线性代数第一章行列式试题及答案

合集下载

线性代数第一章习题答案

线性代数第一章习题答案

线性代数第一章习题答案第一章:行列式答案第一节A 类题1 –42 3333c b a abc ---3 404 1 第二节A 类题 1 .(1) 7 (2) 4 (3)11 (4) (1)2n n -2.(1) i=8,j=3 (2) i=6,j=8B 类题1. (1)2n n -2. (1)n n -3.(1)2n n T --第三节A 类题1 (1)-3 ( 2)4433211244322311a a a a a a a a -- (3)45x (4)!)1(n n -2 (1)1123344255112335425414233142551423354251152331425 41523344251;;;;;a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---(2)5244312513a a a a a ;5441322513a a a a a ;5142342513a a a a a (3)负号“—” 3 0==b a 4 -2第五节A 类题1 (1)0 (2)-312(3)22x y (4)[]1(1)()n a n b a b -+-- (5) 2--n n a a(6) ∏∑==???? ?-ni i ni i a a a 1101 (7) 12 ()2'6x x F =3 δ33-=-ihgf e dc b aB 类题1把第n-1列的-1倍加到第n 列,第n-2列的-1倍加到第n-1列,----第一列的-1倍加到第二列,直接化为三角形行列式n 22)n 1-n 1+-)(()(2. ()∏∑==-??? ??+ni i ni i a x a x 113. 12122111)2(2122112121110)2(2--≥--=--+--≥-∑n n j ji n n c c i r r D .第六节A 类题1(1)1(2)44a b -(3)()()()()a b c b a c a c b ++---(4)按第一列展开()n n n y x 11+-+2 34M ,()61122112=-=+M A3.0B 类题1 31234()a a a a x x ++++2 按第n 行展开,即可,n n n n n n x x a x a x a x a a ++++++----11222213 ∏≥≥≥++-11121j i n j j i i n n n na b a b a a a第七节A 类题1()313,4,32;2=-==++=c b a c bx ax x f 2满足01113111121111=-=ba a D 的4)1+=a b ( 3 利用范德蒙德行列式计算,解是 4 -6 4 -1B 类题111112222333344440a b c d a b c d a b c d a b c d =章节测试题一选择题1D 2D 3A 4C 5c 二填空121D D D --= 2 –5 3 –3 4 2d 5 ()()n n n a a 1211--三计算1-∑=ni i n a a a a 10112()()()121+---n x x x3、将前n 列加到最后一列,再按最后一列展开得 n n n a a a n D 211)1)(1(-+=+.4 122123112154314321321------=n n n n n n n n nn D n =12212311215431432111112)1(-----+n n n n n nn n n n(各列加到第一列提取公因子=12212311215431432111112)1(-----+n n n n n nn n n n(从第n 行开始减去他的前一行)= 111111111111131111200012)1(nn n n n n n n -----+(按第一列展开)11111111111111112)1( nn n n n n ----+=21)1(12)1(+---n n n n n 四.解方程组(每题10分,共20分)1. 1,1,1;2,2,2,021531211113211321==-====-=≠=-=x x DDx D D D D2.21λ=或。

线性代数第1章行列式试卷及答案

线性代数第1章行列式试卷及答案

第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。

2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。

解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。

(完整版)行列式习题1附答案.doc

(完整版)行列式习题1附答案.doc

⋯⋯_ ⋯_ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯:⋯号⋯学⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ 线_ 订_ _ 装_ _ ⋯_ _ ⋯_ _ ⋯_ ⋯:⋯名⋯姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:⋯⋯⋯班⋯⋯⋯《线性代数》第一章练习题⋯⋯一、填空⋯⋯⋯1、(631254) _____________ 8⋯⋯⋯2、要使排列(3729m14n5)偶排列, m =___8____, n =____6_____⋯⋯x 1 13 , x 2 的系数分是⋯3、关于x的多式x x x中含 x -2,4⋯1 2 2x⋯⋯4、 A 3方, A 2, 3A* ____________ 108⋯⋯⋯5、四行列式det( a ij)的次角元素之(即a14a23a32a41)一的符号+⋯⋯1 2 1线1234 2346、求行列式的 (1) =__1000 ;(2)2 4 2 =_0___;封2469 469密10 14 13⋯⋯1 2000 2001 2002⋯0 1 0 2003⋯⋯(3)0 1=___2005____;⋯0 20040 0 0 2005⋯⋯1 2 3⋯中元素 0 的代数余子式的___2____⋯(4) 行列式2 1 0⋯3 4 2⋯⋯1 1 1 1⋯1 5 25⋯ 4 2 3 57、 1 7 49 = 6 ;= 1680⋯16 4 9 25⋯1 8 64⋯64 8 27 125⋯⋯矩方,且,,, A 1 1 。

⋯A 4⋯8、|A|=5 | A*| =__125 | 2A| =__80___ | |=50 1 10 1 2 22 2 2 09、 1 0 1 = 2 。

;3 0121 1 01 01 0 0 0bx ay010、若方程cx az b 有唯一解,abc≠0 cy bz a11、把行列式的某一列的元素乘以同一数后加到另一列的元素上,行列式12、行列式a11a12a13a14a21a22a23a24 的共有4! 24, 在a11a23 a14a42, a34a12a31a32a33a34a41a42a43a44a34a12a43 a21 是行列式的,符号是 + 。

线性代数第一章行列式训练题解

线性代数第一章行列式训练题解

线性代数第一章行列式训练题一、单项选择题1.二阶行列式1221−−k k ≠0的充分必要条件是( )A .k ≠–1B .k ≠3C .k ≠–1且k ≠3D .k ≠–1或≠3答案:C2.设行列式2211b ab a =1,2211c a c a =2,则222111c b a c b a ++=( )A .–3B .–1C .1D .3 注22112211222111c a c a b a b a c b a c b a +=++答案:D3.如果方程组=+=−=−+0404033232321kx x x x x kx x 有非零解,则 k =( ) A.–2 B.–1C.1D.2 注:使04014013=−−kk答案:B4.设行列式D=333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( ) A .–15 B .–6 C .6D .15答案:C 5.3阶行列式ji a =011101110−−−中元素21a 的代数余了式21A =( )A .–2B .–1C .1D .2 0111)1(12−−+ 答案:C6.已知333231232221131211a a a a a a a a a =3,那么333231232221131211222222a a a a a a a a a −−−=( ) A.–24 B.–12 C.–6D.12答案:B 7.行列式11110111111110−−−−−−第二行第一列元素的代数余子式21A =( )A .–2B .–1C .1D .2答案:B 8.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( )A.m–nB.n–mC.m+nD.–(m+n )答案:B二、填空题请在每小题的空格中填上正确答案。

(完整版)行列式习题答案

(完整版)行列式习题答案

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 n 阶 行 列 式一.选择题1.若行列式 = 0,则[ C ]x52231521-=x (A )2 (B )(C )3(D )2-3-2.线性方程组,则方程组的解=[ C ]⎩⎨⎧=+=+473322121x x x x ),(21x x (A )(13,5)(B )(,5)(C )(13,)(D )()13-5-5,13--3.方程根的个数是[ C ]093142112=x x (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ](A ) (B ) 665144322315a a a a a a 655344322611a a a a a a (C ) (D )346542165321a a a a a a 266544133251a a a a a a 5.若是五阶行列式的一项,则的值及该项的符号为[ B ]55443211)541()1(a a a a a l k l k N -ij a l k ,(A ),符号为正; (B ),符号为负;3,2==l k 3,2==l k (C ),符号为正;(D ),符号为负2,3==l k 2,3==l k 6.下列n (n >2)阶行列式的值必为零的是 [ BD ](A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个二、填空题1.行列式的充分必要条件是1221--k k 0≠3,1k k ≠≠-2.排列36715284的逆序数是133.已知排列为奇排列,则r =2,8,5s = 5,2,8,t = 8,5,2397461t s r4.在六阶行列式中,应取的符号为 负 。

ij a 623551461423a a a a a a 三、计算下列行列式:1.=181322133212.=55984131113.yxyx x y x yyx y x +++332()x y =-+4.=100011000001001005.000100002000010n n -1(1)!n n -=-6.0011,22111,111 n n nn a a a a a a --(1)212,11(1)n n n n n a a a --=-线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第二节 行列式的性质一、选择题:1.如果, ,则 [ C ]1333231232221131211==a a a a a a a a a D 3332313123222121131211111232423242324a a a a a a a a a a a a D ---==1D (A )8(B )(C )(D )2412-24-2.如果,,则 [ B ]3333231232221131211==a a a a a a a a a D 2323331322223212212131111352352352a a a a a a a a a a a a D ---==1D (A )18(B ) (C )(D )18-9-27-3. = [ C ]2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (A )8 (B )2(C )0(D )6-二、选择题:1.行列式 12246000 2. 行列式-3=30092280923621534215=11101101101101112.多项式的所有根是0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 0,1,2--3.若方程= 0 ,则225143214343314321x x --1,x x =±=4.行列式 5==2100121001210012D 三、计算下列行列式:1.2605232112131412-21214150620.12325062r r +=2.xa a a x a a a x 1[(1)]().n x n a x a -=+--线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第三节 行列式按行(列)展开一、选择题:1.若,则中x 的一次项系数是[D]111111111111101-------=x A A (A )1(B )(C )(D )1-44-2.4阶行列式的值等于 [D ]443322110000000a b a b b a b a (A ) (B )43214321b b b b a a a a -))((43432121b b a a b b a a --(C )(D )43214321b b b b a a a a +))((41413232b b a a b b a a --3.如果,则方程组 的解是 [B]122211211=a a a a ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a (A ), (B ),2221211a b a b x =2211112b a b a x =2221211a b a b x -=2211112b a b a x =(C ), (D ),2221211a b a b x ----=2211112b a b a x ----=2221211a b a b x ----=2211112b a b a x -----=二、填空题:1.行列式 中元素3的代数余子式是 -6122305403--2.设行列式,设分布是元素的余子式和代数余子式,4321630211118751=D j j A M 44,j a 4则 =,=-6644434241A A A A +++44434241M M M M +++3.已知四阶行列D 中第三列元素依次为,2,0,1,它们的余子式依次分布为1-5,3,4,则D = -15,7-三、计算行列式:1.321421431432432112341234134101131010141201311123031111310131160.311-==---=-=-2.12111111111na a a +++ ==121111011101110111n a a a+++121111100100100na a a---211112111110010010n c c a a a a a+--+111223211111100001000na a cc a a a a++-+11121101111000000ni ni iia a a c a c a=+++∑1211()(1)nn i i a a a a =+∑或121123113111111000000nn a r r a r r a r r a a a a+------211211212311111000000na a aa a a c c a a a a+++--11122313311111100000ni in nnaa a c c a a a c c a a a a=++++∑1122()(1)nn i ia a a a a =++∑或11221121121110111110111111111(1).n n n n nn i ia a a a a a D a a a a a a a --=++++=+=+=+∑线性代数练习题 第一章 行 列 式系专业 班 姓名学号综 合 练 习一、选择题:1.如果,则 = [ C ]0333231232221131211≠==M a a a a a a a a a D 3332312322211312111222222222a a a a a a a a a D =(A )2 M(B )-2 M(C )8 M(D )-8 M2.若,则项的系数是[ A ]xxx x x x f 171341073221)(----=2x (A )34 (B )25 (C )74 (D )6二、选择题:1.若为五阶行列式带正号的一项,则 i = 2 j = 154435231a a a a a j i 2. 设行列式,则第三行各元素余子式之和的值为 8。

(完整版)线性代数习题集带答案

(完整版)线性代数习题集带答案

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

第一章行列式(学生题目简单答案版)

第一章行列式(学生题目简单答案版)

第二部分 线性代数第一章 行列式题型1.1 行列式的计算(88年,数学一)设4阶矩阵234234(,,,)(,,,)A B αγγγβγγγ==,,其中,234,,,,αβγγγ均为4维列向量,且已知行列式41A B ==,,则行列式A B += .【答案】40.(88年,数学三/数学四)1110110110110111= . 【答案】3-.(89年,数学五)行列式1111111111111111x x x x ---+-=--+-- . 【答案】4x .(90年,数学五)设A 为1010⨯矩阵 10010000010000001100000A ⎛⎫⎪⎪⎪= ⎪⎪ ⎪⎝⎭,计算行列式A E λ-,其中E 为10阶单位矩阵,λ为常数.【解析】101010A E λλ-=-.(91年,数学五)n 阶行列式0000000000000000a b a b a a b b a=.【答案】1(1)n n n a b ++-.(96年,数学一)四阶行列式112233440000000a b a b b a b a 的值等于(). (A )12341234a a a a b b b b -. (B )12341234a a a a b b b b +.(C )12123434()()a a b b a a b b --. (D )23231414()()a a b b a a b b --. 【答案】(D ).(96年,数学五)5阶行列式1000110001100011011a aaa D a a a a a---==------ . 【答案】23451a a a a a -+-+-.(97年,数学四)设n 阶矩阵0111110111110111110111110A ⎛⎫⎪⎪ ⎪=⎪ ⎪ ⎪⎪⎪⎝⎭,则A = .【答案】1(1)(1)n n ---.(99年,数学二)记行列式212322212223333245354435743x x x x x x x x x x x x x x x x ---------------为()f x ,则方程()0f x =的根的个数为().(A )1. (B )2. (C )3. (D )4. 【答案】(B ).(00年,数学四)设(1,0,1)T α=-,矩阵T A n αα=,为正整数,则n aE A -= . 【答案】2(2)n a a -.(01年,数学四)设行列式3040222207005322D =--,则第四行各元素余子式之和的值为 .【答案】28-.(14年,数学一/数学二/数学三)行列式00000000a b abc d c d=(). (A )2()ad bc -.(B )2()ad bc --.(C )2222a d b c -.(D )2222b c a d -.【答案】(B ).(15年,数学一)n 阶行列式200212020022012-=-. 【答案】122n +-.(16年,数学一/数学三)行列式10001=0014321λλλλ---+ . 【答案】43223 4.λλλλ++++题型1.2 行列式的计算(二)矩阵的性质(87年,数学一)设A 为n 阶方阵,且A 的行列式0A a =≠,而*A 是A 的伴随矩阵,则*A =().(A )a . (B )1a. (C )1n a -. (D )na . 【答案】(C ).(87年,数学四)设A 为n 阶方阵,k 为常数,则kA k A =.()【答案】(×).(88年,数学四)设A 是三阶方阵,*A 是A 的伴随矩阵,A 的行列式12A =.求行列式1*(3)2A A --的值.【解析】31*12(3)23A A A --⎛⎫-=- ⎪⎝⎭1627=-.(90年,数学五)设A 为n 阶可逆矩阵,*A 是A 的伴随矩阵,则*A =().(A )1n A-. (B )A . (C )n A . (D )1A-.【答案】(A ).(92年,数学四)设A 为m 阶方阵,B 为n 阶方阵,且00A A a B b C B ⎛⎫=== ⎪⎝⎭,,,则C = .【答案】(1)mn ab -.(92年,数学五)已知实矩阵33()ij A a ⨯=满足条件:(Ⅰ)(,1,2,3)ij ij a A i j ==,其中ij A 是ij a 的代数余子式; (Ⅱ)110a ≠. 计算行列式A .【解析】1A =.(93年,数学五)若12312,,,,αααββ都是四维列向量,且四阶行列式1231,,,,m αααβ=1223,,,,n ααβα=则四阶行列式32112,,,()αααββ+等于().(A )m n +. (B )()m n -+. (C )n m -. (D )m n -. 【答案】(C ).(94年,数学一)设A 为n 阶非零方阵,*A 是A 的伴随矩阵,T A 是A 的转置矩阵,当*T A A =时,证明0A ≠.【证明】略. .(95年,数学一)设A 是n 阶矩阵,满足T AA E =(E 是n 阶单位矩阵,T A 是A 的转置矩阵),0A <,求A E +.【解析】0A E +=.(98年,数学四)设,A B 均为n 阶矩阵,23A B ==-,,则*12A B -= .【答案】2123n --.(03年,数学二)设三阶方阵,A B 满足2A B A B E --=,其中E 为三阶单位矩阵,若101020201A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则B = .【答案】12.(04年,数学一/数学二)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,矩阵B 满足**2ABA BA E =+,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B = .【答案】19.(05年,数学一/数学二/数学四)设123,,ααα均为三维列向量,记矩阵123(,,)A ααα=,123123123(2439)B ααααααααα=++++++,,.如果1A =,那么B = .【答案】2.(06年,数学一/数学二)设矩阵2112A E ⎛⎫=⎪-⎝⎭,为二阶单位矩阵,矩阵B 满足2BA B E =+,则B = .【答案】2.(06年,数学四)已知12,αα为二维列向量,矩阵1212(2,)A αααα=+-,12(,)B αα=.若行列式,6A =,则B = .【答案】2-.(10年,数学二/数学三)设,A B 为3阶矩阵,且1322A B A B -==+=,,,则1A B -+= .【答案】3.(12年,数学二/数学三)设A 为3阶矩阵,且*3A A =,为A 的伴随矩阵,若交换A 的第一行与第二行得矩阵B ,则*BA = .【答案】27-.(13年,数学一/数学二/数学三)设()ij A a =是3阶非零矩阵,A 为A 的行列式,ijA 为ij a 的代数余子式.若0(123)ij ij a A i j +==,,,,则A = . 【答案】1-.题型1.3 行列式的计算(三)秩数,特征值的性质(91年,数学一)设A 是n 阶正定矩阵,E 是n 阶单位矩阵,证明A E +的行列式大于1. 【证明】略.(98年,数学三)齐次线性方程组2123123123000x x x x x x x x x λλλλ⎧++=⎪++=⎨⎪++=⎩,,,的系数矩阵记为A ,若存在3阶矩阵B O ≠,使得AB O =,则().(A )2λ=-且0B =. (B )2λ=-且0B ≠. (C )1λ=且0B =. (D )1λ=且0B ≠. 【答案】(C ).(99年,数学一/数学二)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则().(A )当m n >时,必有行列式0AB ≠. (B )当m n >时,必有行列式0AB =.(C )当n m >时,必有行列式0AB ≠. (D )当n m >时,必有行列式0AB =. 【答案】(B ).(00年,数学三)若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式1B E --= .【答案】24.(00年,数学四)已知四阶矩阵A 相似于,B A 的特征值为2,3,4,5.E 为四阶单位矩阵,则B E -= .【答案】24.(08年,数学三)设3阶矩阵A 的特征值是1,2,2,E 为3阶单位矩阵,则14A E --= .【答案】3.(15年,数学二/数学三)设3阶矩阵A 的特征值为2221B A A E -=-+,,,,其中E 为3阶单位矩阵,则行列式B = .【答案】21.。

(完整版)第一章行列式试题及答案

(完整版)第一章行列式试题及答案

第一章 行列式试题及答案一 选择题 (每小题3分,共30分)⑴ n 元排列 i 1 i 2… i n 经过相邻对换,变为i n … i 2 i 1,则相邻对换的次数为( )(A) n (B) n /2 (C) 2n(D) n (n -1)/2⑵ 在函数()xx x x x x f 2142112---=中,x 3的系数是( )(A) -2 (B) 2 (C) -4 (D) 4⑶ 若D n =det(a ij )=1,则det(-a ij ) = ( )(A) 1 (B) -1 (C) (-1)n (D) (-1)n(n -1)/2⑷ 设nn λλλλλλNO2121=,则n 不可取下面的值是( )(A)7 (B) 2k +1(k ≥2) (C) 2k (k ≥2) (D) 17⑸ 下列行列式等于零的是( )(A)100123123- (B) 031010300- (C) 100003010- (D) 261422613-⑹ 行列式D 非零的充分条件是( ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 ⑺ =+++111222c bcacbc b ab ac ab a ( )(A) 100010001222+c bc ac bc b ab ac ab a (B) 1111122222+++++c bc ac bc b ab ac ab c bc ac bc b ab ac ab a(C) 101011122222+++++c bc bc b ac abc bc ac bc b ab ac aba(D) 111222bc ac bc ab acab c bc ac bc b ab acab a+⑻ 设a ,b ,c 两两不同,则0222=+++c b a c b a ba a c cb 的充要条件是( )(A) abc =0 (B) a+b+c =0 (C) a =1, b =-1, c =0 (D) a 2=b 2, c =0⑼ 四阶行列式=44332211a b a b b a b a ( )(A) (a 1a 2- b 1b 2) (a 3a 4- b 3b 4) (B) (a 1a 4- b 1b 4) (a 2a 3- b 2b 3) (C) (a 1b 2- a 2b 1) (a 3b 4- a 4b 3) (D) (a 1b 4- a 4b 1) (a 2b 3- a 3b 2)⑽ 齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=-+0302022321321321x x x x x x x x x λ只有零解,则λ应满足的条件是( )(A) λ=0 (B) λ=2 (C) λ=1 (D) λ≠1二 填空 (每小题3分,共15分)⑴ 在五阶行列式中,3524415312a a a a a 的符号是_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数第一章行列式试题及答案work Information Technology Company.2020YEAR如何复习线形代数线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系.在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题.一、加强计算能力训练,切实提高计算的准确性二、扩展公式结论蕴涵,努力探索灵活解题途径三、注重前后知识联系,努力培养综合思维能力线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查四、加强综合题型训练,全面系统地掌握好知识计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习,第一章行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式:a11a12… a1na21a22… a2n……… .an1an2… ann如果行列式的列向量组为α1, α2, … ,αn,则此行列式可表示为|α1, α2, … ,αn|.意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n阶矩阵A对应一个n阶行列式,记作|A|.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)12一般地,一个n 阶行列式 a 11 a 12 … a 1na 21 a 22 … a 2n … … … a n1 a n2 … a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素的行标按自然顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列), 一个n 元排列的总项数共有n!个,因此n 阶行列式的值是n!项的代数和。

所谓代数和是在求总和时每项先要乘+1或-1.规定τ(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********, τ(436512)=3+2+3+2+0+0=10.则项n nj j j a a a 2121所乘的是.)1()(21n j j j τ-即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n 元排列的n!项中,奇排列和偶排列各有n!/2个。

至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n nnj j j j j j j j j a a a τ-∑… … … a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算. 3、对角行列式计算行列式中从左上角到右下角的对角线称为主对角线.对角行列式,上三角、下三角行列式的值都等于主对角线上的元素的乘积。

关于副对角线:3(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-4、代数余子式把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.5、化零降阶法化零降阶法 用行列式的性质把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式;或者直接把行列式化成三角行列式,化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握. 6、行列式的性质① 把行列式转置值不变,即|A T |=|A | .② 某一行(列)的公因子可提出.于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量α=β+γ ,则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量α换为β或γ 所得到的行列式.例如|α,β1+β2,γ |=|α,β1,γ |+|α,β2,γ |.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥ 如果在行列式某一行、列的元素,加上另一行、列对应元素的K 倍,则行列式的值不变。

⑦某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.7.范德蒙行列式:形如1 1 1 … 1 a 1 a2 a3 … a na 12 a 22 a 32 … a n 2… … … …a 1n-i a 2n-i a 3n-i … a n n-I 的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于).(i j ji a a -∏<因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.8、克莱姆法则克莱姆法则应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D1/D, D2/D,⋯,D n/D),这里D是系数行列式的值, D i是把系数行列式的第i个列向量换成常数列向量所得到的行列式的值。

说明与改进:按法则给的公式求解计算量太大,没有实用价值,因此法则的主要意义在理论上,用在对解的唯一性的判断。

法则的改进:系数行列式不等于0是非齐次线性方程组有唯一解的充要条件.用在齐次方程组上 :如果齐次方程组的系数矩阵A是方阵,则它只有零解的充分必要条件是|A|≠0,或者表述为:如果齐次方程组有非0解,则它的系数行列式|A|=0。

第四章可证明:|A|=0是齐次方程组有非0解的充要条件。

例题一. 填空题1. 四阶行列式中带有负号且包含a12和a21的项为______.解:a12a21a33a44中列标排列为2134, 逆序为1. 该项符号为“-”, 所以答案为2. 写出四阶行列式中含有因子2311,aa的项。

解:44322311aaaa-或42342311aaaa3. 在五阶行列式中3524415312)23145()15423()1(aaaaaττ+-=______3524415312aaaaa.解:15423的逆序为5, 23145的逆序为2, 所以该项的符号为“-”.4. 在函数xxxxxxf21112)(---=中, x3的系数是______.解: x3的系数只要考察234222xxxxxx+-=--,所以x3前的系数为2.5. 行列式45123213231213xxDx xx=-,4D的展开式中,4x的系数是,3x的系数是。

解:利用行列式的性质,将含有变量x的项移到主对角线上。

将行列式的第2、3行交换,得45xxx x x D 31213123232154--=(第1行)51(-⨯加到第2列)5123181205552131213x x x x-=--含4x ,3x 的项仅有主对角线上元素乘积项,即44332211)1234()1(a a a a τ--⎥⎦⎤⎢⎣⎡-⋅⋅-⋅=)3()51(5x x x x 43153x x =-所以,4x ,3x 的系数分别是15,3-。

6. 设a , b 为实数, 则当a = ______, 且b = ______时, 010100=---ab ba.解:0)(11010022=+-=--=---b a ab ba ab b a . 所以a = b = 0.7. 在n 阶行列式D = |a ij |中, 当i < j 时a ij = 0 (i , j =1, 2, …, n ), 则D = ______.解: nn nnn n a a a a a a a a a221121222111000=8. 设A 为3×3矩阵, |A | =-2, 把A 按行分块为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321A A A A , 其中A j (j = 1, 2,3)是A 的第j 行, 则行列式=-121332A A A A ______.解:=-121332A A A A 6||33233211213=-=-=-A A A A A A A A二.计算证明题 1.计算以下行列式的值62. 设a ,b ,c 是互异的实数,证明:333111c b a c b a =0的充要条件是0=++c b a解:()()()()()()()()()()()0001112233333333=++---=--+--=-----=----c b a b c a c a b ab b ac c a c a b a b a c a c a b a c a b a c a b因为a ,b ,c 是互异的实数,所以0=++c b a 。

3. 设).(',62321)(232x F xx x x x x x F 求=解:x x x x x x x F 620321)(232==xx x xx x 3103211222=x x x x x x 310201222=x x x x x 3102101222=()()311222312x x x x =--+ 所以 26)('x x F =4. 计算n 阶行列式nx x x nx x x nx x x D n n n n +++++++++=212121222111(n ≥ 2).nx x x n x x x nx x x D n n nn ++++++=222222111+nx x nx x nx x n n ++++++ 2121212211=n x x x x n x x x x n x x x x n n nn++++++ 33322221111+n x x x nx x x nx x x n n n ++++++ 323232222111+nx x x n x x x nx x x n n n++++++ 313131222111+nx x nx x nx x n n ++++++ 3213213212211=-nx x x n x x x nx x x n n n ++++++ 313131222111=-nx x x n x x x nx x x n n n +++ 111222111-nx x nx x nx x n n +++ 3131312211= 0当2=n 2122112121x x x x x x -=++++5.设4322321143113151||-=A 计算A 41 + A 42 + A 43 + A 44 = ,其中A 4j (j= 1, 2, 3, 4)是|A |中元素a 4j 的代数余子式.解:6320111262061601260315111113211431131511=----=--=-=A6.已知4521011130112101--=A 试求:(1)42322212A A A A -+-=7(2)44434241A A A A +++= 解:(1)42322212A A A A -+-=0(2)解 :16107105111102010*********111011130112101-=----=--=--=A 根据第5、6题可以总结:代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0 ③、某行(列)的元素乘以该行(列)元素的代数余子式为A 7.试证: 如果n 次多项式n n x C x C C x f ++=10)(对n + 1个不同的x 值都是零, 则此多项式恒等于零. (提示: 用范德蒙行列式证明) 证明: 假设多项式的n + 1个不同的零点为x 0, x 1, …, x n . 将它们代入多项式, 得关于C i 方程组00010=++nn x C x C C 01110=++n n x C x C C …………010=++nnn n x C x C C 系数行列式为x 0, x 1, …, x n 的范德蒙行列式, 不为0. 所以010====n C C C()i j j i nnn nnnn n nnn n x x x x x x x x x x x x x x x x x x x A -∏=→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=<2112102122102101111111因为x 的值各不相同,所以0≠A ,0≠A ⇔齐次线性方程组只有0解。

相关文档
最新文档