(完整版)第一章行列式试题及答案

合集下载

第1章行列式自测题(答案)

第1章行列式自测题(答案)

内容提要:一、行列式的定义1、2阶和3阶行列式2112221122211211a a a a a a a a D -==312312322113332211333231232221131211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a ---2、排列与逆序定义 由n ,,3,2,1 组成的一个有序数组称为一个n 阶排列. 3、n 阶行列式定义定义 称∑-==nn n p p p np p p p p p nnn n nn a a a a a a a a a a a a D21212121)(212222111211)1(τ )det(ij a =为n 阶行列式,记作D 或n D .也记作)det(ij a .4、三角形行列式:主对角线元素的乘积。

二、行列式的性质 性质1 D D ='.性质2 互换行列式的某两行(或列),行列式仅变符号. 推论 若行列式中某两行(或列)相同,则行列式为零.性质3 行列式某行(列)的各元素乘以k ,等于用数k 乘以行列式.推论 行列式的某行(或列)各元素的公因子可以提到行列式符号外面相乘. 推论 若行列式的某两行(或列)的对应成元素成比例,则行列式为零.性质4 nnn n in i i nnnn n in i i n nnn n in in i i i i n a a a a a a a a a a a a a a a a a a21211121121211121121221111211βββαααβαβαβα+=+++性质5 将行列式的某行(或列)各元素乘以数k 加到另一行(或列)的对应元素上,行列式的值不变.三、行列式的展开定理定义 在n D 中划掉ij a 所在的行和列(即第i 行和第j 列),余下的元素按原来的相对位置构成一个(1-n )阶行列式,称为ij a 的余子式,记作ij M .ij j i ij M A +-=)1( ——ij a 的代数余子式定理1 in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 行展开 或 ni ni i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 列展开 推论 02211=+++jn in j i j i A a A a A a (j i ≠) 或 02211=+++nj ni j i j i A a A a A a (j i ≠) 四、Cramer 规则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 定理 当0≠D 时,方程组(1)有唯一解D D x 11=,D Dx 22=,……,DD x n n =.推论 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a (01=x ,02=x ,……,0=n x 显然是方程组的解,称为零解)1)0≠D ⇒仅有零解. 2)有非零解⇒0=D .《线性代数》单元自测题答案第一章 行列式一、填空题:1.设j i a a a a a 54435231是五阶行列式中带有负号的项,则i =________;j =_________。

第一章 行列式答案详解

第一章 行列式答案详解

第一章行列式习题1.1二阶和三阶行列式1.计算下列二阶行列式.()12112-=4(1)5--=()222111x x x x -++22(1)(1)x x x x =-++-321x x =--【分析】考查二阶行列式的计算公式2.计算下列三阶行列式.()1251312204--1301113113123024204===()2a bcb c a c a b 11()1()011b c b ca b c c a a b c c b a ca b a b b c=++=++----333()3c b a c a b c abc a b c a b b c --=++=-----【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式3.当x 取何值时,3140010x x x¹.【解析】31210214040(24)0241010x x x x x x xxxx x且===-【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式习题1.2排列1.求下列排列的逆序数,并确定它们的奇偶性.()14132;()41324t =,为偶排列()2542316;()5423169t =,为奇排列()3()()246213521n n -L L .()()()(1)2462135212n n n n t +-=L L ,4142443n k k n k k =++⎧⎨=+⎩或时,为奇排列或时,为偶排列【分析】考查逆序数的计算及奇偶排列的概念*2.设排列12n i i i L 的逆序数为k ,求排列121n n i i i i -L 的逆序数.【解析】考虑第m 个数(m=1,2,...,n-1),它与后面n-m 个数的每一个数都有一个“序”,这个序要么是“顺序”,要么是“逆序”。

这样全部的“序”共有:(n-1)+(n-2)+...+2+1=n(n-1)/2个。

12n i i i L 逆序数是k ,那么排列121n n i i i i -L 的逆序是n(n-1)/2-k 【分析】考查逆序概念习题1.3n 阶行列式1.写出四阶行列式中含有因子1123a a 的项.【解析】1123344211233244;a a a a a a a a +-【分析】行列式的定义2.在5阶行列式中,下列各项应取什么符号?()11523314254a a a a a ;()152********,+a a a a a 取“”t =()22132441355a a a a a ;()21324413552,+a a a a a 取“”t =()34153122435a a a a a .()41531224355,a a a a a 取“-”t =【分析】行列式的定义3.设一个n 阶行列式中等于零的元素的个数大于2n n -,试证明该行列式为零.【解析】N 阶行列式共有2n 个元素,等于零的元素的个数大于2n n -,则非零元素个数小于n 个,即一定出现一个0行,则行列式值为0.【分析】行列式的定义4.用行列式的定义计算下列行列式.()1010000200001000n n -L LM M M LML L (23(1)1)112231,11(1)(1)!n n n n n a a a a n τ----=-=- ()2()()1111121211000n n n n a a a a a a --L L MLM M L(1)((1)21)212(1)112(1)1(1)(1)n n n n n n n n n n a a a a a a τ----=-=- 【分析】行列式的定义和主次对角线行列式的结论5.设()11121314212223243132333441424344x a a a a a x a a a f x a a x a a a a a x a --=--,求()f x 中3x 的系数.【解析】根据行列式的定义,3x 系数只能来自于一项11223344()()()()x a x a x a x a ----,即11223344()a a a a -+++【分析】行列式的定义习题1.4n 阶行列式的性质1.用行列式的性质计算下列行列式.()1a x x x x b x xx x c x+++000000a x x x x x x b x xb x x x b x x a x b xc xx c x x x c x x c +=+++=++++2()()()a b x c x x bcx abc ab ac bc x=++-+=+++【分析】各行或各列元素之和相等的行列式+展开定理+三角化方法()22464273271014543443342721621-1321122331299001003279001003270100327190010044310000116100001169001006210029400294c c r r c c c c r r +----===121000011601003272940000000294r r «=-=-【分析】行列式性质+行列式性质+三角化方法()3ab ac aebd cd debf cf ef---1111111111110020204111020002abcdef abcdef abcdef abcdef---=-==-=-【分析】各行或各列元素之和相等的行列式+行列式性质+三角化方法2.将下列行列式化为上三角形行列式,并计算其值.()1111111111111022281111002211110002-==-----【分析】三角化方法的计算()222401120112011204135413505550111221031233123048304832051205102110211----------=-=-=---------112011201120111011101111010102500047001800180031003100025---------=-=-=-=----------【分析】三角化方法的计算3.计算下列行列式.()111100[(1)][(1)]100x a a aa a a a x a x a x a x n a x n a a a x ax x a-=+-=+--L LL L L L M M L M M M L M M M L M L LL 1[(1)]()n x n a x a -=+--10111011120201600022002200220004----=-=-=-----()33312()02()2()0x y x y y x yx yy x y x x y x y x y x y x y xx yxy x yx++-+=+-=+=-+--+--【分析】各行或各列元素之和相等的行列式的计算4.计算下列行列式()112311110010010na a a a L L LM M M LM L ,其中0,2,3,,.i a i n ¹=L 122123211111000110000nn n n a a a a a a a a a a a ---ç==---ççL L L L L LM M M LML 【分析】箭型行列式计算()212111111111111na a a +++L LM M M LML ,其中0,1,2,,.i a i n ¹=L 111121211212211111111100000100000n n n nna aa a a a a a a a a a a a a a a a a +++++-ç===++++çç-L LL L L L L M M M LMM M M L M L L 【分析】利用性质变换为箭型行列式计算5.证明()33by az bz ax bx ayx y z bx ayby az bz ax a b zx y bz ax bx ay by azyzx++++++=++++.【证明】左边by az bz ax bx ayby bz ax bx ay azbz ax bx aybx ayby az bz ax bx by az bz ax ay by az bz axbz ax bx ay by az bz bx ay by az ax bx ay by az+++++++=+++=++++++++++++y bz ax bx ay zbz ax bx ayb x by az bz ax a y by az bz axzbx ay by azx bx ay by az ++++=+++++++++22y bz ax bx zax bx ay y bz ax x z x bx ay b x by az bz a yazbz ax b x by azz a yz bz ax zbx ay by x ay by az z bx ay y xy by az++++=+++=+++++++()223333y bz x z x ay y z x z x y x y z b x byz a y z ax b xy z a yz x a b zx y z bx y x y az z xyxyzy zx=+=+=+【分析】拆项性质+行列式性质6.证明121211221100001000000001n n n n nn n x x x a x a x a x a xa a a a a -------=++++-L L L L M M M L M M LL .【证明】11c n n nD xD a 展开-=+()22121n n n n n n x xD a a x D a x a ----=++=++()3232123232312312121n n n n n n n n n n n n n nx D a x a x a x D a x a x a x a a x a a x a x a x a ----------=+++==+++=++++=++++L L L L 【分析】展开定理+递推发习题1.5行列式的展开1.求行列式30453221--中元素2和2-的代数余子式.【解析】2的代数余子式:313104(1)003A +=-=;2-的代数余子式:323234(1)2953A +-=-=【分析】余子式、代数余子式的概念2.用降阶法计算下列行列式【分析】拉普拉斯展开定理()211122200000000000000=0000000111111231n n na a a a a a a a a nn ------+L L LL MM M L M M MM M L M M L L LL12(1)(1)n nn a a a =+- 【分析】行列式性质+展开定理3.计算下面行列式222244441111a b c d a b c d a b c d .【解析】4D 中各列元素均缺少3次方幂的元素,在4D 中添加3次方幂的一行元素,则产生5阶范德蒙行列式,再适当添加一列得:22222333334444411111()ab c d x f x a b c d x a b c d x a b c d x =按最后一列展开,得2341525354555()f x A xA x A x A x A =++++,因为()()()()0f a f b f c f d ====,所以,,,a b c d 为()f x 的四个根,则()()()()()f x k x a x b x c x d =----由根与系数关系有4555Aa b c d A +++=-,而4545(1)A D D +=-=-,55()()()()()()A b a c a d a c b d b d c =------,则()()()()()()()D a b c d b a c a d a c b d b d c =+++------.【分析】克莱姆法则+展开定理4.已知四阶行列式D 中第1行的元素分别为1,2,0,4-,第3行的元素的余子式依次为6,,19,2x ,试求x 的值.【解析】313233346,,19,2A A x A A ==-==-,由展开定理得:162()019(4)(2)0x ⨯+⨯-+⨯+-⨯-=,解得7x =【分析】代数余子式、余子式+展开定理求11121314及11213141.【解析】1112131411111111016110500164241313042463524130635A A A A -----+++===----------1201048428(1)(1)46136313+--=-=--=---11213141112131411521110513131413M M M M A A A A ---+++=-+-=----152142412000424812812081291210912-----==-=-=------【分析】代数余子式、余子式+展开定理的逆运用习题1.6克莱姆法则1.用克莱姆法则求解下列方程组的解12341234123412342326223832242328x x x x x x x x x x x x x x x x ì++-=ïïïï---=ïíï+-+=ïïï-++=-ïî.【解析】1234324,324,648,324,648D D D D D ====-=-,则12341,2,1,2x x x x ===-=-【分析】克莱姆法则2.设1a ,2a ,3a 互不相同,证明方程组123112233222112233000x x x a x a x a x a x a x a x ì++=ïïï++=íïï++=ïïî只有零解.【解析】系数行列式时范德蒙行列式,因为1a ,2a ,3a 互不相同,则系数行列式非零;再由克莱姆法则可知,该齐次方程组只有零解.【分析】克莱姆法则3.当l 为何值时,齐次线性方程组123122334000x x x x x x x l l ì++=ïïï-+=íïï+=ïïî()1只有零解;()2有非零解.当11λλ≠≠-且时,只有零解;当=1=1λλ-或时,有非零解【分析】克莱姆法则自测题1.填空题(每小题10分,共20分)()1行列式103100204199200395301300600=___2000____.()2已知11111111111111D x---=---,则D 中x 的系数是___4-____.2.计算下列行列式:(每小题15分,共30分)()11(1)(1)(2)220000(1)(1)000000n n n n c nn n D αβαββααββα---==-+-展开()212312323411341(1)3452145221211121n n n n n D n n n +==--(1)(1)1231111101111111101111(1)(1)2211110111111111111n n n n n n nnn n n n n n n n-⨯------++==----(1)(2)1122(1)(1)100100(1)(1)(1)(1)(1)221001000n n n n n n n nn n n n n n n ------⨯-++=⋅-=⋅-⋅-⋅(1)12(1)(1)2n n n n n n --+=-⋅⋅(本题15分)已知2231122D yx=,且1112133M M M +-=,1112131A A A ++=,其中ij M 是D 中元素ij a 的余子式,(1)i j ij ij A M +=-,试求D 的值.【解析】1112133235M M M x y +-=⇒-=111213114A A A y x ++=⇒=⇒=则行列式的值为14.(本题15分)解线性方程组231234231234231234231234x ax a x a x e x bx b x b x ex cx c x c x e x dx d x d x e⎧+++=⎪+++=⎪⎨+++=⎪⎪+++=⎩,其中,,,a b c d 互异.【解析】系数行列式非零,由克莱姆法则可知1234,0,0,0x e x x x ====5.(本题20分)证明:11000100,010001n n a b ab a b ab a b a b a b a ba b++++-=¹+-+L L L M M M L M M L .【解析】上课做为例题已讲过。

第一章行列式作业及答案

第一章行列式作业及答案

第一部分 行列式作业(一)选择题(15分)1.在5阶行列式展开式中,12335544i j a a a a a 是其中带有正号的一项,则,i j 之值为( )(A) 1,2i j == (B) 2,3i j == (C) 1,3i j == (D) 2,1i j ==2.在5阶行列式展开式中,包含1325,a a 并带有负号的项是( )(A) 1325344251a a a a a - (B) 1325314254a a a a a - (C) 1325324154a a a a a - (D) 1325314452a a a a a -3.已知行列式111213212223313233a a a a a a m a a a =,则行列式212213311132123313112112221323222222a a a a a a aa a a a a aa a ---=+++( )(A)-4m (B)-2m (C)2m (D)4m4.已知4101111111111111x D ---=----,则4D 中x 的系数是( )(A)4 (B)-4 (C)-1 (D)15. 设方程组123123123112x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩ ,若方程组有惟一解,则λ的值应为( )(A)0 (B)1 (C)-1 (D)异于0与1±的数 (二)填空题(15分)1.排列(1)(2)321n n n -⋅-⋅⋅⋅ 的逆序数为 。

2.排列12n a a a 与排列121n n a a a a - 的逆序数之和等于 。

3.行列式D 中第2行元素的代数余子式之和21222324A A A A +++= ,其中1111111111111111D -=--。

4.若行列式11121321222331323312a a a a a a a a a =,则行列式111311122123212231333132222222a a a a a a a a a a a a --=- 。

线性代数第1章行列式试卷及答案

线性代数第1章行列式试卷及答案

第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。

2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。

解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。

厦门理工学院线性代数第一章行列式参考答案

厦门理工学院线性代数第一章行列式参考答案

第一章 行 列 式系 专业 班 姓名 学号 第一节 二阶与三阶行列式 第三节 n 阶行列式的定义一.选择题一.选择题1.若行列式x52231521 = 0,则=x [ C ](A )2 (B )2- (C )3 (D )3-2.线性方程组ôóôòñ=+=+473322121x x x x ,则方程组的解),(21x x = [ C ] (A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是根的个数是 [ C ](A )0 (B )1 (C )2 (D )3 4.下列构成六阶行列式展开式的各项中,取“+”的有”的有 [ AD ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ] (A )3,2==l k ,符号为正;,符号为正; (B )3,2==l k ,符号为负;,符号为负; (C )2,3==l k ,符号为正;,符号为正; (D )2,3==l k ,符号为负,符号为负6.下列n (n >2)阶行列式的值必为零的是)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题二、填空题 1.行列式1221--k k 0¹的充分必要条件是的充分必要条件是3,1k k ¹¹- 2.排列36715284的逆序数是的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为应取的符号为 负 。

(完整版)行列式习题1附答案.doc

(完整版)行列式习题1附答案.doc

⋯⋯_ ⋯_ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯:⋯号⋯学⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ 线_ 订_ _ 装_ _ ⋯_ _ ⋯_ _ ⋯_ ⋯:⋯名⋯姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:⋯⋯⋯班⋯⋯⋯《线性代数》第一章练习题⋯⋯一、填空⋯⋯⋯1、(631254) _____________ 8⋯⋯⋯2、要使排列(3729m14n5)偶排列, m =___8____, n =____6_____⋯⋯x 1 13 , x 2 的系数分是⋯3、关于x的多式x x x中含 x -2,4⋯1 2 2x⋯⋯4、 A 3方, A 2, 3A* ____________ 108⋯⋯⋯5、四行列式det( a ij)的次角元素之(即a14a23a32a41)一的符号+⋯⋯1 2 1线1234 2346、求行列式的 (1) =__1000 ;(2)2 4 2 =_0___;封2469 469密10 14 13⋯⋯1 2000 2001 2002⋯0 1 0 2003⋯⋯(3)0 1=___2005____;⋯0 20040 0 0 2005⋯⋯1 2 3⋯中元素 0 的代数余子式的___2____⋯(4) 行列式2 1 0⋯3 4 2⋯⋯1 1 1 1⋯1 5 25⋯ 4 2 3 57、 1 7 49 = 6 ;= 1680⋯16 4 9 25⋯1 8 64⋯64 8 27 125⋯⋯矩方,且,,, A 1 1 。

⋯A 4⋯8、|A|=5 | A*| =__125 | 2A| =__80___ | |=50 1 10 1 2 22 2 2 09、 1 0 1 = 2 。

;3 0121 1 01 01 0 0 0bx ay010、若方程cx az b 有唯一解,abc≠0 cy bz a11、把行列式的某一列的元素乘以同一数后加到另一列的元素上,行列式12、行列式a11a12a13a14a21a22a23a24 的共有4! 24, 在a11a23 a14a42, a34a12a31a32a33a34a41a42a43a44a34a12a43 a21 是行列式的,符号是 + 。

《线性代数》第一章行列式精选习题及解答

《线性代数》第一章行列式精选习题及解答

(C)0, 2
(D)0,1
解 按 三 阶 行 列 式 的 对 角 线 法 则 得 D1 = (λ + 1)(λ − 1)2 , D2 = 0 . 若 D1 = D2 , 则
(λ + 1)(λ −1)2 = 0 ,于是 λ = 1,−1,故正确答案为(B).
例 1.5
方程组 ⎪⎨⎧λx1x1++λxx22
故逆序数为 1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B).
例 1.2 下列排列中( )是偶排列.
(A)54312 (B)51432
(C) 45312
(D) 654321
解 按照例 1 的方法计算知:排列 54312 的逆序数为 9;排列 51432 的逆序数为 7;排列
例17分析如果行列式的各行列数的和相同时一般首先采用的是将各列行加到第一列行提取第一列行的公因子简称列行加法这个行列式的特点是各列4个数的和为10于是各行加到第一行得10101010分析此类确定系数的题目首先是利用行列式的定义进行计算
第一章 行列式
1.1 目的要求
1.会求 n 元排列的逆序数; 2.会用对角线法则计算 2 阶和 3 阶行列式; 3.深入领会行列式的定义; 4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质; 7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.
(2) A34 + A35 = ( ), (3) A51 + A52 + A53 + A54 + A55 = ( ).
分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,

(word完整版)行列式练习题及答案

(word完整版)行列式练习题及答案

一、填空题1.设自然数从小到大为标准次序,则排列 1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列 1 3 … )12(-n )2(n )22(-n …2的逆序数为 。

2.在6阶行列式中,651456314223a a a a a a 这项的符号为 。

3.所有n 元排列中,奇排列的个数共 个。

二、选择题1.由定义计算行列式nn 0000000010020001000 -= ( ).(A )!n (B )!)1(2)1(n n n -- (C )!)1(2)2)(1(n n n --- (D )!)1()1(n n n --2.在函数xx x xx x f 21123232101)(=中,3x 的系数是( ).(A )1 (B )-1 (C )2 (D)33.四阶行列式的展开式中含有因子32a 的项,共有( )个。

(A)4; (B)2; (C)6; (D )8。

三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式:1. 各项以行标为标准顺序排列;2. 各项以列标为标准顺序排列;3. 各项行列标均以任意顺序排列。

四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由。

一、填空题1.若D=._____324324324,13332313123222121131211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则2.方程229132513232213211x x --=0的根为___________ 。

二、计算题 1.8171160451530169144312----- 2.dc b a100110011001---3.ab b ba b b b a D n =(word 完整版)行列式练习题及答案4.111113213211211211211nn n n n a a a a x a a a a x a a a a xa a a a x D---+=5.计算n 阶行列式)2(212121222111≥+++++++++=n nx x x n x x x n x x x D n n n n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 行列式试题及答案一 选择题 (每小题3分,共30分)⑴ n 元排列 i 1 i 2… i n 经过相邻对换,变为i n … i 2 i 1,则相邻对换的次数为( )(A) n (B) n /2 (C) 2n(D) n (n -1)/2⑵ 在函数()xx x x x x f 2142112---=中,x 3的系数是( )(A) -2 (B) 2 (C) -4 (D) 4⑶ 若D n =det(a ij )=1,则det(-a ij ) = ( )(A) 1 (B) -1 (C) (-1)n (D) (-1)n(n -1)/2⑷ 设nn λλλλλλNO2121=,则n 不可取下面的值是( )(A)7 (B) 2k +1(k ≥2) (C) 2k (k ≥2) (D) 17⑸ 下列行列式等于零的是( )(A)100123123- (B) 031010300- (C) 100003010- (D) 261422613-⑹ 行列式D 非零的充分条件是( ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 ⑺ =+++111222c bcacbc b ab ac ab a ( )(A) 100010001222+c bc ac bc b ab ac ab a (B) 1111122222+++++c bc ac bc b ab ac ab c bc ac bc b ab ac ab a(C) 101011122222+++++c bc bc b ac abc bc ac bc b ab ac aba(D) 111222bc ac bc ab acab c bc ac bc b ab acab a+⑻ 设a ,b ,c 两两不同,则0222=+++c b a c b a ba a c cb 的充要条件是( )(A) abc =0 (B) a+b+c =0 (C) a =1, b =-1, c =0 (D) a 2=b 2, c =0⑼ 四阶行列式=44332211a b a b b a b a ( )(A) (a 1a 2- b 1b 2) (a 3a 4- b 3b 4) (B) (a 1a 4- b 1b 4) (a 2a 3- b 2b 3) (C) (a 1b 2- a 2b 1) (a 3b 4- a 4b 3) (D) (a 1b 4- a 4b 1) (a 2b 3- a 3b 2)⑽ 齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=-+0302022321321321x x x x x x x x x λ只有零解,则λ应满足的条件是( )(A) λ=0 (B) λ=2 (C) λ=1 (D) λ≠1二 填空 (每小题3分,共15分)⑴ 在五阶行列式中,3524415312a a a a a 的符号是_________。

⑵ 五阶行列式=6200357020381002300031000___________。

⑶ 设7343690211118751----=D ,则5A 14+A 24+A 44=_______。

⑷ 若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。

⑸ 设x 1,x 2,x 3是方程x 3+px +q =0的根,则行列式=132213321x x x x x x x x x __。

三 计算行列式 (每小题6分,共30分)⑴ 0112210321011322211313211----- ⑵()()()()()()()()()()()()2222222222222222321321321321++++++++++++d d d d c c c c b b b b a a a a⑶yy x x-+-+1111111111111111 ⑷ac ba c ba c ba cb a ⑸ xbb b a x b b a a x b a a a x D n ΛΛM M OM M ΛΛ=(a ≠b ) 四 证明题 (每小题10分,共20分)⑴ 用归纳法证明: 任意一个由自然数1,2,…,n 构成的n 元排列,一定可以经过不超过n 次对换变成标准排列12…n⑵ 设平面上三条不同的直线为 000=++=++=++b ay cx a cy bx c by ax ,证明: 三条直线交于一点的充分必要条件是0=++c b a五 解答题 (5分)λ 和μ 取何值时,⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?参考答案一、选择题⑴ (D) ⑵ (A) ⑶ (C) ⑷ (A) ⑸ (D) ⑹ (D) ⑺ (C) ⑻ (B) ⑼ (B); ⑽ (D) 二、填空题 ⑴ “-”调换乘积中元素的位置,使行标成标准排列5341352412a a a a a ,此时列标排列的逆序数为t (24513)=5,故该项带负号。

⑵ 42 423212331)1(620035702038100230003100032=⨯⨯-=⨯⑶ -150用5, 1, 0, 1替代原行列式中的第四列,按第四列展开,有5A 14+A 24+A 44=1501343090211115751-=---⑷ a =0, b =00)(1010022=+-=--=---b a ab ba ab b a a =0, b =0⑸ 0由题意知()()()0321=---x x x x x x k ,其中x 3的系数为k ,x 2的系数为)(321x x x k ++-,与原方程比较,得k =1,x 1+x 2+x 3=0。

将行列式的第2,3行加至第1行,并对第1行提取公因子,得0111)(132213321132213321=++=x x x x x x x x x x x x x x x x x x 三、计算题⑴ 011221032101132275103110201122103210113222113132114241--------------r r r r051132275131101122113227513110)1(53454-------+--------+r r 列展开按第5130271310521122713105423---⨯------⨯-r r 行展开按第1705133151-=--⨯列展开按第⑵ ()()()()()()()()()()()()2222222222222222321321321321++++++++++++d d d d c c c cb b b b a a a a 5232125232125232125232122222122334++++++++++++---d d d dc c c c b b b b a a a a c c c c c c 0221222122212221222222334=++++--d d c c b b a a c c c c ⑶y y x x-+-+1111111111111111yy y x x xr r r r ----1111001111004321yx xy--11111100111100113,1行提取公因子第2214110110011110011y x yx xy r r =---⑷ 对n 阶行列式acb a cb ac b a O OO 按第一行展开,得递推公式 11---=n n n bcD aD D于是有 abc a abc bc a a bcD aD D 2)(32123-=--=-= 2224232343)()2(c b bc a a bc a bc abc a a bcD aD D +-=---=-= 223534534c ab bc a a bcD aD D +-=-=⑸ xbb b a x b b aa x ba a a x D n ΛΛM M OM M ΛΛ=)(000a x a b b b a xb b a a x ba a a x -++++=ΛΛM M O M M ΛΛ)(000a x b b b xb b a x ba a x ab b b a x b b aa x ba a a x -+=ΛΛM M OM M ΛΛΛΛM M O M M ΛΛ1)(1111--+=n D a x b b b x b b a x ba a x a ΛΛM M OM M ΛΛ 1)(1111)1,,2,1(--+-------=-n n i D a x b x b a b x b a b a b x an i bc c MM OΛΛΛ 得递推公式11)()(---+-=n n n D a x b x a D ① D n 的转置行列式相当于将a ,b 互换,于是有11)()(---+-=n n n D b x a x b D ②因为a ≠b ,①⨯(x -b )-②⨯(x -a ),得()()ba a xb b x a D nn n ----=四、证明题⑴ 设n 元排列为i 1i 2…i n 。

当n =2时,最多只需1次对换即可得标准排列12,结论成立。

假设结论对n -1元排列成立,下面证明对n 元排列也成立 ① 若元素i n =n 。

根据归纳法假设,i 1i 2…i n -1可经过不超过n -1次对换变成12… (n -1),亦即i 1i 2…i n -1i n 可经过不超过n -1次对换(<n 次)变成12…n ② 若元素i n ≠n 。

不妨设i k =n ,只需对换元素i k 和i n ,即得第①种情形,故i 1i 2…i n 可经过不超过n 次对换变成12…n ⑵ 必要性设三条直线交于一点(x 0,y 0),则x =x 0,y =y 0,z =1可看成是如下的齐次线性方程组的非零解,⎪⎩⎪⎨⎧=++=++=++000bz ay cx az cy bx cz by ax 故系数行列式0==ba c a cb cb a D 即))((222ca bc ab c b a c b a D ---++++-= ])()()[()(21222a c c b b a c b a -+-+-⋅++-=0=由于三条直线不同,因此,a ,b ,c 不能全部相等,故0=++c b a 。

充分性已知0=++c b a ,要证明下列非齐次线性方程组有唯一解。

⎪⎩⎪⎨⎧-=+-=+-=+b ay cx a cy bx c by ax ① 将前两个方程相加,有)()()(a c y c b x b a +-=+++由于0=++c b a ,得b ay cx -=--,即第三个方程。

相关文档
最新文档