1聚类分析

合集下载

聚类分析中常用的距离

聚类分析中常用的距离

聚类分析中常用的距离聚类分析是数据分析中一种常用的技术,它可以帮助对象之间的关系进行划分、推断以及研究。

聚类分析的基本思想就是将被调查者分为几类,使每类中的个体尽可能具有相似的特征,而不同组之间的特征则尽可能不同。

聚类分析是建立在距离概念上的,因此距离是聚类分析中不可或缺的重要因素。

本文将介绍聚类分析中常用的距离,以期使读者能够选择正确的距离来完成聚类分析。

在聚类分析中,最常用的距离有欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离和马氏距离等。

欧式距离是最常用的距离,它的计算方式是计算两个点之间的直线距离,即两个点的每一个维度之间的差的平方和再开平方根,可以表示为:d(x,y)=√d2(x,y)=∑xi-yi2曼哈顿距离是另一种常用的距离,它与欧式距离不同之处在于它采用的是绝对距离,也就是说,它不考虑维度的平方关系,只考虑绝对的差值,可以表示为:d(x,y)=∑|xi-yi|切比雪夫距离是欧式距离和曼哈顿距离的折衷,它介于两者之间,可以表示为:d(x,y)=∑|xi-yi|p闵可夫斯基距离又称交叉距离,它是由结构问题中的最短路径算法演化而来的,可以表示为:d(x,y)=min(∑xi+yi)马氏距离是数据分析中最重要的距离,它介于欧式距离和曼哈顿距离之间,被用来衡量两组数据的相似性,可以表示为:d(x,y)=√ (xi-yi/σi2)以上就是聚类分析中常用的距离,各种距离各有特点,用户可以根据自己的需要来选择最合适的距离。

当然,在实际应用中,也常常用多种距离或者组合多种距离来构建新的距离指标,以更加完善的分析处理数据。

总之,距离的选择是聚类分析的重要组成部分,一个准确的距离指标是保证聚类分析结果准确性的关键。

3.2.6 专利信息分析之数据聚类分析(1)

3.2.6 专利信息分析之数据聚类分析(1)

数据聚类分析
概念
聚类:是指将物理或抽象对象的
集合分成由类似的对象组成的多个类的过程。

由聚类所生成的簇是一组数据对象的集合,同一个簇中的对象彼此相似,与其他簇中的对象相异。

数据聚类分析:又称群分析,衡量不同数据源之间的相似性,对搜集的数据进行探索性分类,是数据挖掘的重要方法之一。

特点
可以提取到隐含的、预先未知的,且具有潜在应用价值的信息
文本聚类
可以处理非结构化信息
旭日图
1信道,基站,移动台,链路2脚本,管理,备份
3服务器,终端,计费
4报文,路由,交换
5
鉴权,数据帧,游戏,秘钥1终端,服务器,呼叫
2报文,组播,标签,虚拟3信道,基站,导频
4电路,电压,内存
5复用,视频,数据单元
矩阵图
王雯祎.基于专利的全球量子技术2.0主题分布[J].世界科技研究与发展,2019,41(02):192.。

经济统计学中的聚类分析方法

经济统计学中的聚类分析方法

经济统计学中的聚类分析方法聚类分析是一种常用的数据分析方法,它在经济统计学中有着广泛的应用。

聚类分析的目标是将一组数据划分为若干个相似的子集,每个子集内的数据相似度高,而不同子集之间的数据相似度低。

这种方法可以帮助经济学家发现数据中的规律和模式,从而更好地理解经济现象。

聚类分析的基本原理是通过计算数据点之间的相似度或距离来确定数据的分组。

常用的相似度度量方法包括欧氏距离、曼哈顿距离和余弦相似度等。

欧氏距离是最常用的相似度度量方法,它计算两个数据点之间的直线距离。

曼哈顿距离则是计算两个数据点在坐标轴上的距离之和。

余弦相似度是通过计算两个向量之间的夹角来度量它们的相似度。

在经济统计学中,聚类分析可以用于多个方面的研究。

首先,它可以帮助经济学家对经济发展水平进行分类。

通过对不同国家或地区的经济指标进行聚类分析,可以将它们划分为不同的发展水平组别。

这有助于我们了解不同地区的经济特点和发展趋势,为政府制定相关政策提供参考。

其次,聚类分析可以用于市场细分。

市场细分是指将一个大市场划分为若干个小市场,每个小市场具有相似的需求和行为特征。

通过对消费者的购买行为和偏好进行聚类分析,可以将消费者划分为不同的群体,从而更好地满足他们的需求。

这对企业来说是非常重要的,可以帮助它们制定更精准的市场营销策略。

此外,聚类分析还可以用于金融风险管理。

金融市场中的数据非常庞大复杂,通过对金融市场数据进行聚类分析,可以将相似的金融资产或交易划分为同一类别。

这有助于金融机构更好地评估风险和制定风险管理策略,从而提高金融市场的稳定性和安全性。

聚类分析方法还可以与其他经济统计学方法相结合,如主成分分析和因子分析。

主成分分析可以用于降维,将高维数据转化为低维数据,而聚类分析可以在降维后的数据上进行分组。

因子分析可以用于提取数据的主要因素,而聚类分析可以将具有相似因素的数据进行分组。

这些方法的结合可以更全面地分析经济数据,提高分析的准确性和可解释性。

聚类分析案例范文

聚类分析案例范文

聚类分析案例范文聚类分析是一种无监督机器学习算法,它通过将数据集中的观测值分成不同的组或簇来发现数据之间的内在结构和相似性。

这种方法可以帮助我们理解数据集,发现隐藏的模式和关联性,并且可以应用于各种领域,包括市场细分、社交网络分析、生物信息学和图像处理等。

以下是一个关于使用聚类分析方法的案例研究,该案例介绍了如何使用聚类分析来帮助一家电商企业在众多商品中挖掘潜在的市场细分。

背景介绍:电商企业销售了大量商品,这些商品拥有不同的特征和属性。

该企业希望利用这些数据来了解他们的客户,并为不同的产品类型制定个性化的推广和营销策略。

为了实现这一目标,他们决定使用聚类分析方法来将客户细分成不同的群组,并理解他们的相似性和差异性。

数据收集:该企业从其销售系统中收集了一份包含多个属性的数据集。

这些属性包括:年龄、性别、购买历史、购买频率、平均订单金额等。

这些属性可以反映客户的购买行为和偏好。

数据预处理:在进行聚类分析之前,需要对数据进行预处理。

这包括对缺失值进行处理、进行数值归一化等。

然后,根据业务需求,选择适当的聚类算法和合适的距离度量方法。

聚类分析过程:在本案例中,采用了一种常见的聚类方法--K均值聚类算法,该算法通过计算数据点之间的欧氏距离来度量它们之间的相似度。

首先,选择合适的K值(聚类簇的个数)。

然后,在初始阶段,随机选择K个点作为聚类中心。

再通过计算每个数据点与聚类中心的距离,并将其归类到最近的聚类簇。

接下来,根据已经分配到每个聚类中的数据点,重新计算新的聚类中心。

这个过程将迭代,直到达到停止准则,如聚类中心不再变化或达到最大迭代次数。

聚类结果分析:在完成聚类过程后,可以根据每个聚类中心的特征和属性,对数据集进行可视化和解释。

这将帮助企业理解各个群组的特征和差异,并从中提取有价值的洞察力。

进而,企业可以根据不同群组的特征制定个性化的营销策略,提高销售和客户满意度。

总结:通过使用聚类分析方法,该电商企业成功地将其客户细分为几个不同的群组。

第一节系统聚类分析

第一节系统聚类分析

第一节系统聚类分析第五章聚类分析(一)教学目的通过本章的学习,对聚类分析从总体上有一个清晰地认识,理解聚类分析的基本思想和基本原理,掌握用聚类分析解决实际问题的能力。

(二)基本要求了解聚类分析的定义,种类及其应用范围,理解聚类分析的基本思想,掌握各类分析方法的主要步骤。

(三)教学要点1、聚类分析概述;2、系统聚类分析基本思想,主要步骤;3、动态聚类法基本思想,基本原理,主要步骤;4、模糊聚类分析基本思想,基本原理,主要步骤;5、图论聚类分析基本思想,基本原理。

(四)教学时数6课时五)教学内容 (1、聚类分析概述2、系统聚类分析3、动态聚类法4、模糊聚类分析5、图论聚类分析统计分组或分类可以深化人们的认识。

实际应用中,有些情况下进行统计分组比较容易,分组标志确定了,分组也就得到了,但是,有些情况下进行统计分组却比较困难,特别是当客观事物性质变化没有明显标志时,用于确定分组的标志和组别就很难确定。

聚类分析实际上给我们提供了一种对于复杂问题如何分组的统计方法。

第一节聚类分析概述一、聚类分析的定义聚类分析是将样品或变量按照它们在性质上的亲疏程度进行分类的多元统计分析方法。

聚类分析时,用来描述样品或变量的亲疏程度通常有两个途径,一是把每个样品或变量看成是多维空间上的一个点,在多维坐标中,定义点与点,类和类之间的距离,用点与点间距离来描述样品或变量之间的亲疏程度;另一个是计算样品或变量的相似系数,用相似系数来描述样品或变量之间的亲疏程度。

二、聚类分析的种类(一)聚类分析按照分组理论依据的不同,可分为系统聚类法,动态聚类法,模糊聚类、图论聚类、聚类预报等多种聚类方法。

1、系统聚类分析法。

是在样品距离的基础上定义类与类的距离,首先将个样品自成n一类,然后每次将具有最小距离的两个类合并,合并后再重新计算类与类之间的距离,再并类,这个过程一直持续到所有的样品都归为一类为止。

这种聚类方法称为系统聚类法。

根据并类过程所做的样品并类过程图称为聚类谱系图。

一篇文章透彻解读聚类分析及案例实操

一篇文章透彻解读聚类分析及案例实操

一篇文章透彻解读聚类分析及案例实操【数盟致力于成为最卓越的数据科学社区,聚焦于大数据、分析挖掘、数据可视化领域,业务范围:线下活动、在线课程、猎头服务、项目对接】【限时优惠福利】数据定义未来,2016年5月12日-14日DTCC2016中国数据库技术大会登陆北京!大会云集了国内外数据行业顶尖专家,设定2个主会场,24个分会场,将吸引共3000多名IT 人士参会!马上领取数盟专属购票优惠88折上折,猛戳文末“阅读原文”抢先购票!摘要:本文主要是介绍一下SAS的聚类案例,希望大家都动手做一遍,很多问题只有在亲自动手的过程中才会有发现有收获有心得。

这里重点拿常见的工具SAS+R语言+Python介绍!1 聚类分析介绍1.1 基本概念聚类就是一种寻找数据之间一种内在结构的技术。

聚类把全体数据实例组织成一些相似组,而这些相似组被称作聚类。

处于相同聚类中的数据实例彼此相同,处于不同聚类中的实例彼此不同。

聚类技术通常又被称为无监督学习,因为与监督学习不同,在聚类中那些表示数据类别的分类或者分组信息是没有的。

通过上述表述,我们可以把聚类定义为将数据集中在某些方面具有相似性的数据成员进行分类组织的过程。

因此,聚类就是一些数据实例的集合,这个集合中的元素彼此相似,但是它们都与其他聚类中的元素不同。

在聚类的相关文献中,一个数据实例有时又被称为对象,因为现实世界中的一个对象可以用数据实例来描述。

同时,它有时也被称作数据点(Data Point),因为我们可以用r 维空间的一个点来表示数据实例,其中r 表示数据的属性个数。

下图显示了一个二维数据集聚类过程,从该图中可以清楚地看到数据聚类过程。

虽然通过目测可以十分清晰地发现隐藏在二维或者三维的数据集中的聚类,但是随着数据集维数的不断增加,就很难通过目测来观察甚至是不可能。

1.2 算法概述目前在存在大量的聚类算法,算法的选择取决于数据的类型、聚类的目的和具体应用。

大体上,主要的聚类算法分为几大类。

聚类分析基础知识总结

聚类分析基础知识总结

聚类分析cluster analysis聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。

聚类分析根据分类对象不同分为Q型和R型聚类分析在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。

但是这个问题又是不可回避的。

下面我们介绍几种方法。

1、给定阈值——通过观测聚类图,给出一个合适的阈值T。

要求类与类之间的距离不要超过T值。

例如我们给定T=0.35,当聚类时,类间的距离已经超过了0.35,则聚类结束。

聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。

样品间亲疏程度的测度研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。

变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。

而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。

定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。

距离:用于对样品的聚类。

常用欧氏距离,在求距离前,需把指标进行标准化。

相似系数:常用于对变量的聚类。

一般采用相关系数。

相似性度量:距离和相似系数。

距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。

样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。

距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。

相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。

IBM SPSS MODELER 实验一、聚类分析

IBM SPSS MODELER 实验一、聚类分析

IBM SPSS Modeler 实验一、聚类分析在数据挖掘中,聚类分析关注的内容是一些相似的对象按照不同种类的度量构造成的群体。

聚类分析的目标就是在相似的基础上对数据进行分类。

IBM SPSS Modeler提供了多种聚类分析模型,其中主要包括两种聚类分析,K-Mean 聚类分析和Kohonen聚类分析,下面对各种聚类分析实验步骤进行详解。

1、K-Means聚类分析实验首先进行K-Means聚类实验。

(1)启动SPSS Modeler 14.2。

选择“开始”→“程序”→“IBM SPSS Modeler 14.2”→“IBM SPSS Modeler 14.2”,即可启动SPSS Modeler程序,如图1所示。

图1 启动SPSS Modeler程序(2)打开数据文件。

首先选择窗口底部节点选项板中的“源”选项卡,再点击“可变文件”节点,单击工作区的合适位置,即可将“可变文件”的源添加到流中,如图2所示。

右键单击工作区的“可变文件”,选择“编辑”,打开如图3的编辑窗口,其中有许多选项可供选择,此处均选择默认设定。

点击“文件”右侧的“”按钮,弹出文件选择对话框,选择安装路径下“Demos”文件夹中的“DRUG1n”文件,点击“打开”,如图4所示。

单击“应用”,并点击“确定”按钮关闭编辑窗口。

图2 工作区中的“可变文件”节点图3 “可变文件”节点编辑窗口图4 文件选择对话框图5 工作区中的“表”节点(3)借助“表(Table)”节点查看数据。

选中工作区的“DRUG1n”节点,并双击“输出”选项卡中的“表”节点,则“表”节点出现在工作区中,如图5所示。

运行“表”节点(Ctrl+E或者右键运行),可以看到图6中有关病人用药的数据记录。

该数据包含7个字段(序列、年龄(Age)、性别(Sex)、血压(BP)、胆固醇含量(Cholesterol)、钠含量(Na)、钾含量(K)、药类含量(Drug)),共200条信息记录。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档