若选③,由sin cos B B +=)4B π+=,所以sin()14B π+=,又(0,)B π∈,所以5(,)444B πππ+∈,42B ππ+=,所以4B π=, (2)由正弦定理得sin sin a bA B=,又3A π=,b =4B π=所以sin sin b Aa B===512C A B ππ=--=,所以5sin sinsin()sin cos cos sin 124646464C πππππππ==+=+=所以11sin 224ABCSab C ===21.已知ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,A 为锐角,在以下三个条件中任选 一个:①(b ﹣3c )cos A +a cos B =0;②sin 22B C ++cos2A =19-;③=a b ;并解答以下问题:(1)若选_______(填序号),求cos A 的值;(2)在(1)的条件下,若a =2,求ABC 面积S 的最大值. 【答案】(1)答案见解析;(2.(1)若选①,因为()3cos cos 0-+=b c A a B ,由正弦定理有:sin 3sin )cos sin cos 0B C A A B -+=(,即sin cos cos sin 3sin cos B A B A C A +=,所以sin 3sin cos C C A =,在ABC 中,sin 0C >,所以1cos =3A . 若选②,21sin cos 229B C A ++=-, ∴1cos()1cos 229B C A -++=-,ABC 中,A B C π++=,∴1cos 1cos 229A A ++=-, ∴21cos 12cos 129A A ++-=-,∴236cos 9cos 70A A +-=, ∴1cos 3A =,或7cos 12A =-(舍), ∴1cos 3A =. 若选③,因为=a b ,由正弦定理有:sinsin A B =,因为在ABC 中,sin 0B >=1cos A A +, 又22sin cos =1A A +,A 为锐角,解得1cos =3A .(2)由(1)可知,1cos 3A =,由22sin cos =1A A +,A 为锐角,得sin =3A ∴由余弦定理可知,222123b c a bc +-=2a =,∴2233122b c bc +-=∴22212336bc b c bc +=+≥∴3bc ≤,当且仅当b c =.ABC 面积:1=sin 2S bc A所以ABC 面积S .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学压轴题训练——解三角形问题的两类题型解三角形问题中,边角的求解是所有问题的基本,通常有以下两个解题策略: (1)边角统一化:运用正弦定理和余弦定理化角、化边,通过代数恒等变换求解; (2)几何问题代数化:通过向量法、坐标法将问题代数化,借用函数与方程来求解,对于某些问题来说此法也是极为重要的.[典例] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知∠A =2π3,a =3c ,则cb =______.[思路点拨]本题条件涉及三角形边、角的数量关系,结论是求边比问题,必然通过解三角形来处理.注意正弦定理和余弦定理的灵活应用.[方法演示]法一:角化边(余弦定理)由余弦定理及a =3c ,得cos A =b 2+c 2-a 22bc =b 2-2c 22bc =-12,化简得b 2+bc -2c 2=0,即2⎝⎛⎭⎫c b 2-c b -1=0,解得c b =1或c b =-12(舍去). 法二:边化角(正弦定理)由⎩⎪⎨⎪⎧a =3c ,∠A =2π3得sin A =3sin C =32,即sin C =12. 又角C 是三角形的内角,则∠C =π6.又∠A =2π3,所以∠B =π6,从而有c b =sin C sin B =1.法三:几何法过点C 作BA 的垂线CD ,交BA 的延长线于点D ,如图,由∠BAC =2π3,得∠DAC =π3,即在Rt △DAC 中,AD =12b ,CD =32b .由△BDC 是直角三角形,得CD 2+BD 2=BC 2, 即⎝⎛⎭⎫32b 2+⎝⎛⎭⎫c +12b 2=a 2. 由a =3c ,得b 2+bc -2c 2=0,即2⎝⎛⎭⎫c b 2-c b -1=0,解得c b =1或c b =-12(舍去). 法四:坐标法根据题意,以点A 为原点,AB 为x 轴的正方向,建立如图所示的平面直角坐标系,根据题意可知AB =c ,AC =b ,BC =a ,∠CAB =2π3,则A (0,0),B (c,0),C -b 2,32b .根据两点间距离公式,BC =⎝⎛⎭⎫32b 2+⎝⎛⎭⎫c +12b 2=a .由a =3c ,得b 2+bc -2c 2=0,即2⎝⎛⎭⎫c b 2-c b -1=0,解得c b =1或c b =-12(舍去). 法五:向量法由BC ―→=AC ―→-AB ―→,得|BC ―→|2=|AC ―→-AB ―→ |2=|AC ―→|2-2AC ―→·AB ―→+|AB ―→|2.又由|BC ―→|=a =3c ,得3c 2=b 2-2bc cos 2π3+c 2,化简得b 2+bc -2c 2=0,即2⎝⎛⎭⎫c b 2-c b -1=0,解得c b =1或c b =-12(舍去).法六:特殊值法因为a =3c ,不妨令c =1,所以a =3,结合条件∠A =2π3,由余弦定理得b =1,于是cb =1.答案:1 [解题师说]本题法一、法二分别运用了余弦定理和正弦定理,这两种方法(边化角、角化边)是最基本的方法,其本质就是将题中的边、角统一,方便求解;法三运用了三角形的几何性质,回归三角形的本质;法四和法五都是将题中的边和角坐标化、向量化,将几何问题代数化,从而求出结果.易知法五和法一的本质是相同的,因为我们知道余弦定理是可以用向量法证明的.法六是抓住了条件a =3c 的本质,这是两个边的比例关系,通过令c =1将比例变为了具体数值,便于计算,也体现了基本量的思想.[应用体验]1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34 B.43 C .-43D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab , 则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab , 即sin C -2cos C =2, 所以(sin C -2cos C )2=4,即sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去).2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足(a +b )sin C2=12,(a -b )cos C2=5,则c =________.解析:因为(a +b )sin C 2=12,(a -b )cos C2=5,所以(a +b )2(1-cos C )2=144,①(a -b )2(1+cos C )2=25,②由①②得2a 2+2b 2-4ab cos C2=169,即a 2+b 2-2ab cos C =169, 由余弦定理得c 2=169,所以c =13. 答案:13三角形中的最值、范围的求法(1)目标函数法:根据已知和所求最值、范围,选取恰当的变量,利用正弦定理与余弦定理建立所求的目标函数,然后根据目标函数解析式的结构特征求解最值、范围.(2)数形结合法:借助图形的直观性,利用所学平面图形中的相关结论直接判断最值、范围.[典例] 已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 的面积的最大值为________.[思路点拨]本题条件为三角形的边角关系式,而问题是求三角形面积的最值,势必要利用三角形的正、余弦定理、三角形的面积公式,以及三角恒等变换,再利用三角形的几何性质和均值不等式来解决最值问题.[方法演示]法一:综合运用正、余弦定理由正弦定理知(2+b )(sin A -sin B )=(c -b )sin C 可化为(2+b )(a -b )=c (c -b ), 将a =2代入整理,得b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,故A =π3,则△ABC 的面积S =12bc sin A =34bc .而b 2+c 2-a 2=bc ≥2bc -a 2⇒bc ≤4, 所以S =34bc ≤3,当且仅当b =c =2时取到等号, 故△ABC 的面积的最大值为 3. 法二:正、余弦定理与数形结合由法一得A =π3,可知△ABC 的边a =2为定长,△ABC 的角A =π3为定值,作出示意图如图所示,满足条件的点A 在圆周上的运动轨迹为优弧BC (包括两个端点B ,C ),易知当点A 位于优弧中点时,此时△ABC 的面积最大,由于A =π3,则此时的△ABC 是等边三角形,面积为 3.法三:正、余弦函数的有界性由法一知A =π3,则由正弦定理得,b =a sin A ·sin B =433sin B ,c =433sin C ,则S △ABC=12bc sin A =34bc =433sin B ·sin C =433·12[cos(B -C )-cos(B +C )]=233cos(B -C )+12≤233·⎝⎛⎭⎫1+12=3,当且仅当cos(B -C )=1,即B =C 时,△ABC 的面积取得最大值 3.法四:函数思想 由法三得S =433sin B ·sin C =433sin B ·sin 2π3-B ,令g (B )=sin B ·sin ⎝⎛⎭⎫2π3-B =sin B32cos B +12sin B =12sin ⎝⎛⎭⎫2B -π6+14. 由0<B <2π3,易得g (B )max =34,当且仅当B =π3时取等号,所以△ABC 的面积的最大值为 3.答案: 3 [解题师说]上述四种解法,可归为两类:法一、三、四是借助正、余弦定理,把三角形面积这个目标函数转化为边或角的形式,然后借助基本不等式或函数性质来解决;法二是结合问题特征,构造几何图形来求得最值,直观迅速.不难发现,法三与法四的区别仅是对式子sin B ·sin C 的变形方法不同,两者本质相同. [应用体验]1.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.解析:如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F , 则BF <AB <BE .在等腰三角形CFB 中,∠FCB =30°,CF =BC =2, ∴BF =22+22-2×2×2cos 30°=6- 2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°, BE =CE ,BC =2,BE sin 75°=2sin 30°,∴BE =212×6+24=6+ 2.∴6-2<AB <6+ 2. 答案:(6-2,6+2)2.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 解析:由sin A +2sin B =2sin C 及正弦定理, 得a +2b =2c . 由余弦定理得,cos C =a 2+b 2-c 22ab=a 2+b 2-14(a +2b )22ab=34a 2+12b 2-22ab 2ab =3a 8b +b 4a -24≥6-24,当且仅当3a 2=2b 2时取等号. 故cos C 的最小值为6-24.答案:6-24一、选择题1.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )sin C .若a =3,则b 2+c 2的取值范围是( )A .(5,6]B .(3,5)C .(3,6]D .[5,6]解析:选A 由正弦定理可得,(a -b )(a +b )=(c -b )c ,即b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,则A =π3.又b sin B =c sin C =a sin π3=2,所以b 2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=41-cos 2B 2+1-cos[2(A +B )]2=3sin 2B -cos 2B +4=2sin2B -π6+4.又△ABC 是锐角三角形,所以B ∈⎝⎛⎭⎫π6,π2,所以2B -π6∈⎝⎛⎭⎫π6,5π6.所以b 2+c 2的取值范围是(5,6].2.已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5解析:选D ∵23cos 2A +cos 2A =0,∴23cos 2A +2cos 2A -1=0,解得cos 2A =125,∵△ABC 为锐角三角形,∴cos A =15.由余弦定理知a 2=b 2+c 2-2bc cos A ,即49=b 2+36-125b ,解得b =5或b =-135(舍去). 3.在△ABC 中,A =60°,BC =10,D 是AB 边上不同于A ,B 的任意一点,CD =2,△BCD 的面积为1,则AC 的长为( ) A .2 3 B. 3 C.33D.233解析:选D 由S △BCD =1,可得12×CD ×BC ×sin ∠DCB =1,即sin ∠DCB =55,所以cos ∠DCB =255或cos ∠DCB =-255.又∠DCB <∠ACB =180°-A -B =120°-B <120°,所以cos ∠DCB >-12,所以舍去cos ∠DCB =-255.在△BCD 中,cos ∠DCB =CD 2+BC 2-BD 22CD ·BC =255,解得BD =2,又sin ∠DCB =55,由正弦定理得sin ∠DBC =CD sin ∠DCB 2=1010,在△ABC 中,由正弦定理可得AC =BC sin B sin A =233.4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =( )A.223B.24C.64D.63解析:选C 因为DE ⊥AB ,DE =22,所以AD =22sin A ,所以BD =AD =22sin A .因为AD =DB ,所以∠A =∠ABD ,所以∠BDC =∠A +∠ABD =2∠A .在△BCD 中,由正弦定理BD sin C =BC sin BDC ,得22sin A 32=4sin 2A,整理得cos A =64. 5.为测出所住小区的面积,某人进行了一些测量工作,所得数据如图所示,则小区的面积是( )A.3+64 km 2B.3-64 km 2C.6+34km 2D.6-34km 2解析:选D 如图,连接AC ,根据余弦定理可得AC =22+12-2×2×1×12==3,故△ABC 为直角三角形,且∠ACB =90°,∠BAC =30°,故△ADC 为等腰三角形,设AD =DC =x ,根据余弦定理得x 2+x 2+3x 2=3,即x 2=32+3=3(2-3).所以所求小区的面积为12×1×3+12×3(2-3)×12=23+6-334=6-34(km 2).6.若钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A.22B .1 C. 2D. 5解析:选D 由题意可得12AB ·BC ·sin B =12,又AB =1,BC=2,所以sin B =22,所以B =45°或B =135°.当B =45°时,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B=1,此时AC =AB =1,BC =2,易得A =90°,与“钝角三角形”条件矛盾,舍去.所以B =135°.由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B = 5.7.在非等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π6,π3D.⎝⎛⎭⎫π3,π2解析:选D 由题意得sin 2A <sin 2B +sin 2C ,由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0,则cos A =b 2+c 2-a 22bc >0.因为0<A <π,所以0<A <π2,又a 为最大边,所以A >π3,即角A 的取值范围为⎝⎛⎭⎫π3,π2.8.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =b cos C +c sin B ,且△ABC 的面积为1+2,则b 的最小值为( )A .2B .3 C. 2D. 3解析:选A 由a =b cos C +c sin B 及正弦定理,得sin A =sin B cos C +sin C sin B ,即sin(B +C )=sin B cos C +sin C sin B ,得sin C cos B =sin C sin B ,又sin C ≠0,所以tan B =1.因为B ∈(0,π),所以B =π4.由S △ABC =12ac sin B =1+2,得ac =22+4.又b 2=a 2+c 2-2ac cos B ≥2ac -2ac =(2-2)(4+22)=4,当且仅当a =c 时等号成立,所以b ≥2,b 的最小值为2,故选A.9.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A -sin B =c (sin A -sin C )a +b,b =3,则△ABC 的面积的最大值为( )A.334B.34C.332D.32解析:选A 根据正弦定理由sin A -sin B =c (sin A -sin C )a +b ,可得a -b =c (a -c )a +b,得a 2-b 2=c (a -c ),即a 2+c 2-b 2=ac ,故a 2+c 2-b 22ac =12=cos B ,∵B ∈(0,π),∴B =π3.又由b=3,可得a 2+c 2=ac +3,故a 2+c 2=ac +3≥2ac ,即ac ≤3,当且仅当a =c =3时取等号,故ac 的最大值为3,这时△ABC 的面积取得最大值,为12×3×sin π3=334.10.为了竖一块广告牌,要制造一个三角形支架,如图,要求∠ACB =60°,BC 的长度大于1 m ,且AC 比AB 长0.5 m ,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A.⎝⎛⎭⎫1+32m B .2 m C .(1+3)mD .(2+3)m解析:选D 设BC 的长度为x m ,AC 的长度为y m ,则AB 的长度为(y -0.5)m ,在△ABC 中,由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,得(y -0.5)2=y 2+x 2-2xy ×12,化简得y (x -1)=x 2-14.因为x >1,所以x -1>0,因此y =x 2-14x -1=(x -1)+34(x -1)+2≥3+2,当且仅当x -1=34(x -1)时取等号,即x =1+32时,y 取得最小值2+3,因此AC最短为(2+3)m.11.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin(B +A )+sin(B -A )=3sin 2A ,且c =7,C =π3,则△ABC 的面积是( )A.334B.736 C.334或213D.334或736解析:选D 由sin(B +A )+sin(B -A )=3sin 2A ,可得2sin B cos A =6sin A cos A .当cos A =0时,得A =π2,因为C =π3,则B =π6,又c =7,由正弦定理,得b =c sin B sin C =213,由三角形的面积公式知△ABC 的面积S =12bc sin A =736;当cos A ≠0时,由2sin B cos A =6sin A cos A ,得sin B =3sin A ,根据正弦定理可知b =3a ,由余弦定理可知cos C =a 2+b 2-c 22ab =a 2+9a 2-76a 2=12,可得a =1,b =3,此时△ABC 的面积S =12ab sin C =334.综上可知,△ABC 的面积为736或334. 12.如图所示,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足b =c ,b a =1-cos B cos A.若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2,OB =1,则四边形OACB 面积的最大值是( )A.4+534B.8+534 C .3 D.4+52 解析:选B 由b a =1-cos B cos A及正弦定理得sin B cos A =sin A -sin A cos B ,所以sin(A +B )=sin A ,所以sin C =sin A .又b =c ,所以a =b =c ,△ABC 为等边三角形.设△ABC的边长为k ,则k 2=12+22-2×1×2×cos θ=5-4cos θ,则S 四边形OACB =12×1×2sin θ+34k 2=sin θ+34(5-4cos θ)=2sin θ-π3+534≤2+534=8+534,所以当θ-π3=π2,即θ=5π6时,四边形OACB 的面积取得最大值,且最大值为8+534. 二、填空题13.设△ABC 三个内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2sin C =4sin A ,(ca +cb )(sin A -sin B )=sin C (27-c 2),则△ABC 的面积为________.解析:由a 2sin C =4sin A ,得ac =4.由(ca +cb )(sin A -sin B )=sin C (27-c 2),得(a +b )(a -b )=27-c 2,即a 2+c 2-b 2=27,∴cos B =a 2+c 2-b 22ac =74,则sin B =34, ∴S △ABC =12ac sin B =32. 答案:3214.在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =__________.解析:如图,AD 为△ABC ,BC 边上的高.设BC =a ,由题意知AD =13BC =13a .又B =π4,所以BD =AD =13a ,DC =23a . 在Rt △ABD 中,由勾股定理得,AB = ⎝⎛⎭⎫13a 2+⎝⎛⎭⎫13a 2=23a . 同理,在Rt △ACD 中,AC =⎝⎛⎭⎫13a 2+⎝⎛⎭⎫23a 2=53a . ∵S △ABC =12AB ·AC ·sin ∠BAC =12BC ·AD , ∴12×23a ×53a ·sin ∠BAC =12a ·13a , ∴sin ∠BAC =310=31010. 答案:31010 15.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为__________.解析:由题意得,4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得,2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎫A +π4=1.∵0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,∴A =π2,S =12bc sin A =12bc .又b +c =8≥2bc ,当且仅当b =c 时取“=”,∴bc ≤16,∴S 的最大值为8.答案:816.在△ABC 中,B =30°,AC =25,D 是AB 边上的一点,CD =2,若∠ACD 为锐角,△ACD 的面积为4,则BC =________.解析:依题意得S △ACD =12CD ·AC ·sin ∠ACD =25·sin ∠ACD =4,sin ∠ACD =25.又∠ACD 是锐角,因此cos ∠ACD =1-sin 2∠ACD =15.在△ACD 中,AD =CD 2+AC 2-2CD ·AC ·cos ∠ACD =4.又ADsin ∠ACD =CD sin A ,所以sin A =CD ·sin ∠ACD AD =15.在△ABC 中,AC sin B =BC sin A ,所以BC =AC ·sin A sin B=4. 答案:4。