线性代数第1章行列式试卷及答案

合集下载

线代参考答案(完整版)

线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

考研高数之线性代数自我检测试题(附详细答案解析)第一章行列式答案

考研高数之线性代数自我检测试题(附详细答案解析)第一章行列式答案

第一章 行列式1.利用对角线计算下列行列式(1) 381 1 4 11 0 2- - - 4 -= (2) ba c a c bcb a 33 3 3 a b c abc - - - = 2.按自然数从小到大为标准次序,求下列排列的逆序数 (1) 1 2 34 0 (2) 4 1 3 2 4 (3) 3 4 2 15(4) 2 4 1 33(5) 1 3 ┈(2n­1) 2 4 ┈(2n ) 2) 1 ( nn - (6) 1 3 ┈(2n­1)(2n)(2n­2)┈2 )1 ( - n n 3.写出四阶行列式中含有因子 23 11 a a 的项 4432 23 11 a a a a - 3442 23 11 a a a a 4.用行列式的定义计算下列行列式(1) nn n n a a a a a D 0 0 00 0 0 0 00 0 0 0 00 0 0 0 1 2 2 1 L L L M M M L M M L L - - =( )nn n a a a L 2 1 2)1 )(2 ( 1 - - - (2) 443332 23 21 1211 4 00 0 0 0 0 0 a a a a a a a D =4432 23 11 44 33 21 12 a a a a a a a a - - 5.计算下列各行列式(1) 07 1 1 02 5 10 2 0 2 1 4 2 1 4= =D 【解析】71120 2 15 4 2 7 711202 15 0 2 0 2 1 4 2 7 0= - - - - - = - - - -(2) abcdef efcfbfde cd bdaeac abD 4 = - - - = (3) ( ) [ ]( )11 - - + - = = n na x x a n xa aa x a aa xD L L L L L L L (4) n D na a a a + + + + =1 1111 1 1 1 1 1 1 11 1 1 1 3 21 L LLL L L L L L na a a a a a a L L L L L L L L L 0 00 0 00 1 1 1 1 13 121 1 - - - + = nni ia a a a L 2 1 1 ) 1 1 ( å = + = (其中 0 2 1 ¹ n a a a L )6.证明 322) ( 1 1 1 2 2 b a b b a a b aba - = + 利用对角线法则可得证7.计算下列各行列式:(1) ) 1 ( ) 1 )( 1 ( 1 0 0 11 0 1 1 1 014+ + + + = - - - = d a cd ab d cb aD 【解析】 ) 1 ( ) 1 )( 1 ( 1 0 1 1 0 0 1 ) 1 ( ) 1 ( 1 0 1 1 1 1 1 0 011 0 11 1 01 12 + + + + = - - - - + - - = - - -+ d a cd ab dc d c b a d cb a(2) aa aD nL M M M M L L0 1 0 0 10 = ,其中对角线上的元素都是a ,未写的元素都为零【解析】 )1 ( ) 1 ( 1 )1 ( ) 1 ( 0 0 0 0 1 0 0 1 ) 1 ( 0 00 0 0 0 0 10 01 0 - ´ - + - ´ - ´ ×× - + = n n n n n nn aa a a a aa a aLM LO M L L L MLM M L L L MMMM L L 2- - = n n a a(4) b a c a cb ac b c b a cb a D 2 2 2 + + + + + + =( )32 2 2 2 2 2 2 2 2 2 2 2 c b a ba c a cb a b ac b c b a b a c b a D + + = + + + + + + + + + + = (5)125 343 27 64 573425 49 9 16 1 1 1 1- - =D ( ) ( ) 1036812 12 8 9 573 4 573457 3 4 11 1 1 3 3 3 3 2222 - = ´ ´ ´ - = - - - =D 8.解下列方程(1)9 1 32 5 13 2 32 2 1 32 11 22= - - x x 【解析】( )( )( ) 0 31 4 4 0 00 5 1 3 2 0 0 1 0 32 1 1 9 1 32 5 13 2 3 2 2 1 3 2 1 1 2 2222 2= - - - = - - =- - x x x x x x 故可得 1 ± = x 或 2± = x (2)0 00 0 0 = a x a a a x x a a a x a 【解析】 ( )0 0 1 1 1 1 2 00 0 2 2 2 2 00 0 0 a x a aa x xa a x a axaa a x x a a x a x a x a x a a x a a a x x a a a x a + = + + + + =( )( ) ( ) 0 4 0 02 0 0 0 0 0 1 1 1 1 2 2 24 = - = - - - - - - - + = - - - - - - - + = a x xxx xa x x a x x x a a a x x a x x a ax a x a 故可得 0 = x ,或者 ax 2 ± =。

线性代数第一章习题参考答案

线性代数第一章习题参考答案

解:4234231142342311)1342(4432231144322311)1324()1()1(a a a a a a a a a a a a a a a a =--=-ττ4.计算abcdef abcdef abcdef abcdef efcf bfde cd bdae ac ab r r r r c c c r f r d r a c ec c c b 420020111111111111111111111)1(12133213213211,1,11,1,1-=--=--=---=-----++5.求解下列方程10132301311113230121111112121)1(12322+-++-++=+-++-+=+-+-+++x x x x x x x x x x x x c c r r 1132104201)3(113210111)3(21+-+--++=+-+-++=-x x x x x x x x x r r 3,3,30)3)(3(11421)3(3212-==-==-+=+---++=x x x x x x x x x 得二列展开cx b x a x b c a c a b x c x b x a c b a x c b a x c b a x ====------=32133332222,,0))()()()()((1111)2(得四阶范得蒙行列式6.证明322)(11122)1(b a b b a a b ab a -=+右左证明三行展开先后=-=-=-----=----=+=+--323322222)(11)()()()1(100211122)1(:2132b a b a b a ba ba b a b b a a b b a b a b b ab ab a b b a ab ab ac c c c1432222222222222222222222222(1)(2)(3)(1)2369(1)(2)(3)(1)2369(3))(1)(2)(3)(1)2369(1)(2)(3)(1)2369c c c ca a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d --++++++++++++==++++++++++++二三列成比例))()()()()()((1111)4(44442222d c b a d c d b c b d a c a b a d c b a dcbad c b a D +++------==44444333332222211111)(x d c b a xdcbax d c b a x d c b a x f 五阶范得蒙行列式解考虑函数=(5)))()()()()()(())()()()()()(()()())()()()()()()()()((454545453453d c d b c b d a c a b a d c b a A M D d c d b c b d a c a b a d c b a A ,A x x f ,Mx x f D a b b c a b c d b d a d d x c x b x a x ------+++-==------+++-=----------=于是的系数是中而对应的余子式中是(5)n n a a a a a xx x x 12101000000000100001----解:nn n n n n n n n n nn x a x a a x a x a a a a a a a xx x x D +++=-++--+--=---=+++-++++-10)1()1(1211110121)1()1()1()1()1(1000000000100001按最后一行展开7、设n 阶行列式)det(ij a D =把D 的上下翻转、或逆时针旋转090、或依副对角线翻转、依次得111131111211111,,a a a a D a a a a D a a a a D n n nn n nn n nnnn=== 证明D D D D D n n =-==-32)1(21,)1(证明:将D 上下翻转,相当于将对D 的行进行)1(21-n n 相邻对换得1D ,故D D n nn 2)1(1)1(--=将D 逆时针旋转090相当于将T D 上下翻转,故D n n D n n D T 2)1(2)1(2-=-=D 依副对角线翻转相当于将D 逆时针旋转090变为2D , 然后再2D 左右翻转变为3D ,故D D D D n n n n n n =--=-=---2)1(2)1(22)1(3)1()1()1(8、计算下列行列式(k D 为k 阶行列式)(1)aa D n 11=,其中对角线上元素都是a ,未写出的元素都是0;解:)1()1(0100)1(1122211111-=-+=-+==--++-+a a a a a aa a a D n n n n n n n n n n 列展开按行展开按(2)x a a a x a a a x D n=解:xaa x a a a n x x a aa x a a a x D nc c c n111])1([21-+==+++12)]()1([0001])1([1--≥--+=---+=n r r k a x a n x ax a x a a a n x k(3)111111)()1()1()()1()1(11111n a n a a a n a n a a a n a n a a a D n n n n n nnm n -+---+---+--=----+解:11111(1)(1)22111111(1)(1)()(1)(1)()111111111111()()()((1)(1)()(1)(1)()n nnn n n n n n n n n n n j i n n n n mnnna a a n a n a a a n a n D a a a n a n a a a n a n j i a a a n a n a a a n a n ----++++≥>≥------+---+-=--+---+-=-=--=--+---+-∏上下翻11)n j i i j +≥>≥-∏(4)n n nnn d c d c b a b a D11112=(未写出的均为0)解:)1(2)1(211112)(02232--↔↔-===n n n n n n n nnn r r c c nnnnn D c b d a D d c b a d c d c b a b a D mn得递推公式)1(22)(--=n n n n n n D c b d a D ,而11112c b d a D -=递归得∏=-=ni i i i i n c b d a D 12)((5)det(),||n ij ij D a a i j ==-解111,2,,1120121111110121111210311111230123010001200(1)(1)211201231i i j r r n i n c c n n n n D n n n n n n n n n n n n +-=-+-------==-------------==---------解:11211*222,3,,1111111(6)1111111111101111000111100:01111i n nr r n i n nna a D a a a a a D D a a -=+++=++-+-===+-解111211121,2,,12111(1)1110001(1)0000i inc c na n i ni ina a a a a a a a a a ++==++++==+∑9.设3351110232152113-----=D ,D 的),(j i 元的代数余子式为ij A ,求44333231223A A A A +-+解:24335122313215211322344333231=-----=+-+A A A A。

线性代数1_2章精选练习题

线性代数1_2章精选练习题

线性代数1_2章精选练习题第一章行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C) k n 2! (D)k n n 2)1(3. n 阶行列式的展开式中含1122a a 的项共有( )项.(A) 0 (B)2 n (C) )!2( n (D) )!1( n4.001001001001000( ).(A) 0 (B)1 (C) 1 (D) 25.001100000100100( ).(A) 0 (B)1 (C) 1 (D) 26.在函数10323211112)(x x x xx f 中3x 项的系数是( ).(A) 0 (B)1 (C) 1 (D) 27. 若21333231232221131211a a a a a a a a a D ,则 323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 28.若a a a a a 22211211,则21112212ka a ka a ( ).(A)ka (B)ka (C)a k 2 (D)a k 29.已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为x ,1,5,2 , 则 x ( ).(A) 0 (B)3 (C) 3 (D) 210. 若5734111113263478D ,则D 中第一行元的代数余子式的和为( ).(A)1 (B)2 (C)3 (D)011. 若22351011110403D ,则D 中第四行元的余子式的和为( ).(A)1 (B)2 (C)3 (D)012. k 等于下列选项中哪个值时,齐次线性方程组00321321321x x kx x kx x kx x x 有非零解.( )(A)1 (B)2 (C)3 (D)0二、填空题1. n 2阶排列)12(13)2(24 n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是. 4.若一个n 阶行列式中至少有12 n n 个元素等于0, 则这个行列式的值等于.5. 行列式100111010100111.6.行列式100002000010nn .7.行列式01)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D 3332312322211312113233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式1111111111111111x x x x .11.n 阶行列式111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321D ,j A 4)4,3,2,1( j 为D 中第四行元的代数余子式,则44434241234A A A A .14.已知db c a cc a b b a b c a c, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321D ,j A 4为)4,3,2,1(4 j a j 的代数余子式,则4241A A ,4443A A .16.已知行列式nn D10301002112531,D 中第一行元的代数余子式的和为.17.齐次线性方程组020232121321x x x kx x x x kx 仅有零解的充要条件是. 18.若齐次线性方程组230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a dcbad c b a33332222; 2.yxyx x y x y y x y x ;3.解方程0011011101110 x x xx ; 4.111111321321221221221 n n n n a a a a x a a a a x a a a a x a a a a x ;5. na a a a111111111111210(n j a j ,,1,0,1 );6. bn b b )1(1111211111311 117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a xa a a a x a a a a x n nn321212121;9.2212221212121111nn n nn x x x x x x x x x x x x x x x ; 10.21 120000021000121 0001211.aa a aa a a a aD 110110001100001.四、证明题1.设1 abcd ,证明:011111111111122222222dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a x b a .3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a . 4.nni in nn n n n n n nna aa aaaaa aa a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明01 11333 c b a c ba 的充要条件是0 cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题2.”“ ;3.43312214a a a a ;4.0;5.0;6.!)1(1n n ;7.1)1(212)1()1(n n n n n a a a ; 8.M 3 ; 9.160 ; 10.4x ; 11.1)( n n ;12.2 ; 13.0; 14.0; 15.9,12 ; 16.)11(!1 nk k n ; 17.3,2 k ;18.7 k 三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ; 2. )(233y x ; 3. 1,0,2 x ; 4.11)(n k kax5.)111()1(00nk knk k a a ; 6. ))2(()1)(2(b n b b ; 7. nk k kna b1)()1(; 8. nk k nk k a x a x 11)()(;9. nk k x 11; 10. 1 n ;11. )1)(1(42a a a . 四. 证明题 (略)第二章矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

(完整版)行列式习题1附答案.doc

(完整版)行列式习题1附答案.doc

⋯⋯_ ⋯_ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯:⋯号⋯学⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ 线_ 订_ _ 装_ _ ⋯_ _ ⋯_ _ ⋯_ ⋯:⋯名⋯姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:⋯⋯⋯班⋯⋯⋯《线性代数》第一章练习题⋯⋯一、填空⋯⋯⋯1、(631254) _____________ 8⋯⋯⋯2、要使排列(3729m14n5)偶排列, m =___8____, n =____6_____⋯⋯x 1 13 , x 2 的系数分是⋯3、关于x的多式x x x中含 x -2,4⋯1 2 2x⋯⋯4、 A 3方, A 2, 3A* ____________ 108⋯⋯⋯5、四行列式det( a ij)的次角元素之(即a14a23a32a41)一的符号+⋯⋯1 2 1线1234 2346、求行列式的 (1) =__1000 ;(2)2 4 2 =_0___;封2469 469密10 14 13⋯⋯1 2000 2001 2002⋯0 1 0 2003⋯⋯(3)0 1=___2005____;⋯0 20040 0 0 2005⋯⋯1 2 3⋯中元素 0 的代数余子式的___2____⋯(4) 行列式2 1 0⋯3 4 2⋯⋯1 1 1 1⋯1 5 25⋯ 4 2 3 57、 1 7 49 = 6 ;= 1680⋯16 4 9 25⋯1 8 64⋯64 8 27 125⋯⋯矩方,且,,, A 1 1 。

⋯A 4⋯8、|A|=5 | A*| =__125 | 2A| =__80___ | |=50 1 10 1 2 22 2 2 09、 1 0 1 = 2 。

;3 0121 1 01 01 0 0 0bx ay010、若方程cx az b 有唯一解,abc≠0 cy bz a11、把行列式的某一列的元素乘以同一数后加到另一列的元素上,行列式12、行列式a11a12a13a14a21a22a23a24 的共有4! 24, 在a11a23 a14a42, a34a12a31a32a33a34a41a42a43a44a34a12a43 a21 是行列式的,符号是 + 。

线性代数第一章行列式训练题解

线性代数第一章行列式训练题解

线性代数第一章行列式训练题一、单项选择题1.二阶行列式1221−−k k ≠0的充分必要条件是( )A .k ≠–1B .k ≠3C .k ≠–1且k ≠3D .k ≠–1或≠3答案:C2.设行列式2211b ab a =1,2211c a c a =2,则222111c b a c b a ++=( )A .–3B .–1C .1D .3 注22112211222111c a c a b a b a c b a c b a +=++答案:D3.如果方程组=+=−=−+0404033232321kx x x x x kx x 有非零解,则 k =( ) A.–2 B.–1C.1D.2 注:使04014013=−−kk答案:B4.设行列式D=333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( ) A .–15 B .–6 C .6D .15答案:C 5.3阶行列式ji a =011101110−−−中元素21a 的代数余了式21A =( )A .–2B .–1C .1D .2 0111)1(12−−+ 答案:C6.已知333231232221131211a a a a a a a a a =3,那么333231232221131211222222a a a a a a a a a −−−=( ) A.–24 B.–12 C.–6D.12答案:B 7.行列式11110111111110−−−−−−第二行第一列元素的代数余子式21A =( )A .–2B .–1C .1D .2答案:B 8.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( )A.m–nB.n–mC.m+nD.–(m+n )答案:B二、填空题请在每小题的空格中填上正确答案。

(完整版)行列式习题答案

(完整版)行列式习题答案

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 n 阶 行 列 式一.选择题1.若行列式 = 0,则[ C ]x52231521-=x (A )2 (B )(C )3(D )2-3-2.线性方程组,则方程组的解=[ C ]⎩⎨⎧=+=+473322121x x x x ),(21x x (A )(13,5)(B )(,5)(C )(13,)(D )()13-5-5,13--3.方程根的个数是[ C ]093142112=x x (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ](A ) (B ) 665144322315a a a a a a 655344322611a a a a a a (C ) (D )346542165321a a a a a a 266544133251a a a a a a 5.若是五阶行列式的一项,则的值及该项的符号为[ B ]55443211)541()1(a a a a a l k l k N -ij a l k ,(A ),符号为正; (B ),符号为负;3,2==l k 3,2==l k (C ),符号为正;(D ),符号为负2,3==l k 2,3==l k 6.下列n (n >2)阶行列式的值必为零的是 [ BD ](A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个二、填空题1.行列式的充分必要条件是1221--k k 0≠3,1k k ≠≠-2.排列36715284的逆序数是133.已知排列为奇排列,则r =2,8,5s = 5,2,8,t = 8,5,2397461t s r4.在六阶行列式中,应取的符号为 负 。

ij a 623551461423a a a a a a 三、计算下列行列式:1.=181322133212.=55984131113.yxyx x y x yyx y x +++332()x y =-+4.=100011000001001005.000100002000010n n -1(1)!n n -=-6.0011,22111,111 n n nn a a a a a a --(1)212,11(1)n n n n n a a a --=-线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第二节 行列式的性质一、选择题:1.如果, ,则 [ C ]1333231232221131211==a a a a a a a a a D 3332313123222121131211111232423242324a a a a a a a a a a a a D ---==1D (A )8(B )(C )(D )2412-24-2.如果,,则 [ B ]3333231232221131211==a a a a a a a a a D 2323331322223212212131111352352352a a a a a a a a a a a a D ---==1D (A )18(B ) (C )(D )18-9-27-3. = [ C ]2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (A )8 (B )2(C )0(D )6-二、选择题:1.行列式 12246000 2. 行列式-3=30092280923621534215=11101101101101112.多项式的所有根是0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 0,1,2--3.若方程= 0 ,则225143214343314321x x --1,x x =±=4.行列式 5==2100121001210012D 三、计算下列行列式:1.2605232112131412-21214150620.12325062r r +=2.xa a a x a a a x 1[(1)]().n x n a x a -=+--线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第三节 行列式按行(列)展开一、选择题:1.若,则中x 的一次项系数是[D]111111111111101-------=x A A (A )1(B )(C )(D )1-44-2.4阶行列式的值等于 [D ]443322110000000a b a b b a b a (A ) (B )43214321b b b b a a a a -))((43432121b b a a b b a a --(C )(D )43214321b b b b a a a a +))((41413232b b a a b b a a --3.如果,则方程组 的解是 [B]122211211=a a a a ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a (A ), (B ),2221211a b a b x =2211112b a b a x =2221211a b a b x -=2211112b a b a x =(C ), (D ),2221211a b a b x ----=2211112b a b a x ----=2221211a b a b x ----=2211112b a b a x -----=二、填空题:1.行列式 中元素3的代数余子式是 -6122305403--2.设行列式,设分布是元素的余子式和代数余子式,4321630211118751=D j j A M 44,j a 4则 =,=-6644434241A A A A +++44434241M M M M +++3.已知四阶行列D 中第三列元素依次为,2,0,1,它们的余子式依次分布为1-5,3,4,则D = -15,7-三、计算行列式:1.321421431432432112341234134101131010141201311123031111310131160.311-==---=-=-2.12111111111na a a +++ ==121111011101110111n a a a+++121111100100100na a a---211112111110010010n c c a a a a a+--+111223211111100001000na a cc a a a a++-+11121101111000000ni ni iia a a c a c a=+++∑1211()(1)nn i i a a a a =+∑或121123113111111000000nn a r r a r r a r r a a a a+------211211212311111000000na a aa a a c c a a a a+++--11122313311111100000ni in nnaa a c c a a a c c a a a a=++++∑1122()(1)nn i ia a a a a =++∑或11221121121110111110111111111(1).n n n n nn i ia a a a a a D a a a a a a a --=++++=+=+=+∑线性代数练习题 第一章 行 列 式系专业 班 姓名学号综 合 练 习一、选择题:1.如果,则 = [ C ]0333231232221131211≠==M a a a a a a a a a D 3332312322211312111222222222a a a a a a a a a D =(A )2 M(B )-2 M(C )8 M(D )-8 M2.若,则项的系数是[ A ]xxx x x x f 171341073221)(----=2x (A )34 (B )25 (C )74 (D )6二、选择题:1.若为五阶行列式带正号的一项,则 i = 2 j = 154435231a a a a a j i 2. 设行列式,则第三行各元素余子式之和的值为 8。

《线性代数》第一章行列式精选习题及解答

《线性代数》第一章行列式精选习题及解答

第一章 行列式1.1 目的要求1.会求n 元排列的逆序数;2.会用对角线法则计算2阶和3阶行列式; 3.深入领会行列式的定义;4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质;7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.1.2 重要公式和结论1.2.1 n 阶行列式的定义n 阶行列式 nnn n n n a a a a a a a a a D (2122221)11211=n n np p p tp p p a a a ...)1(212121)...(∑−=.其中是n 个数12…n 的一个排列,t 是此排列的逆序数,∑表示对所有n 元排列求和,故共有n !项. n p p p ...211.2.2 行列式的性质1.行列式和它的转置行列式相等;2.行列式的两行(列)互换,行列式改变符号;3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于用该数乘此行列式的任意一行(列);4.行列式中若有两行(列)成比例,则该行列式为零;5.若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和,即nn n n in i i nnn n n in in i i i i n a a a a a a a a a a a a b a b a b a a a a L MMM L M M M L LMM M L MM M L21211121121221111211=++++nnn n ini i na a ab b b a a a L MMM L M M M L 2121112116. 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变. 1.2.3 行列式按行(列)展开设D 为n 阶行列式,则有=∑=nK jkika A 1⎩⎨⎧≠==+++j i ji D A a A a A a jn in j i j i 0...2211=∑=nK jkika A1⎩⎨⎧≠==+++j i ji D A a A a A a jn in j i j i 0 (2211)其中是的代数余子式. st A st a 1.2.4 克拉默法则1.如果线性非齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L M M M M M L L 22112222212111212111的系数行列式,则方程组有唯一解0≠D DD x 11=( i=1,2,…,n ),其中是D 中第i 列元素(即的系数)换成方程中右端常数项所构成的行列式.i D i x 2.如果线性齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n n n n n x a x a x a x a x a x a x a x a x a L M M M M M L L的系数行列式,则方程组只有唯一零解.若齐次线性方程组有非零解,则其系数行列式.0≠D 0=D 1.2.5 一些常用的行列式1.上、下三角形行列式等于主对角线上的元素的积.2.设 kk k k a a a a D L M M ML 11111=,nnn nb b b b D L M M M L 11112=,则 211111*********D D b bc c b b c c a a a a nn n nkn n k kkk k =L L M M M MM ML L L MMM L .3.范德蒙行列式)(..................1 (11)11121121i j nj i n nn n n a a aaaa a a −=∏≤<≤−−−.1.2.6 计算行列式的常用方法1.利用对角线法则计算行列式,它只适用于2、3阶行列式; 2.利用n 阶行列式定义计算行列式; 3.利用行列式的性质化三角形法计算行列式; 4.利用行列式按某一行(列)展开定理计算行列式; 5.利用数学归纳法计算行列式; 6.利用递推公式计算行列式;7.利用范德蒙行列式的结论计算特殊的行列式; 8.利用加边法计算行列式; 9.综合运用上述方法计算行列式.1.3 例题分析例1.1 排列14536287的逆序数为 ( )(A) 8 (B) 7 (C) 10 (D) 9解 在排列14536287中,1排在首位,逆序数为0;4、5、6、8各数的前面没有比它们自身大的数,故这四个数的逆序数为0;3的前面比它大的数有2个(4、5),故逆序数为2; 2的前面比它大的数有4个(4、5、3、6),故逆序数为4;7的前面比它大的数有1个(8),故逆序数为1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B ).例1.2 下列排列中( )是偶排列.(A)54312 (B)51432 (C) 45312 (D) 654321解 按照例1的方法计算知:排列54312的逆序数为9;排列51432的逆序数为7;排列45312的逆序数为8;排列654321的逆序数为15;故正确答案为(C ).例1.3 下列各项中,为某五阶行列式中带正号的项是( ). (A) (B) (C)(D) 5541324413a a a a a 5415413221a a a a a 5214432531a a a a a 5344223115a a a a a 解 由行列式的定义知,每一项应取自不同行不同列的五个元素之积,因此(A)、(B)不是五阶行列式的项,但(C)应取负号,故正确答案为(D ).例1.4 行列式351232113,010101021=−=D D λλλ, 若21D D =,则λ的取值为( ) (A) 2, —1 (B) 1, —1 (C)0, 2 (D)0,1解 按三阶行列式的对角线法则得.若,则,于是0,)1)(1(221=−+=D D λλ21D D =0)1)(1(2=−+λλ1,1−=λ,故正确答案为(B ).例1.5 方程组有唯一解,则( ).⎪⎩⎪⎨⎧=++=++=++111321321321x x x x x x x x x λλλ(A)1−≠λ且2−≠λ (B) 1≠λ且2−≠λ (C) 1≠λ且2≠λ (D) 1−≠λ且2≠λ解 由克拉默法则知,当所给非齐次线性方程组的系数行列式不等于0时,该方程组有唯一解,于是令行列式0)1)(2(1111112≠−+=λλλλλ 即1≠λ且2−≠λ,故正确答案为(B ).例1.6 ==2006200420082006D ( ).分析 对于2、3阶行列式的计算,元素的数值较小时,可以直接采用对角线法则进行计算;但元素的数值较大时,一般不宜直接采用对角线法则进行计算,而是用行列式的性质进行计算.解 此题是一个2阶行列式,虽然可以直接用对角线法则计算,但因数值较大,计算较繁,因此要仔细观察分析,用行列式的性质求解.402221003200622008220062004200820061221=−−+−−−=c c c c D ,故答案为4.例1.7 ==3214214314324321D ( ). 分析 如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加法) .解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得===321421431432101010103214214314324321D 101230121012101111103214214314321111−−−−−−= 160400004001210111110=−−−=.例1.8设xx x x x x f 111123111212)(−=,则的系数为( ),的系数为( ). 4x 3x 分析 此类确定系数的题目,首先是利用行列式的定义进行计算.如果用定义比较麻烦时,再考虑用行列式的计算方法进行计算.解 从的表达式和行列式的定义可知,当且仅当的主对角线的4个元素的)(x f )(x f积才能得出,其系数显然是2. 当第一行取4x )1(13=a 或)2(14=a ,则含或的行列式的项中是不出现,含的行列式的项中是不出现,于是含的项只能是含,,,的积,故的系数为13a 14a 3x )2(11x a =3x 3x 12a 21a 33a 44a 3x 1−.故答案为2 ,1−.例1.9 设0123411222641232211154321=D ,则(1)=++333231A A A ( ), (2)=+3534A A ( ), (3)=++++5554535251A A A A A ( ). 分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,充分利用按行(列)展开的计算方法来进行技巧计算.解 00123411222221112211154321)(23534333231==++++A A A A A (第2,3行相同) 即 =0. 同理 )(2)(3534333231A A A A A ++++)()(23534333231A A A A A ++++=0 于是 0, =++333231A A A =+3534A A 0.011111333336412322111543211111111222641232211154321245554535251=+=++++r r A A A A A 故答案为0,0,0.例1.10 2007000000002006000200500020001000L L L MM MM M M L =D .分析 当行列式中有较多零元素时,一般可以采用行列式的定义或按行(列)展开来计算.解 此行列式刚好只有n 个非零元素,故非零项只有一项:nn n n n a a a a ,,,,112211−−−L nn n n n t a a a a 112211)1(−−−−L ,其中 2)2)(1(−−=n n t ,因此 !2007!2007)1(2)22007)(12007(−=−=−−D .此题也可以按行(列)展开来计算. 例1.11 计算n 阶行列式2111121111211112L M M M M L L L =n D解法1 (行(列)加法)因为这个行列式的每一行的n 个元素的和都为n+1, 所以将第2,3,…,n 列都加到第一列上,得),3,2(,2111121111211111)1(21111211112111111n i r r n n n n n D i n L L M M M ML L L L M M M M L L L =−+=++++=1101000101111)1(+=+n n L M M M M L L L解法2 (加边法))1,,3,2(211111211111211111210000111+=−==+n i c c D D i n n L L M M M M M LL L L11000101001010100011000011000101001001010001111111121+=++++−−−−+n n r r r n L M M M M M LL L L L L M M M M M L L L L . 解法3 (利用行列式的性质)101010100111112),,3,2(21111211112111121L M M M M L L L L L M M M M L L L −−−=−=n i r r D i n11000100010111121+=++++n n c c c n L M M M M L L L L .例 1.12 计算nn n n nn n y x y x y x y x y x y x y x y x y x D +++++++++=111111111212221212111L MM M L L . 解 当n=2时,))((11111212221221112y y x x y x y x y x y x D −−=++++=当n≥3时,111212112122111121111()()()0()()()n nn n n n x y x y x y x x y x x y x x y D x x y x x y x x y +++−−−==−−−L L M M M L n.例1.13 计算nn n n nn n n x x x x x x a a a a a x a D 1122112321100000000000−−−−−−−−+=L L M M M M M M LL其中.),,2,1(0n i x i L ≠≠解 因 )1(11111111x a x x a x a D +=+=+=, 1(221121212112x ax a x x x x a x a D ++=−+=, 归纳推得 )1(1121nn n n x a x a x x x D +++=L L . 用数学归纳法证明上式, 假设当k=n-1时结论成立,即)1(11111211−−−−+++=n n n n x a x a x x x D L L . 则当k=n 时,将按第n 列展开,得n D ))(())(()1(122111−−+−−−−−−+=n n n n n n n x x x x a D x D L 1221111)1()1(−−−+−−−+=n n n n n n n x x x x a D x Ln n nn n n n x a x x x x x D x 12211−−−+=L 1(1121nn n x a x ax x x +++=L L 即当k=n 时结论也成立,故对一切自然数结论都成立.例1.14 计算222111222333n nn nD n n n =L L L M M M L 解 (利用范德蒙行列式计算)1113213211111!−−−==n n n Tnn n n n D D L MMM M LL )]1([)2()24)(23)(1()13)(12(!−−−−−−−−=n n n n n L L L !2)!2()!1(!L −−=n n n .例 1.15 计算 βαβαβαβαβαβαβαβα+++++=L L MM M M ML LL 000000000000n D .解 按第一列把D n 分成两个行列式的和+++++=βαβαβαβαβαβαααL L M M M M M L L L000000000000000n D βαβαβαβαβαβαβαβ++++L L MM MM M LL L0000000000000n n n D D βαβαββαβαβα+=+=−−110000000000000000L L MM M M M L L L (1) +++++=βαβαβαβαβαβααβL L M M M M M L L L000000000000000n D βαβαβαβαβαβαβαα++++L L MM MM M LL L 00000000000000n n n D D αβαβααβαβαβ+=+=−−1100000000000000L L M MM M M L L L (2) (a) 当βα≠时 ,由(1)(2)得 =, 则n n D βα+−1nn D αβ+−1βαβα−−=−nn n D 1.于是 βαβα−−=++11n n n D .(b) 当βα=时,由(1)得 .n n n n n D D ααα)1(1+==+=−L例1.16 设, 证明:0>>>c b a 01222<++abca bc c b a cb a cabc ab . 证明 将行列式的第1行)(c b a ++×,第2行)1(−×,然后加到第3行,得ca bc ab ca bc ab ca bc ab c b a c b a ab ca bc c b a c b a ++++++=222222 222222111)(111)(c b a c b a ca bc ab c b a c b aca bc ab ++=++= ))()()((a b b c a c ca bc ab −−−++=于是,不等式的左边=))()((a b b c a c −−−.由于,从而,0>>>c b a 0)(<−a c 0)(,0)(<−<−a b b c ,因此,当时,0>>>c b a 01222<++abca bc c b a cb a cabc ab .例 1.17 设在上连续,在内可导,试证:至少存在一个)(),(),(x h x g x f ],[b a ),(b a ),(b a ∈ξ,使得0)(=′ξH .其中 )()()()()()()()()()(x h x g x f b h b g b f a h a g a f x H =.证明 由题设知在上连续,在内可导,又由行列式的性质可知,于是由洛尔中值定理可知,至少存在一个)(x H ],[b a ),(b a 0)()(==b H a H ),(b a ∈ξ,使得0)(=′ξH .1.4 独立作业1.4.1 基础训练1.设ij a D =为阶行列式,则在行列式中的符号为( ) . n 11342312n n n a a a a a −L (A) 正 (B) 负 (C) (D) 1)1(−−n 2)1()1(−−n n2.行列式为0的充分条件是( ).n D(A) 零元素的个数大于n; (B) 中各行元素的和为零; n D (C) 次对角线上元素全为零; (D) 主对角线上元素全为零. 3.行列式不为零,利用行列式的性质对进行变换后,行列式的值( ). n D n D (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D)保持相同的正负号.4.方程0881441221111132=−−x x x的根为 ( ).(A) 1,2,2− (B)1,2,3 (C)1,1−,2 (D)0,1,25.如果4333231232221131211==a a a a a a a a a D ,则=−−−−−−=33323331232223211312131********a a a a a a a a a a a a D ( ). (A)-12 (B)12 (C)48 (D)-486.行列式=9092709262514251( ).7.ab b a log 11log = ( ).8.行列式c b d c a b cb a , 则=++312111A A A ( ).9.函数x x x x x f 121312)(−=中,的系数为( ).3x 10.4444333322225432154321543215432111111= ( ).11.49362516362516925169416941, 12.00000000x y y x y x x y D = 13.20000120000001301200101−−=D , 14.xyz zx yyz x 111 15.520003520003520035200035, 16.44342414433323134232221241312111y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++17.nn n n a a a a a a b b b b b 13221132100000000−−−−−L M M M M M LL L ,(其中),,2,1(,0n i a i L =≠) 18.n x x x D L M M M M LL L 01001001111021= (),,2,1,0n i x i L =≠ 19.43211111111111111111x x x x ++++, 20.nL M M M ML L L 22223222222222121.211121112L L L L L L =n D .22.当μ取何值时,齐次线性方程组有非零解?⎪⎩⎪⎨⎧=−−+−=−+−=−++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ23.证明αααααααsin )1sin(cos 210001cos 200000cos 210001cos 210001cos 2+=n L L M MM M M LL L (其中0sin ≠α).1.4.2 提高练习1.设A 为n 阶方阵,为*A A 的伴随矩阵,则*A A 为( ) (A) 2A (B) 12−n A(C) nA2 (D) nA2.设A 为n 阶方阵,B 为m 阶方阵,=00A B( ). (A)B A − (B) B A (C) B A mn )1(− (D) B A n m +−)1(3.若xxx x x x g 171341073221)(−−−−=,则的系数为( ). 2x (A) 29 (B) 38 (C) —22 (D) 344.347534453542333322212223212−−−−−−−−−−−−−−−=x x x x x x x x x x x x x x x x g(x),则方程=)(x g 0的根的个数为( ). (A)1 (B)2 (C)3 (D)45.当( )时,方程组只有零解.≠a ⎪⎩⎪⎨⎧=+−=++=+02020z y ax z ax x z ax (A)-1 (B) 0 (C) -2 (D) 26.排列可经过( )次对换后变为排列. n r r r r L 321121r r r r n n n L −−7.四阶行列式中带负号且含有因子和的项为( ).12a 21a 8.设y x ,为实数,则当=x ( ),=y ( )时,010100=−−−x yy x . 9.设A 为4阶方阵,B 为5阶方阵,且,2,2−==B A 则 =−A B ( ),=−B A ( ).10.设A ,B 为n 阶方阵,且,2,3−==B A 则 =−1*3B A ( ). 11.设A 为3阶正交矩阵,0>A ,若73=+B A ,则=+T AB E 21( ). 12.设,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=653042001A =+−12A E ( ).13.解方程组011112222212112=nnnnnnn b b b b b b b b b x x x L M M M M L L L ,其中为各不相同的常数. n b b b b ,,,,321L 14.证明:)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a dx d nn n n n n L M M M L L =∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dx d x a x a x a 1212111211)()()()()()()()()(LM M M L M M M L 15.设xx x x x x x g 620321)(332=,求)(x g ′.16.设17131231533111)(85222−−−−−−=x x x x x x x g ,试证:存在)1,0(∈ξ,使得0)(=′ξg .17.证明:奇数阶反对称矩阵的行列式为零. 18.设z y x ,,是互异的实数,证明:0111333=z y x z y x 的充要条件是0=++z y x . 19.设4322321143113151−=A ,计算44434241A A A A +++的值,其中是)4,3,2,1(4=i A i A 的代数余子式.20.利用克莱默法则求解方程组.⎪⎩⎪⎨⎧=+−=+−=−+3232222321321321x x x x x x x x x 21.求极限111cos sin 3212sin 1231lim23x x x x x x x →.第一章 参考答案1.4 独立作业 1.4.1 基础训练1. (C) 2. (B) 3. (C) 4.(A) 5. (B)6.解=×==17092142512000200070922000425190927092625142515682000.7.0 , 8. 解 0111312111==++cb c a cb A A A ,故答案为09.解 因为在此行列式的展开式中,含有的只有主对角线上的元素的积,故答案为 10.解 由范德蒙行列式得行列式的值为2883x 2−11.解0222222229753169411311971197597531694149362516362516925169416941===.12.解 x y x y x x xyy yxy xyyx y xxy D 0000000000000000−−==22222)(y x xyyx x x yy x y −−=−= 13.解 0131201014200013120101220000120000001301200101−×−=−×−=−−=D 20311243131200014=−−×−=−−×−=14.解 yzx z x y x z y x z x y z x y yzx xy zzx yyz x−−−−=−−−−−−=11))(()(0)(01111=))()((x z z y y x −−−15.解 520003520003520003500003352000352000352000352000325200035200035200035200035+= =5203520035200353252000352000352000350000332000320000320000320000325+=+==L 665 16.解1413121414131213141312121413121144342414433323134232221241312111y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x −−−+−−−+−−−+−−−+=++++++++++++++++=017.解132111322113210000000)1(00000000−+−−−−−−×−=−−−=n n n n n n n n a a a a b a a a a a a b b b b b D L MMM M MLL L L M M M M M M L L L=−−×+−−−−12221122100n n n n n a a a a a b b b b a L MMM M M LL L ==+−L L 121n n n n nD a a b a a a )(121∑=ni ii n a b a a a L18.解 由第()列的i n i ,,2,1L =ix 1−倍加到第一列上去. nni inx x x x x x x D L MM M ML L LL MM M M LL L 0000000011111001001111021121∑=−===)1(121∑=−n i i n x x x x L19.解43211114321100100111111111111111111x x x x x x x x x x x −−−+=++++432111413121100000001x x x x x x x x x x x x x −−−++++==3214214314324321x x x x x x x x x x x x x x x x ++++20.解 2020012000200021222232222222221−−=n nL MM M M LL L L M M M M L L L 20212002−−=n L M M M ML L =)!2(2−−n 21.解 211121111)1(211121111211121112L LL L L L L L L L L L L L L L L L +=+++==n n n n D n 1101011001)1(+=+=n n L L L L L L22.解 由齐次线性方程组有非零解的条件可知0111213142=−−−−−−μμμ 解之得μ=0,2,3. 于是当μ=0,2,3时,齐次方程组有非零解.⎪⎩⎪⎨⎧=−−+−=−+−=−++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ23.证明 (1)当时,结论显然成立, (2)假设当1=n k n ≤时,结论成立, (3)当时1+=k n11cos 2101cos 200000cos 210001cos 210001cos 2++=k k D αααααL L M M M M ML L Lkk D ααααcos 21010000cos 210001cos 2100001)1(cos 23L M M M M M LL L L −+=ααααααααααsin )2sin(sin sin sin sin cos 2sin )1sin(cos 21+=−=−+=−k k k D k k ααsin ]1)1sin[(++=k 故结论成立. 1.4.2 提高练习1.B , 2.C , 3.D , 4.B , 5.D, 6.2)1(−n n , 7. 44332112a a a a 8.0, 0, 9.32, 64 , 10.2312−−n , 11.277, 12.6 13.提示:用范德蒙行列式将行列式展开求解,答案为i b x =,(n i ,,2,1L =), 14.(用行列式的定义和导数的运算法则)证明))()()()1(()()()()()()()()()(11)(12122221112112211x a x a x a dx dx a x a x a x a x a x a x a x a x a dx d n n p p p p p p t nn n n n n L L M M ML L L ∑−== ))())(()()()1((111)(12211x a x a dx d x a x a n i n p p p p p p p tL L L ∑−=∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dx d x a x a x a 1212111211)()()()()()()()()(LMM M L M M M L15.利用(14)的结论进行计算便可得结果,答案为6.2x 16.(用罗尔中值定理证)证明 (1)显然是多项式,故在上连续,在()(x g )(x g ]1,0[)1,0内可导,且 ,从而由罗尔中值定理知,存在0)1()0(==g g )1,0(∈ξ,使得0)(=′ξg . 17.用行列式的性质3的推论(同济四版)18.证明 33333333333301111x z xy xz xy x z x y x x z x y x z y x z y x−−−−=−−−−=0))()()((11))((2222=++−−−=++++−−=z y x y z x z x y xxz z x xy y x z x y 由于z y x ,,是互异的实数,故要使上式成立,当且仅当0=++z y x .19.解 6111132114311315144434241=−=+++A A A A , 20. 11=x ,, 22=x 33=x 21.解 (用罗必塔法则求解)11100013212001230000111231001100sin cos 3212sin 123230cos 11231lim1101cos sin 3212sin 1231lim223230=+=−+=→→x x x x x x x x x x x x x x x x x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。

2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。

解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。

解答:0)(1010022=+-=--=---b a ab ba ab b a a =0, b =06. 设13124321322)(+--+-+=x x x x f ,则2x 的系数为 23 。

7. 五阶行列式=6200357020381002300031000___________。

解答:423212331)1(620035702038100230003100032=⨯⨯-=⨯8. (考研题)多项式211111)(321321321321+++++=x a a a a x a a a a x a a a a x f 的所有零点为 01=x ,12-=x ,23-=x 。

9、(考研题)设xdc bd xcb dc xb dc bx x f =)(,则方程0)(=x f 的根为=x 。

【分析】 )(x f 是关于x 的四次多项式,故方程0)(=x f 应有四根,利用行列式的性质知,当d c b x ,,=时,分别会出现两行相等的情况,所以行列式为零,故d c b x ,,=是方程的三个根。

再将后三列均加到第一列上去可以提取一个公因子为d c b x +++,所以当)(d c b x ++-=时,满足0)(=x f ,所以得方程的第四根)(d c b x ++-=。

故方程的四个根分别是:)(,,,d c b d c b ++-。

二、计算题1、计算0001000200020120002013000002014D =。

【分析】方法一:此行列式刚好只有n 个非零元素nn n n n a a a a ,,,,112211--- ,故非零项只有一项:nn n n n t a a a a 112211)1(---- ,其中2)2)(1(--=n n t ,因此 (20141)(20142)2(1)2014!2014!D --=-=方法二:按行列展开的方法也行。

2、计算行列式 3214214314324321=D 。

分析:如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加法).解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得===321421431432101010103214214314324321D 10111123413412412311110121101210321-=-----1604004001210111110=---=3.计算n 222232222222221的值。

解: 2020012000200021222232222222221--=n n202012002--=n=)!2(2--n4、计算5阶行列式:40030807009000605020001+++++++++=a a a a a a a a a D 的值。

【分析】 仿照上题的思路。

1256(9)78341234(9)56781256(9)4(9)3478a a a a D a a a a a a a a a a a a a a a a a a a a a a a a ++++=+++++++++=+++++++++=+=+++++5、计算行列式11111111139271248----的值。

分析 经过仔细观察会发现,这个行列式是个4阶范德蒙行列式的转置,所以利用范德蒙行列式的结论就可轻松算出行列式的值为240。

6、行列式4100034100034100034100034= 。

分析 对于此类三对角行列式,一般采用的是递推法。

按第一列展开,有34412534410341034344100341003410003)1(41003410034100344D D D D -=⨯-=⨯-+⨯=+故有5312323234453)4316(3)(3)(3)(3=--=-=-=-=-D D D D D D D D于是36433333]3)3[(3)3(3543215432543545=++++=+++=++=+=D D D D D7.求行列式1111111111111111--+---+---x x x x 的值。

【分析】 利用行列式的性质,将第2,3,4列加到第1列上得4000000000111111111111111111111111111111111111111111111111x xx x xx x xxx xx x xx x x xx x x x xx x x x x x =---=-----=-----+---=-----+---=--+---+---8、计算n 阶行列式abbbbb a b b b b b a b b bbbabb b b b a D n=。

【分析】 行列式特点是各列(各行)元素之和都是b n a )1(-+,故可把各行(各列)元素均加至第一行,提出公因子b n a )1(-+,然后各行再减去第一行:abbbbb a b b b b b a b b b b b a bbn a b n a b n a b n a b n a D n)1()1()1()1()1(-+-+-+-+-+=ba ba b a b a b n a abb bbb a b b b b b a b b b b b a bb n a -----+=-+=000000000000011111])1([11111])1([1)]()1([---+=n b a b n a9.计算行列式nn a a a D +++=11111111121,其中021≠n a a a【分析】 方法一:利用行列式性质,将原行列式化为上三角行列式。

)11(000011110011112121111211∑∑==+=++=--+=ni in nni inn a a a a a a a a a a a a a a D方法二:利用加边的方法1112211121211111111011110001111000111110111110001(1)0000n nnni inn i ina a D a a a a a a a a a a a a +==+-=+=-+-+==+∑∑10.计算行列式444422221111d c b a dcbad c b a D =的值。

【分析】 利用范作范德蒙行列式444443333322222111111x d c b a x d c b a x d c b a xd c b aD =,则行列式D 就是行列式1D 元素3x 的余子式45M ,即45M D =又))()()()()()()()()((1a b b c a c c d b d a d d x c x b x a x D ----------=此式3x 的系数是))()()()()()((a b b c a c c d b d a d d c b a ------+++-也为1D 中元素3x 的代数余子式45A ,因为4545A M -=所以,))()()()()()((111144442222a b b c a c c d b d a d d c b a d c b a dcbad c b a D ------+++==。

相关文档
最新文档