程稼夫电磁学第二版 习题解析
电磁学第二版习题答案第六章

电磁学第二版习题答案第六章电磁学第二版习题答案第六章习题在无限长密绕螺线管内放一圆形小线圈,圆平面与螺线管轴线垂直。
小线圈有100 6.2.11 匝,半径为 1cm,螺线管单位长度的匝数为 200cm . 设螺线管的电流在0.05 s 内以匀变化率从 1.5 A 变为 -1.5 A ,(1) 求小线圈的感应的电动势;(2) 在螺线管电流从正直经零值到负值时,小线圈的感应电动势的大小和方向是否改变,为什么,解答:1 2 ,小线圈半径 R, = 10 (1) 螺线管单位长度的匝数 n=200 cm m ,匝数N , , 100 ,若选择电动势的正方向与电流的正方向相同,螺线管内小线圈的感应电动势大小为, , , N , ddt, , N , dBdtS , , , 0 n( R, 2 ) N , dIdt , 4.7 ,10 2V . >0 表明电动势的方向与设定的方向相同。
螺线管电流从正值经零值到负值时,小线圈的感应电动势的大小和方向都不变, (2)因为电流以及磁通量都以相同的变化率作变化。
6.2.2 边长分别为 a=0.2 m 和 b=0.1 m 的两个正方形按附图所示的方式结成一个回路,单2 , 位的电阻为 5 , 10 10 .回路置于按 B , Bm sin ,t 规律变化的均匀磁场中, mBm , 10 2 T,, , 100 s 1 。
磁场 B 与回路所在平面垂直。
求回路中感应电流的最大值。
解答:在任一瞬时,两个正方形电路中的电动势的方向相反,故电路的总电动势的绝对值为d ,大 d ,小 dB 2 , , , a , b2 , , , a 2 b2 ,, Bm cos ,t , , m cos ,t dt dt dt2 , ,故回路电阻为因回路单位长度的电阻, , 5 ,10 mR , , , 4 , a , b, , 6 ,10 2 ,回路中感应电流的最大值为I m , R, m , 0.5 A6.2.3 半径分别为 R 和 r 的两个圆形线圈同轴放置,相距为 x (见附图)。
程稼夫电磁学第二版第一章习题解析

程稼夫电磁学篇第一章《静电场》课后习题1-1设两个小球所带净电荷为q,距离为l,由库仑定律:由题目,设小球质量m,铜的摩尔质量M,则有:算得1-2 取一小段电荷,其对应的圆心角为dθ:这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T:解得1-3(1)设地月距离R,电场力和万有引力抵消:解得:(2)地球分到,月球分到,电场力和万有引力抵消:解得:1-4设向上位移为x,则有:结合牛顿第二定律以及略去高次项有:1-5由于电荷受二力而平衡,故三个电荷共线且q3在q1和q2之间:先由库仑定律写出静电力标量式:有几何关系:联立解得由库仑定律矢量式得:解得1-6(1)对一个正电荷,受力平衡:解得,显然不可能同时满足负电荷的平衡(2)对一个负电荷,合外力提供向心力:解得1-7(1)设P限制在沿X轴夹角为θ的,过原点的直线上运动(θ∈[0,π)),沿着光滑直线位移x,势能:对势能求导得到受力:小量近似,略去高阶量:当q>0时,;当q<0时,(2)由上知1-8设q位移x,势能:对势能求导得到受力:小量展开有:,知1-9(1)对q受力平衡,设其横坐标的值为l0:,解得设它在平衡位置移动一个小位移x,有:小量展开化简有:受力指向平衡位置,微小谐振周期(2)1-101-11先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等.取和θ.有:显然两个电场强度相等,由于每一对微元都相等,所以总体产生的电场相等.利用这一引理,可知题文中三角形在内心处产生的电场等价于三角形内切圆环在内心处产生的电场.由对称性,这一电场强度大小为0.1-12(1)如图,取θ和,设线电荷密度λ,有:积分得(2)(3)用圆心在场点处,半径,电荷线密度与直线段相等的,张角为θ0 ()的一段圆弧替代直线段,计算这段带电圆弧产生的场强大小,可以用其所张角对应的弦长与圆弧上单位长度所产生的电场强度大小的积求得:1-13我们先分析一个电荷密度为ρ,厚度为x的无穷大带电面(图中只画出有限大),取如图所示高斯面,其中高斯面的两个相对面平行于电荷平面,面积为S,由高斯定理:算得,发现这个无穷大平面在外部产生的电场是匀强电场,且左右两边电场强度相同,大小相反.回到原题,由叠加原理以及,算得在不存在电荷的区域电场强度为0(正负电荷层相互抵消.)在存在电荷的区域,若在p区,此时x处的电场由三个电荷层叠加而成,分别是左边的n区,0到x范围内的p区,以及右边的p区,有:,算得同理算出n区时场强,综上可得1-14(1)取半径为r的球形高斯面,有:,解得(2)设球心为O1,空腔中心为O2,空腔中充斥着电荷密度为−ρ的电荷,在空腔中任意一点A处产生的电场为:(借助第一问结论)同时在A处还有一个电荷密度为+ρ则有:1-15取金属球上一面元d S,此面元在金属球内侧产生指向内的电场强度,由于导体内部电场处处为0,所以金属球上除该面元外的其他电荷在该面元处产生的电场强度为所以该面元受到其他电荷施加的静电力:球面上单位面积受力大小:半球面受到的静电力可用与其电荷面密度相等的,该半球面的截口圆面的面积乘该半球面的单位面积受力求得:1-16设轴线上一点到环心距离为x,有:令其对x导数为0:解得1-17写出初态体系总电势能:1-18系统静电势能大小为:1-19由对称性,可以认为四个面分别在中心处产生的电势,故取走后,;设BCD,ACD,ABD在P2处产生的电势为U,而ABD在P2处产生的电势为,有:;取走后:,解得1-20构造如下六个带电正方体(1到6号),它们的各面电荷分布彼此不相同,但都能通过一定的旋转从程中电荷直接相加而不重新分布).这个带电正方体各面电势完全相同,都为.容易证明,正方体内部的每一个点的电势也都为(若不然,正方体内部必存在电场线,这样的电场线必定会凭空产生,或凭空消失,或形成环状,都与静电场原理不符).故此时中心电势同样为1-21 O4处电势:O1处电势:故电势差为:1-22从对称性方面考虑,先将半球面补全为整个球面.再由电势叠加原理,即一个半球面产生的电势为它的一半,从而计算出半球面在底面上的电势分布.即1-23设上极板下版面面电荷密度为,下极板上版面面电荷密度为.取一个长方体型的高斯面,其形状是是两极板中间间隔的长方体,并且把和囊括进去.注意到金属导体内部没有电场,故这个高斯面电通量为0,其中净电荷为0,有:再注意到上下极板电势相等,其中E1方向向上,E2方向向下:再由高斯定理得出的结论:解得1-24先把半圆补成整圆,补后P、Q和O.这说明,新补上的半圆对P产生的电势为,而由于对称性,这个电势恰好也是半球面ACB对Q产生的电势.故:1-25在水平方向上,设质点质量m,电量为q:运动学:整体带入得:1-26(1)先将半球面补全为整个球面,容易计算出此时半球底面的电势.再注意到这个电势由对称的两个半球面产生的电势叠加得到,即一个半球面产生的电势为它的一半,即可求出一个半球面对底面产生的电势恒为定值,故底面为等势面,由E点缓慢移至A点外力做功为W1=0.(2)由上一问的分析知由E点缓慢移至O点外力不做功,记电势能为E,E的右下标表示所代表的点,则有:依然将半球面补为整球面,此时q在球壳内部任意一点电势能为2EO.此时对于T点,其电势能为上下两个球面叠加产生,由对称性,有:综上有W2=−W.1-27小球受电场力方程:将a与g合成为一个等效的g′:方向与竖直夹角再将加速度分解到垂直于g′和平行与g′的方向上.注意到与g′平行的分量最小为0,而垂直的分量则保持不变,故速度的最小值为垂直分量:1-28假设给外球壳带上电量q2,先考虑q2在内外表面各分布了多少.取一个以内球壳外表面和外球壳内表面为边界的高斯面,并把内球壳外表面和外球壳内表面上的电荷囊括进去,真正的高斯面边界在金属内部.由于金属内部无电场,高斯面电通量为0,高斯面内电荷总量为0,得到外球壳内表面分布了−q1电荷,外表面分布了q2+q1电荷.由电势叠加原理知球心处的电势:解得由电势叠加原理及静电屏蔽:1-29设质点初速度为v0,质量为m,加速度为a,有:,其中.设时竖直向下速度为v1,动能为Ek1,初动能为Ek0,有:解得1-30球1依次与球2、球3接触后,电量分别为.当球1、4接触时满足由于解得.注:若此处利用,略去二阶小量则可以大大简便计算,有意思的是,算出的答案与笔者考虑二阶小量繁重化简过后所得结果完全一致,这是因为在最后的表达式中没有r与a的和或差的项的缘故。
电磁学第二版习题答案

电磁学-第二版-习题答案第二版《电磁学》的习题答案:1. 第一章:电荷和电场习题1:假设有两个电荷,一个带正电量Q1,另一个带负电量Q2,在他们之间的距离为r1。
如果将Q1的电荷减小到原来的一半,同时将Q2的电荷加倍,并将它们之间的距离改为r2,那么这两个电荷之间的相互作用力是怎样改变的?解答:根据库伦定律,两个电荷之间的相互作用力正比于它们的电荷量乘积,反比于它们之间的距离的平方。
即F∝(Q1Q2)/r^2。
根据题目,Q1变为原来的一半,Q2变为原来的两倍,r由r1变为r2。
代入上述关系式,可得新的相互作用力F'为:F'∝((Q1/2)*(Q2*2))/(r2^2)。
化简上式,可得F'∝(Q1Q2)/(r2^2)。
由上式可知,新的相互作用力与原来相互作用力相等。
即新旧相互作用力大小相同。
习题2:有一组平行板电容器,两板之间的距离为d,电容的电极面积为A。
当电容器充满理想电介质时,电容器的电容是原来的多少倍?解答:当电容器充满理想电介质时,电容的电容量由电容公式C=εA/d得到。
其中,ε为电介质的相对介电常数。
而当电容器未充满电介质时,电容的电容量为C0=ε0A/d。
其中,ε0为真空的介电常数。
所以,电容器充满电介质时,电容与未充满时的电容C0比较,即C/C0=ε/ε0。
所以,电容器电容是原来的ε/ε0倍。
2. 第二章:电荷的连续分布习题1:在距离线段中点为R的的P点,取出一个长度为l的小线段,小线段的位置如何改变时,该小线段对P点电势的贡献较大?解答:根据电场电势公式,P点电势由该小线段的电荷贡献决定。
即V=k(q/R),其中k为电场常量,q为该小线段的电荷量,R为该小线段到P点的距离。
所以,小线段对P点电势的贡献较大的情况是,当该小线段长度l较大且该小线段离P点的距离R较小的时候,即小线段越靠近P点且长度越大,对P点电势的贡献越大。
习题2:线电荷的线密度为λ,长度为L,P点到线电荷的距离为d。
电磁学第二版习题答案第四章

j
δ
=
ρ I 3.14 ×10−8 × 20 = = 0.2 V 2 −3 2 m πR 3.14 × (10 )
4.3.5 铜的电阻温度系数为 4.3 ×10−3 / 0C ,在 0 0C 时的电阻率为 1.6 ×10−8 Ω ⋅ m ,求直径为 5mm、长 为 160km 的铜制电话线在 25 0C 时的电阻。
b a
ρ dx ρ 1 1 ρ (b − a) = ( − )= 2 4π r 4π a b 4π ab
ρ dx 4π r 2
4.3.4 直径为 2mm 的导线由电阻率为 3.14 ×10−8 Ω ⋅ m 的材料制成,当 20A 的电流均匀地流过该导 体时,求导体内部的场强。
解:根据 j = δ E ,得 E =
lρ ⎡ 1 1 ⎤ lρ − = π (b − a) ⎢ ⎣a b⎥ ⎦ π ab lρ l =ρ 2 s πa
当 a = b 时: R =
4.3.3 球形电容器内外半径为 a 和 b,两极板间充满电阻率为 ρ 的均匀物质,试计算该电容器的漏 电电阻。 解:对漏电电阻,其内部电极电位差,电流沿径向从高电位向低电位流过,则有: dR = 积分得: R = ∫ dR = ∫
(a) Rab = 1K Ω , (b) Rab = 4.5Ω (c) Rab = 1.2Ω (d) Rab = 7.4Ω (e) Rab = 5Ω (f) Rab = 1.5Ω (g) Rab = 14Ω
4.2.3 当附图中的 R1 为何值时 A、B 间的总电阻恰等于 R0? 解:由 R总 = R1 +
U = 0.01× 103 = 10(V ) , U 额 = RW =
2 P 100 = 0.01 × 100 = 0.01(W )
电磁学第二版习题答案第六章

电磁学第二版习题答案第六章习题在无限长密绕螺线管内放一圆形小线圈,圆平面与螺线管轴线垂直。
小线圈有100 6.2.11 匝,半径为1cm ,螺线管单位长度的匝数为200cm . 设螺线管的电流在0.05 s 内以匀变化率从 1.5 A 变为-1.5 A(1) 求小线圈的感应的电动势;(2) 在螺线管电流从正直经零值到负值时,小线圈的感应电动势的大小和方向是否改变, 为什么,解答:1 2 , 小线圈半径R, = 10 (1) 螺线管单位长度的匝数n=200 cm m , 匝数N , , 100 ,若选择电动势的正方向与电流的正方向相同,螺线管内小线圈的感应电动势大小为, , , N , ddt, , N , dBdtS , , , 0 n( R, 2 ) N , dIdt , 4.7 ,10 2V .>0表明电动势的方向与设定的方向相同。
螺线管电流从正值经零值到负值时,小线圈的感应电动势的大小和方向都不变,(2)因为电流以及磁通量都以相同的变化率作变化。
6.2.2 边长分别为a=0.2 m 和b=0.1 m 的两个正方形按附图所示的方式结成一个回路,单2 , 位的电阻为 5 , 10 10 . 回路置于按 B , Bm sin , t 规律变化的均匀磁 场中, mBm , 10 2 T , , , 100 s 1 。
磁场 B 与回路所在平面垂直。
求回路中感应 电流的最大值。
解答:在任一瞬时,两个正方形电路中的电动势的方向相反,故电路的总电动势的绝对值,故回路电阻为 因回路单位长度的电阻 , , 5 ,10 ma ,b , , 6 ,10 2 ,回路中感应电流的最大值为I m , R, m , 0.5 A已知 r x (设 x 以匀速 v , 而大线圈在校线圈内产生的磁场可视为均匀时间 t dt而变.(1) 把小线圈的磁通 , 表为 x 的函数, 表为 x 的函数 (2) 把小线圈的感应电动势 (绝对值 )(3) 若 v , 0 , 确定小线圈内感应电流的方向 .解答:cos大 d , 小 dB 2 , , , a, b2 , , , a 2 b2 Bm cos ,t , , m t dt dt dt6.2.3 半径分别为 R 和 r 的两个圆形线圈同轴放置,相距为 x (见附图)。
程稼夫电磁学第二版第三章习题解析

前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.非习题部分:P314 积分中运用了近似,这里给出非近似解答:3-2先计算圆环上的电流3-又垂直于磁场方向粒子做圆周运动得当运动了时,电子一定会回到轴上.即若,则聚焦到了屏上.解得.3-4考虑出射角度为θ为粒子,其运动在垂直于磁场平面内的投影为一个过原点的圆.设半径为r,1)2)对应的立体角为比值为——前辈大神云:当年我没事练习积分的时候发现,找一个球面,沿垂直于一固定方向的平面切两刀,则无论如何切,两刀间的面积总是仅与两刀间的距离呈正比。
(具体证明请在X3-5(1得(2)沿TM方向不受力,速度分量恒为;垂直于磁场方向的平面上,粒子的投影是匀速圆周运动.动力学方程:解得欲经过M点,须在时,圆周运动回到了圆周运动的起点,即周运动抵达原点.由此设计,并考虑方向,可得答案:3-8当摆角为θ时,设摆的速度v,(1解得.(2)若,便不能达到,这时只需考虑最低点,因为那里最接近二次函数的极值点:解得前面的条件要求,故,解得.即时,在最低点恰好T=0,而时不会出现情况2)综上所述(2)出发后时,粒子第一次经过x轴代入解得.(3),为整数个周期,即粒子回到x轴此时即粒子回到原点.粒子运动中占据的空间为一圆柱,轴线长即x坐标最大值:半径即粒子匀速圆周运动的半径:体积为.3-10因为E垂直于平面而质子轨迹在平面内,所以质子的动能守恒.. 3-11如图,速度方向、电场方向和磁场方向两两垂直,洛伦兹力与电场力平衡得取一小段时间,这期间冲到靶上的粒子的电量为.这些粒子的质量为.由动量定理其中F是质子束受到的力.作用在靶上的力是它的反作用力.3-12(1)在垂直于磁场方向粒子做匀速圆周运动,动力学方程时,3-取,记,有可见是以为角速度的匀速圆周运动的速度.,解得,故有积分得到(3)粒子速度为零,即,由此解得,相(4x投影3-14设粒子距离磁极r,轨道半径为R,回旋角速度为ω.粒子受力如图,其中动力学方程可由力三角表示,以为直角边的三角形,斜边为解得,故有.3-15设圆运动半径为R3-16法一:建立空间直角坐标系如图.取,记,有可见是以为角速度的匀速圆周运动的速度.知圆运动这部分的半径,且与y轴相切,由几何关系临界是当..(2)根据运动的独立性,首先只考虑匀速圆周运动由速度合成可得.3-18撤去重力场,以等效的电场代之.动力学方程:取,记,有,记,有可见是以为角速度的匀速圆周运动的速度.由初始条件,知线速度速度最大时圆运动的速度与漂移速度同向,第二阶段的速度最大值为综上,整个过程最大速度.3-20方法一:记这一段导管长为l,它受到安培力为,于是两壁压差为3-由于把3-竖直方向只有重力作用,是上抛运动水平方向,得,有所以由二次函数性质,在时有最小值3-23设横向电场E2,纵向电场E1.由横向电场力与洛伦兹力平衡:于是有.3-24(1)由动力学方程:得到,又回旋加速器中粒子作圆周运动的周期即为电场的周期解得(2).3-25(2)能够射出的电子,其轨迹圆心都在S的右半边.由于电子顺时针回旋,电子总是轨迹圆与MN 从较为靠上的交点射出.对于圆心在右下时,射出点在相切时最靠下.由几何关系对于圆心在右上时,射出点与S对径时最靠上.由几何关系所以(3)轨迹圆心在S右边的电子初速度方向是向上和斜向上的所有方向.故占. 3-26数据不足无法得到答案,这里提供解法:(1)初速度设为,由,解得3-28题设A的量纲明显不对,强行忽略就好了.动力学方程取,记,有可见是以为角速度的匀速圆周运动的速度.因为z方向无外力,故粒子会留在平面内,因为,所以圆周运动那部,依分离实部虚部得:电子在z方向的运动,由一个沿z方向的匀速直线运动和另一个同样沿z方向的谐振动叠加;电子运动在平面内的投影是一条旋轮线.。
电磁学答案第二版习题答案第五章

B=
解: (1) (2)
l u0 nI 2 (2 × − 1) 2 2 l + 122 4
l总 = 2nlπ R
5.2.10 附图中的A、C是由均匀材料支撑的铁环的两点,两根直载流导线A、C沿半径方向伸出,电流 方向如图所示,求环心O处的磁场B。 解:∵
B10 = B40 = 0 ,
6
5.3.3 电子在垂直于均匀磁场B的平面内作半径为1.2cm,速率为 10 m/s的圆周运动(磁场对它的洛伦 兹力充当向心力, )求B对此圆轨道提供的磁同通量。 解:∵
Φ m = Bπ R 2 ,而B由R=mv/qB Φm = mvπ R q
∴
5.4.1 ‐同轴电缆由一导体圆柱和同一轴导体圆筒构成,使用时电流I从一导体流去,从另一导体流回, 电流都是均匀地分布在横截面上,设圆柱的半径为R1,圆筒的半径分别为R2和R3(见附图) ,以r代表 场点到轴线的距离,求r从O到无穷远的范围内的磁场(大小)B。
∴
B = ∫ dB =
u0 N u NI cos 2 θ dθ = 0 ∫ πR 4R
5.2.16 有一电介质薄圆盘,其表面均匀带电,总电荷为Q,盘半径为a,圆盘绕垂直于盘面并通过圆 心的轴转动,每秒n转,求盘心处的磁场(大小)B。 解:与半径不同的一系列圆心载流3圆等效,
B=
∵ 圆电流圆心处
l
B=
u0 ΔI 2π R , B= u0 h πR
∵ ΔI = 2 h ∴
5.2.13 将上题的导体管沿轴向割去一半(横截面为半圆) ,令所余的半个沿轴向均匀地流过电流I,求 轴线上的磁场(大小)B。
dB =
解:∵
u0 dI 2π R , dI = I Rdα πR
电磁学第二版习题答案2

电磁学第二版习题答案2电磁学 第二版 习题解答电磁学 第二版 习题解答 (2)第一章 .............................................................. 2 第二章 ............................................................ 18 第三章 ............................................................ 27 第四章 ............................................................ 36 第五章 ............................................................ 40 第六章 ............................................................ 48 第七章 (54)第一章1.2.2 两个同号点电荷所带电荷量之和为Q 。
在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大?解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为20()4q Q q F r πε-=令力F 对电荷量q 的一队导数为零,即20()04dF Q q qdq rπε--== 得122Q q q ==即取 122Qq q ==时力F 为极值,而 22202204Q q d F dq rπε==<故当122Qq q ==时,F 取最大值。
1.2.3 两个相距为L 的点电荷所带电荷量分别为2q 和q ,将第三个点电荷放在何处时,它所受的合力为零?解答:要求第三个电荷Q 所受的合力为零,只可能放在两个电荷的连线中间,设它与电荷q 的距离为了x ,如图1.2.3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.1-1设两个小球所带净电荷为q,距离为l,由库仑定律:这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T:1-3(1)设地月距离R,电场力和万有引力抵消:解得:(2)地球分到,月球分到,电场力和万有引力抵消:解得:1-4有:1-5联立解得由库仑定律矢量式得:解得1-6(21-7移当q>0时,;当q<0时,(2)由上知1-8设q位移x,势能:对势能求导得到受力:(2)1-101-11先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等. 1-12(1)积分得(2)(3)用圆心在场点处,半径,电荷线密度与直线段相等的,张角为θ0 1-13我们先分析一个电荷密度为ρ,厚度为x的无穷大带电面(图中只画出有限大),取如图所强度相同,大小相反.回到原题,由叠加原理以及,算得在不存在电荷的区域电场强度为0(正负电荷层相互抵消.)在存在电荷的区域,若在p区,此时x处的电场由三个电荷层叠加而成,分别是左边的n 区,0到x范围内的p区,以及右边的p区,有:,算得度为所以该面元受到其他电荷施加的静电力:球面上单位面积受力大小:半球面受到的静电力可用与其电荷面密度相等的,该半球面的截口圆面的面积乘该半球面的单位面积受力求得:1-16设轴线上一点到环心距离为x,有:1-19由对称性,可以认为四个面分别在中心处产生的电势,故取走后,;设BCD,ACD,ABD在P2处产生的电势为U,而ABD在P2处产生的电势为,有:;取走后:,解得1-20构造如下六个带电正方体(1到6号),它们的各面电荷分布彼此不相同,但都能通过故电势差为:1-22从对称性方面考虑,先将半球面补全为整个球面.再由电势叠加原理,即一个半球面产生的电势为它的一半,从而计算出半球面在底面上的电势分布.1-1-势.故:1-25在水平方向上,设质点质量m,电量为q:运动学:整体带入得:1-26(1)先将半球面补全为整个球面,容易计算出此时半球底面的电势.再注意到这个电势由对称的两个半球面产生的电势叠加得到,即一个半球面产生的电势为它的一半,即可求出一个半球面对底面产生的电势恒为定值,故底面为等势面,由E点缓慢移至A点外力做功为W1=0.解得由电势叠加原理及静电屏蔽:1-29设质点初速度为v0,质量为m,加速度为a,有:,其中.设时竖直向下速度为v1,动能为Ek1,初动能为Ek0,有:再将球4接地,设球1的电量变为q,则可得因此流入大地的电量为.1-31(1)考虑上下极板间距为x的情况上极板所带电荷由于只有下极板提供的电场对上极板有引力,此电场强度为则等效劲度系数为系统作微小振动频率若,则上下板会吸在一起.1-32粒子由A运动至B,竖直分运动需要时间:水平方向作匀速圆周运动经过的路程:C1-1-34考虑临界状态下小液珠运动全过程:,式中U为两板间电压;临界状态下A板带电量:,解得:最后一滴液珠被A板吸收后,使得A板实际的电量Q′应略大于Q.故吸收的小液珠个数:,[]表示高斯取整函数,即INT1-35(1)导体球电势为:得:感应电荷总电量..1-36能量守恒:(取无穷远处为势能零点)有心力作用,角动量守恒:又,得:代入E= 2keV及d=r/2得:换为电子,运动情况与质子一致,但球带负电.故1-37(1)动力学方程:,其中,解得(2)分析径向运动:1-38(1)电子在区间,做初速为零的匀加速直线运动:得,经到x=d处,沿x轴方向的分速度在区间,即电子做角频率为的简谐运动,振幅(2.1-39.便得,于是必然有1-40通过强相互作用势能,可求得距离为r时正反顶夸克间的强相互作用力为,负号表示此力为吸引力.正反顶夸克之问的距离为r0时作用力大小为正反顶夸克满足动力学方程1-42(1)由对称性,场强向左或向右情况是一样的,不妨设场强方向向右,大小为E. q的受力情况如图(2)将两个小球视为一个整体,受力情况如图垂直于绳方向的平衡方程为解得(3)接第(2)问,悬线AO的张力为1-43(1)设B球碰前所带电量为q,有将A、B接触一下后A、B都带电,此时有由以上各式解得或(2)已知B球碰前所带电量小于A球所带电量,可知B球碰前所带电量为C球与A球相碰后,两球分别带电4Q;C球与B球相碰后,两球分别带电−Q;CAFAB1-441-45两图导体柱的电势都不为正,故正电荷发出的全部电场线被小球吸收,小球收到来自无穷远的电场线,于是:用a 图减去b 图,左边是一个不带电导体,右边一个大导体右边带负电,如果左边带正电,明显在没有外界净电荷干扰的情况下正负电荷会抵消于是左边应带负电即1-46跟静电计相连,则A与静电计外壳等势,腔内没有电场线,不能带电,故闭合.电荷转移到外壳、k及A上.撤去K,用手摸A即接地,则小球电势变为0.外壳带正电,在A产生的电势为正,为使电势变为0,必须使其带负电,故重新张开.1-47设小球带电量为q.引入一个像电荷,其位置与小球关于导电平面对称,带电量与小球相反.设小球重力为G,弹簧初始伸长量为x0.小球受的电场力为初始状态平衡方程:1-48q方1-49引入两个像电荷如图:(1)q的受力情况如图:(2)两个点电荷、两个像电荷分别在两个点电荷中点产生的场强如图:其中,可见合场强水平向右,1-50(1)每一个+q在球壳上感应出的电荷可等效为一个像点电荷,与球心距离.两个像电荷在两个+q的连线上,分居球心左右.其中一个+q的受力由两个q′和另一个+q提供(以指向球心为正):(则1-布的q1、q2;q在球体外壁的感应电荷等效为在球体外壁均匀分布的−q′和在球心与q连线上的像点电荷q′.由于静电屏蔽,q1、q2所受静电力等于左腔内壁感应电荷对q1、q2的作用力.而左腔内壁的感应电荷为均匀分布,故q1、q2所受静电力像电荷,故q所受静电力(以向右为正)为:根据牛顿第三定律,球A所受静电力为大小仍为.1-54将上一问中的q换成Q,并令F=0,化简得:(2)空腔导体造成静电屏蔽,球壳内点电荷和内表面感应电荷对内表面外部无电势贡献,故球壳电势即为外表面感应电荷带来的电势.又由于外表面感应电荷为均匀分布,在外表面内不产生电场,故外表面感应电荷对球壳上电势贡献等于其在球心处产生的电势,.1-56设A1、A2、A3的质量分别为m1、m2、m3,带电量的绝对值分别为q1、q2、q3,A1、A2运动的角速度均为ω对A1有,对A2有两式相比,即得.1-57假设可以做稳定小振动,写出环偏离平衡位置x处的势能:又,得电容:.1-59法一:两个球均可视为与无限远构成电容器,由孤立导体球电容公式,其电容分别为:,.用导线连接前,可视为CA与CB串联,等效电路图如下:电容为用导线连接后,可视为CA与CB并联,等效电路图如下:两金属球等势:,解得则系统电容.1-60(1)设内球带电量为,外球电量在内球球心产生的电势为内球电量在内球球心产生的电势为内球的总电势,解得.外球电量在球心产生的电势为C13故1、2间的电容(b)本问中,3板和4板由导线相连,电势相等,故可看作由1、3构成的电容C13与4、2构成的电容C42串联后整体与1、2构成的电容C12并联,等效电路图如下:故.即又设设由于金属板内无电场,则3板上板与2板下板所带电荷等量同号(故在板内产生电场抵消):则1、2板间电容(b)设给1板充,给2板充,设1板上板带电,则1板下板带电,2板上板带电,2板下板带电,3板下板带电,4板上板带电.设3板上板带电,4板下板带电,由3、4板电荷守恒及金属板内无电场得,联立解得1-64(1)由于任一单元输入端之后的总电容为C,在第1个单元输入端a、b间加电压后,将第1个单元输出端后的电容等效为一个大小为3C的电容,由3个大小为3C的电容串联得第2个单元输入端间电压:同理得第k个单元输入端间电压所求总电能(2)第1单元与后面网络断开前,第1单元中电容为3C的电容器的带电量为Q,有则第第1个单元a、b短路后,设电容器各极板上的电荷分布如图所示.三个电容器贮存的电能1-65(1)首先,1 左与100 右无电荷,因为如果有电荷,则电荷电场线必延伸至无穷远,则金属板电势不为0,与接地不符.设1号板带电,由高斯定理,所有板总电量为零:,则100号板带电.取一个左侧包含1板右板,右侧包含n板左板的高斯面(),由于金属板内无电场,此高斯面电通量为0:,解得.1-66过程中电容电荷量不变,故弹力的水平增量:受力平衡得:.1-67因为,故可用平行板电容器公式近似计算电容C(注意内径是直径!),设玻璃1-并联:1-69设初始时细线与竖直方向夹角为,由受力平衡得:放入煤油后,浮力矩与静电力矩增量抵消:又与空气接触处无极化电荷,得.(4)与正极板接触的极化面电荷密度得1-71设极板面积为S,升高高度h,极化面电荷密度对升高的部分液体电介质受力分析得:其中解得.注意:此题素来受争议,焦点在于此题虚功原理是否适用(如果尝试以虚功原理计算,其结1-73(1)初态电容,电场能,带入得抽出后Q不变,电容变为,电场能..对势能求负梯度得受力:.暴力化简,其中.1-75,外力做功,,电阻放热.(2)故(3).1-1-(得.1-(2)系统静电能小球壳上电荷有电势,大球壳上有电势故系统能量. 1-82记,上的电荷为,有电势.,板带;4上板带,下板无电荷.此时三个电容串联,一个不带电,另外两个极板带电量相同,可等效为一板间距为的电容.1-84同1-501-85(1)取平面(即面)分析.两个点电荷在接地平板感应出两个像电荷:处处.作用在点电荷上的力高斯定理得1-86初态:末态:能量守恒:.1-87(1)设导体球原带电.如图,球外电势.(2)像电荷同(1)如图,球外电势.1-88外场作用下,介质球周围极化电荷面密度余弦分布.计算处:,解得(3).1-90(4)球形电容器电容三个电容串联:得(1). Q为第一问所求值.1-91平行板电容:电路总电容:极板上总电荷:.解得.1-92(21-93解得.(2)电压:电容定义:.(3)设留在电容内介质的长为x,外力为电容并联:。