苏教版九年级-圆的对称性-知识点及典型例题(附答案)

合集下载

九年级数学上册2.2圆的对称性与圆相关的概念有哪些?素材苏科版(new)

九年级数学上册2.2圆的对称性与圆相关的概念有哪些?素材苏科版(new)

与圆相关的概念有哪些?难易度:★★★关键词:概念答案:连接圆上任意两点的线段叫做弦;经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆;大于半圆的弧叫做优弧;小于半圆的弧叫做劣弧.【举一反三】典题:下列说法中错误的有()(1)在同一个圆中,直径是最长的弦;(2)半圆是一条弧;(3)圆是轴对称图形,且只有一条过圆心对称轴;(4)长度相等的弧是等弧。

A、(1)(2);B、(1)(3);C、(2)(3);D、(3)(4).思路导引:在同圆或等圆中,直径是最长的弦;半圆是一条弧;圆是轴对称图形,有无数条对称轴(过圆心的直线);等弧是指在同圆或等圆中互相重合的弧。

标准答案:D.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

苏科版初三课件2.2 圆的对称性 (2)

苏科版初三课件2.2 圆的对称性 (2)

2.2 圆的对称性(2)
知识应用
1. 如图,CD为⊙O的直径,弦AB⊥CD于点 E,CE=1,AB=10,求CD的长.
2.2 圆的对称性(2)
拓展延伸
如图,AB、CD是⊙O的两条弦,AB∥CD, 弧 AC与弧BD相等吗?为什么?
2.2 圆的对称性(2)
变式一
若⊙O的直径是50cm,弦AB∥CD,且AB =48 cm,CD=40 cm,求AB、CD之间的距 离.
结论:AM=BM A⌒D=B⌒D A⌒C=⌒BC
2.2 圆的对称性(2)
典型例题
例1.如图,以点O为圆心的两个同心圆 中,大圆的弦AB交小圆于点C、D.AC与BD 相等吗?为什么?
AC
O
P
DB
2.2 圆的对称性(2)
典型例题
例2. 如图,已知在⊙O中,弦AB的长 为8厘米,圆心O到AB的距离为直径是50cm,弦AB∥CD,且AB=48 cm, CD=40 cm,求AB、CD之间的距离.
如图,在半径为5的扇形AOB中,∠AOB=90°, 点C是弧AB上的一个动点(不与点A、B重合) OD⊥BC,OE⊥AC,垂足分别为D、E. (1)当BC=6时,求线段OD的长; (2)在△DOE中是否存在长度保持不变的边?如
果存在,请指出并求其长度,如果不存在,请说 明理由;
2.2 圆的对称性(2)
课堂总结
通过本节课的学习,你对圆的对称性有哪些认识?
2.2 圆的对称性(2)
课后作业
课本P49 的5,6,7, 8.
2.2 圆的对称性(2)
初中数学 九年级(上册)
2.2 圆的对称性 (2)
初三数学组
2.2 圆的对称性(2)
操作一
在纸上画⊙O,并画出它的任意一条直径, 将⊙O沿这条直径折叠,折痕两旁的部分重合 吗?

苏科版数学九年级上册 5.2 圆的对称性(两课时,含答案)-

苏科版数学九年级上册 5.2 圆的对称性(两课时,含答案)-

5、2圆的对称性(1)第3课目标与方法1.理解圆的轴对称性和中心对称性.2.利用圆的旋转不变性,研究圆心角、弧、•弦之间相互关系定理及其简单应用. 3.通过观察、比较、操作、推理、归纳等活动,发展空间观念、•推理能力及概括问题的能力.基础与巩固1.下列说法中,不正确的是().A.圆是轴对称图形; B.圆的任意一条直径所在直线都是圆的对称轴 C.圆的任一直径都是圆的对称轴; D.经过圆心的任意直线都是圆的对称轴2.如图1,AB、CD是⊙O的直径,AB∥DE,则().A.AC=AE B.AC>AE C.AC<AE D.AC与AE的大小无法确定A(1) (2) (3) 3.(1)如图2,弦AB把⊙O分成2:7两部分,∠AOB=______°;(2)在⊙O中,弦AB的长恰好等于半径,弦AB所对的圆心角为______°;(3)圆的一条弦分圆为3:6两部分,其中劣弧所对圆心角为_______°.4.如图3,在⊙O中,AB AC=,∠B=70°,∠A=_____°.5.如图,在⊙O中,OA是半径,AB、AC是弦,且AB AC=.求证:点O在∠BAC的平分线上.==,∠BOC=50°,求∠AOE的度数.6.如图,在⊙O中,AB是直径,BC CD DEAB拓展与延伸=,∠1=30°,求∠2的度数.7.如图,在⊙O中,AC BDD8.已知:如图,AB是⊙O的直径,M、N分别为AO、BO的中点,CM⊥AB,DN⊥AB,•垂足分=.别为M、N,求证:AC BDA智力操如图,AB=2CD ,AB 与2CD 相等吗?动手量一量,试说明其中的道理.答案:1.C 2.A 3.(1)80;(2)60;(3)120 4.40 5.证明:在⊙O 中,由AB=AC ,•得AB AC =. 在△AOB 和△AOC 中,AB=AC ,AO=AO ,BO=CO , ∴△AOB ≌△AOC .∴∠OAC=∠OAB ,即点O 在∠BAC 的平分线上. 60.30° 7.∵AC BD =,∴AC BC BD BC -=-,即AB DC =. ∴∠1=∠2.又∵∠1=30°,∴∠2=30° 8.连接CO 、DO .∵M 、N 分别为AO 、BO 的中点, ∴MO=12AO ,NO=12BO .∵AO=BO ,∴MO=NO . 又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO=∠CNO=90°. 在Rt △COM•和Rt △DON 中,CO=DO ,MO=NO , ∴Rt △COM ≌Rt △DON .∴∠COA=∠DOB .∴AC BD =智力操 •AB ≠2CD 或AB<2CD .取AB 的中点,连接AE 、BE . 由于2AB CD =,所以AE EB CD ==, 所以AE=BE=CD .在△ABE 中,AE+BE>AB , 所以2CD>AB .5、2圆的对称性(2)第4课目标与方法1.利用圆的轴对称性探究垂径定理、证明垂径定理.2.利用垂径定理进行有关的计算与证明.3.在经历探索与证明垂径定理的过程中,•进一步体会和理解研究几何图形的各种方法.基础与巩固1、如图1,⊙O的直径CD与弦AB相交于点M,只要再添加一个条件:_______,•就可得到M 是AB的中点.CBA D(1) (2) (3)2.•在圆2中有一条长为16cm•的弦,•圆心到弦的距离为6cm,•该圆的直径的长为_____cm.3.如图3,在⊙O中,AB为弦,OC⊥AB,垂足为C,若OA=5,OC=3,则弦AB等于().A.10 B.8 C.6 D.44.一种花边是由如图的弓形组成的,ACB的半径为5,弦AB=8,则弓形的高CD为( •).A.2 B.52C.3 D.1635.如图,⊙O的直径AB=10cm,∠BAC=30°,求弦BC的长.BA拓展与延伸6.如图,⊙O1与⊙O2相交于A、B两点,过点A作O1O2的平行线与两圆相交于点C、D,已知O1O2=20cm,求CD的长.7.如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相交于C、D两点,:AC=BD.求证8.如图,一条公路的转弯处是一段圆弧(即图中的CD,点O是CD的圆心),•其中CD=600m,点E在CD上,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.智力操小红、小明在一起做作业,老师布置的一道思考题引起了他们的兴趣:“已知半径为10cm 的⊙O内有两条平行弦AB、CD,且AB=12cm,CD=16cm,求AB、CD间的距离.”小红得到的结果是“两平行弦之间的距离为14cm”,小明得到的结果是“两平行弦之间的距离为2cm.”你认为他俩谁正确?为什么?说明你的理由.答案:1.CD⊥AB 2.20 3.B 4.A5.过点O作OD⊥AC,垂足为D,则AD=DC,又∵AO=OB,∴OD是△ABC的中位线.连接BC,∴OD∥BC,∴∠BCA=∠ODA=90°.在Rt•△ABC•中,•∠BAC=30°,∴BC=12AB=12×10=5(cm)6.分别过O1、O2两点作CD的垂线段O1E、O2F,垂足分别为E、F,则AE=12AC,AF=12AD.∵O1E⊥CD,O2F⊥CD,∴∠O1EC=∠O2FC=90°,∴O1E∥O2F.•又∵O1O2∥CD,∴四边形O1O2FE为平行四边形.∴EF=O1O2=20(cm),∴CD=CA+AD=2AE+2AF=2EF=•40(cm)7.过点O作OE⊥AB,垂足为E,则AE=EB,CE=ED.∴AE-CE=EB-ED,即AC=BD8.•由径垂定理,得CF=12CD=300(m),设半径OC=R(m),则OF=(R-90)(m),在Rt△OCF中,(R-90)2+3002=R2,R=545(m).智力操都不正确,他们均只说了一种情况.本题应分为两种情况讨论: (1)AB、CD在圆心O的两侧,两弦间距离为h1+h2=8+6=14(cm);(2)AB、CD•在圆心O的同侧,两弦间距离为h1-h2=8-6=2(cm).。

苏科版九年级数学上册期末专题:第二章对称图形-圆(含答案解析)

苏科版九年级数学上册期末专题:第二章对称图形-圆(含答案解析)

苏科版九年级数学上册期末专题:第二章对称图形-圆一、单选题(共10题;共30分)1.如图,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于( )A. 75°B. 60°C. 45°D. 30°2.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B. 28°C. 33°D. 48°3.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A. 100°B. 110°C. 120°D. 130°4.如图,△ABC内接于⊙O,点P是上任意一点(不与A,C重合),∠ABC=55°,则∠POC的取值范围x是()A. 0<x<55°B. 55°<x<110°C. 0<x<110°D. 0<x<180°5.如图,△ABC的顶点A,B,C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 70°B. 60°C. 45°D. 30°6.如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2,那么∠AOB等于()A. 90°B. 100°C. 110°D. 120°7.一个钢管放在V形架内,下是其截面图,O为钢管的圆心.如果钢管的半径为25 cm,∠MPN = 60°,则OP 的长为A. 50 cmB. 25cmC. cmD. cm8.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A. P在圆内B. P在圆上C. P在圆外D. 无法确定9.己知正六边形的边长为2,则它的内切圆的半径为()A. 1B.C. 2D. 210.如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A. 70°B. 40°C. 50°D. 20°二、填空题(共10题;共30分)11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是________.12.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于________.13.(2017•淮安)如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4:3:5,则∠D的度数是________°.14.如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y= 经过圆心H,则反比例函数的解析式为________.15.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD=________.16.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是________ 度.17.已知的半径为,,则点与的位置关系是点在________.18.⊙O的半径为5,弦BC=8,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为________.19.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为________ cm2(不考虑接缝等因素,计算结果用π表示).20.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是________.三、解答题(共8题;共60分)21.已知排水管的截面为如图所示的⊙O,半径为10,圆心O到水面的距离是6,求水面宽AB.22.如图,⊙O的半径OC⊥AB,D为上一点,DE⊥OC,DF⊥AB,垂足分别为E、F,EF=3,求直径AB 的长.23.如图所示,在△ABC中,CE,BD分别是AB,AC边上的高,求证:B,C,D,E四点在同一个圆上.24.如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB的延长线于点D,OD=30cm.求直径AB的长.25.如图,AD=CB,求证:AB=CD.26.如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.27.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在上.(1)求∠E的度数;(2)连接OD、OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值28.如图,I是△ABC的内心,AI的延长线交边BC于点D,交△ABC的外接圆于点E.(1)BE与IE相等吗?请说明理由.(2)连接BI,CI,CE,若∠BED=∠CED=60°,猜想四边形BECI是何种特殊四边形,并证明你的猜想.答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】B4.【答案】C5.【答案】B6.【答案】D7.【答案】A8.【答案】C9.【答案】B10.【答案】D二、填空题11.【答案】1012.【答案】613.【答案】12014.【答案】﹣815.【答案】130°16.【答案】15017.【答案】外18.【答案】2或819.【答案】300π20.【答案】﹣2≤BE<3三、解答题21.【答案】解:如图,过O点作OC⊥AB,连接OB,根据垂径定理得出AB=2BC,再根据勾股定理求出BC===8,从而求得AB=2BC=2×8=16.22.【答案】解:∵OC⊥AB,DE⊥OC,DF⊥AB,∴四边形OFDE是矩形,∴OD=EF=3,∴AB=623.【答案】证明:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.24.【答案】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴∠BOC=60°,又∵CD为⊙的切线,∴∠OCD=90°,∴∠D=30°,∴在Rt△OCD中,OC= OD=15cm,∴AB=2OC=30cm25.【答案】证明:∵同弧所对对圆周角相等,∴∠A=∠C,∠D=∠B.在△ADE和△CBE中,∠∠,∠∠∴△ADE≌△CBE(ASA).∴AE=CE,DE=BE,∴AE+BE=CE+DE,即AB=CD.26.【答案】解;(1)证明:连接OD,如图1所示:∵OD=OC,∴∠DCB=∠ODC,又∠DOB为△COD的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,又∵∠A=2∠DCB,∴∠A=∠DOB,∵∠ACB=90°,∴∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,∴OD⊥AB,又∵D在⊙O上,∴AB是⊙O的切线;(2)解法一:过点O作OM⊥CD于点M,如图1,∵OD=OE=BE=BO,∠BDO=90°,∴∠B=30°,∴∠DOB=60°,∵OD=OC,∴∠DCB=∠ODC,又∵∠DOB为△ODC的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,∴∠DCB=30°,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∴OD=2,BO=BE+OE=2OE=4,∴在Rt△BDO中,根据勾股定理得:BD=;解法二:过点O作OM⊥CD于点M,连接DE,如图2,∵OM⊥CD,∴CM=DM,又O为EC的中点,∴OM为△DCE的中位线,且OM=1,∴DE=2OM=2,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∵Rt△BDO中,OE=BE,∴DE=BO,∴BO=BE+OE=2OE=4,∴OD=OE=2,在Rt△BDO中,根据勾股定理得BD=.27.【答案】解:(1)连接BD,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵∠C=120°,∴∠BAD=60°,∵AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,∵四边形ABDE是⊙O的内接四边形,∴∠AED+∠ABD=180°,∴∠AED=120°;(2)连接OA,∵∠ABD=60°,∴∠AOD=2∠ABD=120°,∵∠DOE=90°,∴∠AOE=∠AOD﹣∠DOE=30°,∴n=°=12.°28.【答案】证明:(1)如图1,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4,∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴IE=BE.(2)四边形BECI是菱形,如图2∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE,∵I是△ABC的内心,∴∠4=∠ABC=30°,∠ICD=∠30°,∴∠4=∠ICD,∴BI=IC,由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.第11 页共11 页。

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,AB是半圆的直径,点D是弧AC的中点,∠B=50°,则下列判断不正确的是()A.∠ACB=90°B.AC=2CDC.∠DAB=65°D.∠DAB+∠DCB=180°2、在平面直角坐标系xOy中,以点(﹣3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离3、两直角边分别为15和20的直角三角形的外接圆半径为()A.12.5B.25C.20D.104、如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,若DF恰好是同圆的一个内接正n边形的一边,则n的值为()A.8B.10C.12D.155、如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10B.18C.20D.226、如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A.5cmB.8cmC.10cmD.12cm7、下列命题中的假命题是()A.三点确定一个圆B.三角形的内心到三角形各边的距离都相等C.同圆中,同弧或等弧所对的圆周角相等D.同圆中,相等的弧所对的弦相等8、半径为6,圆心角为120°的扇形的面积是()A.3πB.6πC.9πD.12π9、已知圆锥的底面半径为3,母线长为4,则它的侧面积是( )A.24πB.12πC.6πD.1210、如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABEB.△ACFC.△ABDD.△ADE11、下列命题中是真命题的有()①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的圆是等圆;⑤直径是最大的弦;⑥半圆所对的弦是直径.A.3个B.4个C.5个D.6个12、如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连结AC交DE于点F若sin∠CAB= ,DF=5,则BC的长为()A.8B.10C.12D.1613、如图,A,B,C三点都在⊙O上,∠ACB=30°,AB=2 ,则⊙O的半径为()A.4B.2C.D.214、如图,在平行四边形ABCD中,AB=15,过点D作一圆与AB、BC分别相切于G、H,与边AD、CD相交于点E、F,且5AE=4DE,8CF=DF,则BH等于()A.5B.6C.7D.815、如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx+12与⊙O交于B、C两点,则弦BC长的最小值()A.24B.10C.8D.25二、填空题(共10题,共计30分)16、如图,圆锥体的高cm,底面半径r=1cm,则圆锥体的侧面积为________cm2.17、如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD=________°.18、已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为________19、正六边形的边长是2,则它的面积是________20、已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB 度数为________.21、如图,四边形ABCD内接于⊙O,AB为⊙O的直径,若∠D=130°,则∠CAB =________度22、如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.则sin∠CMD=________.23、在中,,,,则它的外接圆的半径是________,内切圆的半径是________.24、如图,在四边形ABCD中,∠ABC=90°,AD∥BC,AD=,以对角线BD 为直径的⊙O与CD切于点D,与BC交于点E,∠ABD=30°,则图中阴影部分的面积为________.(不取近似值)25、如图所示,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD,BC于M,N两点,与DC切于点P,则图中阴影部分面积是________.三、解答题(共5题,共计25分)26、如图1,一个圆球放置在V型架中.图2是它的平面示意图,CA、CB都是⊙O的切线,切点分别是A、B,如果⊙O的半径为cm,且AB=6cm,求∠ACB.27、在学习圆与正多边形时,马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图,作直径AD;(2)作半径OD的垂直平分线,交⊙O于B,C两点;(3)联结AB、AC、BC,那么△ABC为所求的三角形.请你判断两位同学的作法是否正确,如果正确,请你按照两位同学设计的画法,画出△ABC,然后给出△ABC是等边三角形的证明过程;如果不正确,请说明理由.28、如图,要把残破的轮片复制完整,已知弧上的三点A、B、C.①用尺规作图法找出所在圆的圆心(保留作图痕迹,不写作法);②设△ABC是等腰三角形,底边BC=8cm,腰AB=5cm,求圆片的半径R.29、如图,已知AB是⊙O的直径, CD⊥AB ,垂足为点E,如果BE=OE ,AB=12,求△ACD的周长30、如图所示,在⊙O中直径AB垂直于弦CD,垂足为E,若BE=2 ,CD=6.求⊙O的半径.参考答案一、单选题(共15题,共计45分)1、B2、C3、A4、C5、C6、C7、A8、D10、B11、A12、C13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、28、29、。

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,已知圆的半径是5,弦AB的长是6,则圆心O到弦AB的距离弦心距是A.3B.4C.5D.82、如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=20°,则∠B的度数是()A.20°B.25°C.30°D.35°3、如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°4、如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°5、如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为()A. B.1 C.2 D.26、如图,等边三角形ABC内接于⊙O,若边长为cm,则⊙O的半径为( )A.6cmB.4cmC.2cmD.7、的半径,点P与圆心O的距离,则点P与的位置关系是()A.点在外B.点在上C.点在内D.不确定8、已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O 的切线,C是切点,连结AC,若,则BD的长为()A.2RB.C.RD.9、如图,AB是半圆O的直径,点C是的中点,点D是的中点,连接AC,BD交于点E,则=()A. B. C.1﹣ D.10、如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()A.50B.52C.54D.5611、如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()A. B. C. &nbsp; D.12、已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A. cmB. cmC. cm或cmD. cm或cm13、过圆内一点可以做圆的最长弦()A.1条B.2条C.3条D.4条14、如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为( )A.2cmB.2 cmC. cmD.2 cm15、用半径为5的半圆围成一个圆锥的侧面,则该圆锥的底面半径等于( )A.3B.5C.D.二、填空题(共10题,共计30分)16、如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=________°.17、圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是________.18、若直角三角形的两边a、b是方程的两个根,则该直角三角形的内切圆的半径r =________.19、如图,半径为3的A经过原点O和点C(0,2),B是y轴左侧A优弧上一点,则sin∠OBC=________.20、已知点A、B、C、D均在圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,四边形的周长为10cm.,则∠ABC的度数为________.21、已知的半径为,,则点与的位置关系是点在________.22、如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是________.23、圆的周长公式C=________;圆的面积公式S=________.24、如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是________cm.25、阅读下面材料:在数学课上,老师请同学思考如下问题:小轩的主要作法如下:老师说:“小轩的作法正确.”请回答:⊙P与BC相切的依据是________.三、解答题(共5题,共计25分)26、如图1,一个圆球放置在V型架中.图2是它的平面示意图,CA、CB都是⊙O的切线,切点分别是A、B,如果⊙O的半径为cm,且AB=6cm,求∠ACB.27、如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.28、如图,O是等边△ABC的外心,BO的延长线和⊙O相交于点D,连接DC,DA,OA,OC.(1)求证:△BOC≌△CDA;(2)若AB=,求阴影部分的面积.29、如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.30、已知AB为圆O直径,M、N分别为OA、OB中点,CM⊥AB,DN⊥AB。

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2 .则S=阴影()A.πB.2πC.D. π2、如图,为⊙切线,连接,.若,则的度数为()A. B. C. D.3、如图,的直径AB与弦CD相交于点E,若,,,则的度数是()A. B. C. D.无法确定4、在半径为1的⊙O中,弦AB的长为,则弦AB所对的圆周角的度数为()A.45°B.60°C.45°或135°D.60°或120°5、下列说法正确的是()A.一个点可以确定一条直线B.两个点可以确定两条直线C.三个点可以确定一个圆D.不在同一直线上的三点确定一个圆6、下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的外心到三角形三边的距离相等7、如图所示,⊙O的弦AB、AC的夹角为50°,M、N分别是、的中点,则∠MON的度数是()A.100°B.110°C.120°D.130°8、下列说法中正确的是()A.两个半圆是等弧B.过圆内一点仅可以作出1条圆的最长弦C.相等的圆心角所对的弧相等D.同圆中优弧与半圆的差必是劣弧9、如图,是的内接三角形,是的直径,点在上.若,则的度数为()A. B. C. D.10、已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断11、如图,等腰Rt△ABC和等腰Rt△ADE,∠BAC=∠DAE=90°,AB=2AD=6 ,直线BD、CE交于点P,Rt△ABC固定不动,将△ADE绕点A旋转一周,点P的运动路径长为()A.12πB.8πC.6πD.4π12、如图为4×4的正方形网格,A,B,C,D,O均在格点上,点O是( )A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心13、下列说法中正确的个数有()①三点确定一个圆;②平分弦的直径垂直于弦;③三角形的外心到三角形三边的距离相等;④等弧所对的圆周角相等;⑤以3、4、5为边的三角形,其内切圆的半径是1.A.1个B.2个C.3个D.4个14、如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cmB.四边形AOBC为正方形 C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm 215、如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是()A.3㎝B.4㎝C.5 ㎝D.6㎝二、填空题(共10题,共计30分)16、如图,在中,,,半径,则________.17、如图,⊙O是△ABC的内切圆,切点分别为D,E,F,已知∠A=40°,连接OB,OC,DE,EF,则∠BOC=________°,∠DEF=________°.18、如图,A,B,C三点都在⊙O上,点D是AB延长线上一点,∠AOC=144°,则∠CBD=________度.19、如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2。

苏科版数学九上第二章轴对称图形--圆复习

苏科版数学九上第二章轴对称图形--圆复习
A.150°
B.130°
C.120°
D.60°
2.5.直线与圆的位置关系
一、直线与圆的位置关系
r
O
┐d

相交
r
O
┐d

相切
1、直线和圆相交
d < r.
2、直线和圆相切
d = r.
3、直线和圆相离
d > r.
r
O
d


相离
2.5 直线与圆的位置关系
二、切线的判定定理
经过半径的外端,并且垂直于这条半径的直线是圆的切线
线平分两条切线的夹角.
A
∵PA,PB切⊙O于A,B
∴PA=PB ∠1=∠2
P
1
2
O

B
练习
1、已知:如图1,△ABC中,AC=BC,以BC为直径 的⊙O交
AB于点D,过点D作DE⊥AC于点E,交 BC的延长线于点F.
求证:(1)AD=BD;(2)DF是⊙O的切线.
A
A
D
E
B
O
C
P
F
C
图1
B
图2
2、如图2,PA、PA是圆的切线,A、B为切点,AC为

练习
三、选择题:
下列命题正确的是( C )
A、三角形外心到三边距离相等
B、三角形的内心不一定在三角形的内部
C、等边三角形的内心、外心重合
D、三角形一定有一个外切圆
四、一个三角形,它的周长为30cm,它的内切圆半径为2cm,则这个三
30
角形的面积为______.
2.5直线与圆的位置关系
七、圆线与圆的位置关系
⌒ ⌒
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版九年级-圆的对称性-知识点及典型例题(附答案)
圆的对称性
主要内容:
1. 圆是轴对称图形,也是中心对称图形。

经过圆心的直线是对称轴。

圆心是它的对称中心。

2. 圆心角、弧、弦之间的关系
定理:在同一个圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等。

推论:在同一个圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

如图,用几何语言表示如下:⊙O中,
(1)∵∠AOB=∠A'OB'
(3)∵AB=A'B'
5. 直径垂直于弦的性质(垂径定理)
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

如图:几何语言
【典型例题】
例1. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C 为圆心,CA为半径的圆与AB、BC分别交于点D、E。

求AB、AD的长。

分析:求AB较简单,求弦长AD可先求AF。

解:
例2. 如图,⊙O中,弦AB=10cm,P是弦AB上一点,且PA =4cm,OP=5cm,求⊙O的半径。

分析:⊙O中已知弦长求半径,通常作弦心距构造直角三角形,利用勾股定理求解。

解:
第8题
例3. 如图“五段彩虹展翅飞”是某省利用国债资金修建的横跨渡江的琼洲大桥已正式通车,该桥的两边均有五个红色的圆拱,最高的圆拱的跨度为110米,拱高为22米,求这个圆拱所在圆的直径。

分析:略解:
【模拟试题】一. 选择题。

1. ⊙O 中,弦AB 所对的弧为120°,圆的半径为2,则圆心到弦AB 的距离OC 为(

A.
B. 1
C.
D.
2. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果,则AE 的
长为()
A. 2
B. 3
C. 4
D. 5
3. 如图,⊙O 的弦AB 垂直于直径MN ,C 为垂足,若OA =5cm ,下面四个结论中可能成
立的是()
A. B.
C. D.
4. 下列命题中正确的是()
A. 圆只有一条对称轴
B. 平分弦的直径垂直于弦
C. 垂直于弦的直径平分这条弦
D. 相等的圆心角所对的弧相等 5. 如图,已知AD =BC ,则AB 与CD 的关系为()
A. AB >CD
B. AB =CD
C. AB <CD
D. 不能确定二. 填空题。

6. 半径为6cm 的圆中,有一条长的弦,则圆心到此弦的距离为___________cm 。

7. 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为
厘米.
第5题
第11题
8. 如图,∠A=30°,则B=___________。

9. 过⊙O内一点M的最长的弦为6cm,最短的弦长为4cm,则OM的长为___________。

10. ⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,
则AB和CD的距离为___________。

11. ⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB
=5cm,∠DEB=60°,则CD=___________。

三. 解答题。

12. 如图,⊙O的直径为4cm,弦AB的长为,你能求
出∠OAB的度数吗?写出你的计算过程。

13. 已知,⊙O的弦AB垂直于直径CD,垂足为F,点E在AB 上,且EA=EC。

求证:
14. 如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O 作OC⊥AP于点C,OD⊥PB于点D,则CD 的长是怎么变化的?请说明理由。

15. 如图,⊙O上有三点A、B、C且AB=AC=6,∠BAC=120°,求⊙O的半径。

16. ⊙O的直径AB=15cm,有一条定长为9cm的动弦,CD在上滑动(点C和A、点D与B不重合),且CE⊥CD交AB于E,DF⊥CD交AB于F。

(1)求证:AE=BF;2)在动弦CD滑动过程中,四边形CDFE 的面积是否为定值,若是定值,请给出证明,并求这个定值,若不是,请说明理由。

17. (12上海)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.
【试题答案】
一. 选择题。

1. B
2. A 3 A 4. C 5. B
二. 填空题。

6. 4
7. 10
8. 75°9.
10. 2cm或14cm
11. cm(垂径定理与勾股定理)
三. 解答题。

12 解:过点O作OC⊥AB于C,则

∴∠OAB=30°
13 证明:连结BC
∵AB⊥CD,CD为⊙O的直径
∴BC=AC
∴∠CAB=∠CBA
又EA=EC
∴∠CAB=∠ECA
∴∠CBA=∠ECA
∴△AEC∽△ACB

14. 解:略
15 解:连OA
∵AB=AC,
∴OA⊥BC于D
又∠BAC=120°
∴∠BAD=∠CAD=60°,∠B=∠C=30°
设⊙O的半径为r,则
∴r=6
16. (1)证明:如图,过O作OG⊥CD于G
则G为CD的中点
又EC⊥CD,FD⊥CD
∴EC∥OG∥FD
∴O为EF的中点,即OE=OF
又AB为⊙O的直径
∴OA=OB
∴AE=BF(等式性质)
(2)解:四边形CDFE面积是定值
证明:∵动弦CD滑动过程中条件EC⊥DC,FD⊥CD不变∴CE∥DF不变
∴四边形CDFE为直角梯形,且OG为中位线
∴S=OG·CD
连OC,由勾股定理有:
又CD=9cm
是定值17、解答:解:(1)如图(1),∵OD⊥BC,
∴BD=BC=,
∴OD==;
(2)如图(2),存在,DE是不变的.
连接AB,则AB==2,
∵D和E是中点,
∴DE=AB=;
(3)如图(3),
∵BD=x,
∴OD=,
∵∠1=∠2,∠3=∠4,
∴∠2+∠3=45°,
过D作DF⊥OE.
∴DF=,EF=x,
∴y=DF?OE=(0<x<).。

相关文档
最新文档