金刚石薄膜的研究与制备情况

合集下载

金刚石薄膜的性质_制备及应用

金刚石薄膜的性质_制备及应用
目前使用 HTHP 生长技术 , 一般只能合成小颗 粒的金刚石 ;在合成大颗粒金刚石单晶方面 , 主要使 用晶种 法 , 在较高 压力和 较高温 度下 (6 000 MPa , 1 800K), 几天时间内使晶种长成粒度为几个毫米 , 重达几个克拉的宝石级人造金刚石 , 较长时间的高 温高 压 使得 生 产成 本 昂贵 , 设备 要求 苛 刻 , 而 且 HTHP 金刚石由于使用了金属催化剂 , 使得金刚石 中残留有微量的金属粒子 , 因此要想完全代替天然 金刚石还有相当的距离 ;而且用目前的技术生产的 HTHP 金刚石的尺寸只能从数微米到几个毫米 , 这
确保生成的是金刚石而不是无定形碳 。 热丝 CVD(HFCVD)[ 4] (见图 5a)的真空腔是由
一台旋转式机械泵维持的 , 其间各种反应气体混合 时需严格控制(通常总流量为几百毫升每分钟 , SCCM)。反应腔压力通常为 2 .67 kPa ~ 4 .00 kPa , 同时 基片台加热器将基片温度升至 700 ℃~ 900 ℃。 在 基片台的加热器上放一片 Si 或 Mo , 热丝在距离基 片几 个 毫米 上 的 地方 。 热 丝通 电 使 之温 度 达 到 2 200 ℃。制成 热丝的金属要能够承受这样的 高温 且不能明显与反应气体反应 , 热丝材料通常为钨和 钽 , 尽管它们最终也与含碳气体反应被碳化生成金 属碳化物 。 这一变化使得它们变脆 , 缩短了它们的 使用寿命 , 因而它 们最多只能使用 一个沉积周期 。 HFCVD 相对较便宜 , 且容易操作 , 能以约 1 μm·h-1 ~ 10μm·h -1 的速率沉积质量比较高的多晶金刚石 。 然而 ,HFCVD 也面临一些严重问题 。 如 , 热 丝对氧 化性和腐蚀性气体极为敏感 , 这样限制了可用来参 与反应的气体的种类 ;又因为热丝是金属材料 , 不可 避免地会污染金刚石膜 。 如果金刚石薄膜仅仅用于 机械领域 , 10-5级的金属不纯物并不是严重问题 , 但 若应用于电子领域 , 这种不纯是无法接受的 。 而且 , 由于是靠热激发 , 使得等离子体密度不高 , 这也限制 了通过施加偏压以提高生长速率和金刚石膜的取向

金刚石薄膜的特性及应用

金刚石薄膜的特性及应用

7.声传播速度快, 是优良的传声材料。日 本的索尼公司已成批出售用金刚石薄膜 制造的频率达40000Hz的高保真度扬声 器。
8. 化学性能稳定, 耐腐蚀性能好。利用 该特性, 可制做核反应堆的内壁和航天器 的涂层, 还可以用作太阳能电池的减反射 膜和耐腐蚀涂层。
9.有良好的生物学性能。成都科技大学 在钦合金基体上镀金刚石薄膜制做人工 心脏瓣膜, 经测定: (1)抗凝血能力优于钦合金基体; (2)表面张力为5.4×10-2N/m, 与低温各 向同性碳接近; (3)溶血率为 3.7%, 符合标堆要求(标准 <5%)。
五、目前需要解决的问题
1.提高膜的质量和成核密度 由于制膜条件控制不当, 膜的结构成分往 往会包括金刚石相, 石墨相和碳的聚合物相, 此外还有空洞, 人们把这种膜称之为类金刚 石膜(DLC膜)。DLC膜虽然类似金刚石 膜,但毕竟比金刚石膜差, 在DLC膜中, C的 四重配位 SP3和三重配位SP2的比例对膜 的结构和性质的影响很大。一般来说, 四重 配位越多, 膜的性质越接近于金刚石。
目录
• 一、引言 • 二、金刚石薄膜的性能及其应 用 • 三、金刚石薄膜的合成方法 • 四、金刚石薄膜的分析和表征 • 五、目前需要解决的问题
三、金刚石薄膜的合成方法
1.低压化学气相沉积法(CVD法) 2.物理气相沉积法(PVD法) 3.化学气相翰运法(CVT法)
1.低压化学气相沉积法(CVD法)
该法生长金刚石薄膜所用的原料除氢气外, 碳源多用CH4及其它碳氢化合物, 如C2H2、 C2H6、C2H8等, 用甲醇、乙醇和三甲胺等有 机化合物为原料也能生长出金刚石型薄膜 ①热丝CVD法 ②等离子体增强化学气相沉积法(PCVD )
热丝CVD法
基本原理是含碳气相组分在高温下分解 离化后沉积在基体上形成金刚石膜。 热丝CVD装置如图所示, 主要由真空反 应室, 抽真空系统, 进气控制系统和 基板加热系统组成。真空反应室是 由石英管制做的, 反应室内有热灯丝, 样品支架和测温热电偶等, 样品支架 可以转动, 抽真空系统由机械泵和 真空计组成。碳源气体和氢气按一定比 例混合后进人反应室, 其流量用质量 流量计控制, 碳源气体浓度一般<= 5%(体积比)。 。

CVD金刚石膜生产建设项目可行性研究报告

CVD金刚石膜生产建设项目可行性研究报告

CVD金刚石膜生产建设项目可行性研究报告项目背景CVD金刚石膜是一种由化学气相沉积(Chemical Vapor Deposition, CVD)技术制成的薄膜。

它具有高硬度、高导热性、低摩擦系数、化学惰性等优点,在许多领域有广泛的应用前景,如工具刀片、电子器件、医疗器械等。

由于其特殊的物理和化学特性,CVD金刚石膜的生产具有较高的技术要求和成本。

项目概述本项目拟建设一个CVD金刚石膜生产工厂,预计投资20亿元人民币。

主要生产包括多晶金刚石膜、单晶金刚石膜以及其他金刚石相关产品。

项目选址在已有的工业园区内,占地100亩,总建筑面积3万平方米。

可行性分析1.市场需求:CVD金刚石膜在多个领域有广泛的应用需求,尤其是高精密工具、电子器件等市场规模巨大,有较大的增长潜力。

2.技术:CVD金刚石膜的生产技术涉及较多的工艺和设备。

本项目由具有相关技术经验的工程师组成的研发团队完成工艺研究和设备配置,具备较高的技术实力。

3.资金投入:项目投资20亿元人民币,主要用于建设厂房、购买设备、研发费用等。

根据初步估算,项目的投资回收期为7年左右。

4.竞争环境:目前市场上已有一些CVD金刚石膜生产企业,但由于该技术要求较高,竞争对手相对有限。

同时,本项目通过技术优势和产品质量的提升,可以在市场上占据一定的份额。

5.政策支持:近年来,政府对新材料产业的支持力度不断加大。

本项目可以通过申请国家和地方的相关科技创新与产业升级的政策支持,降低项目的风险与成本。

可行性结论基于以上的分析,本项目具有一定的可行性和发展前景。

通过合理的市场定位、技术创新、资源整合等措施,可以有效提高产品的竞争力,满足市场需求。

同时,政府的政策支持和市场的潜在增长空间也为项目的成功发展提供了良好的外部环境。

因此,推进CVD金刚石膜生产建设项目具有相当的可行性。

mpcvd金刚石膜的拉曼光谱学

mpcvd金刚石膜的拉曼光谱学

一、概述金刚石是一种极具硬度和热导率的材料,因其在各种工业和科学领域具有重要的应用价值。

金刚石膜的制备方法中,微波等离子体化学气相沉积(MPCVD)技术因其制备速度快、成本低、质量稳定等优势,被广泛应用于金刚石膜的制备中。

拉曼光谱学作为一种非破坏性的表征手段,对金刚石膜的结构和性质具有重要的研究价值。

本文将就MPCVD金刚石膜的拉曼光谱学进行探讨。

二、MPCVD金刚石膜的制备1. MPCVD技术的基本原理MPCVD是一种利用微波等离子体在化学气相沉积过程中产生的活性碳原子来沉积金刚石薄膜的技术。

其基本原理是利用微波的电磁场激发离子体,使之发生电离和激发状态转变,从而产生活性碳原子。

这些活性碳原子在沉积表面上发生化学反应,生成金刚石薄膜。

2. MPCVD金刚石膜的制备步骤制备MPCVD金刚石膜包括基板表面的清洁、金刚石种子层的沉积、金刚石膜的沉积等步骤。

其中金刚石种子层的沉积是制备金刚石薄膜的关键步骤。

三、拉曼光谱学在金刚石膜研究中的应用1. 拉曼光谱的基本原理拉曼光谱是一种通过材料与激发光产生的散射光的频率差来研究物质结构和性质的方法。

在拉曼光谱中,激发光与样品分子发生相互作用后,会产生散射光。

散射光中比入射光频率低的被称为斯托克斯线,而比入射光频率高的被称为反斯托克斯线。

2. 拉曼光谱在金刚石膜研究中的应用拉曼光谱学在金刚石膜研究中,主要用于分析金刚石薄膜的晶体结构、内应力、非晶含量和氢杂质等。

通过观察拉曼光谱峰的强度、位置和形状变化,可以对金刚石薄膜的质量和结构特征进行表征。

四、MPCVD金刚石膜的拉曼光谱学研究现状目前国内外已有大量学者对MPCVD金刚石膜的拉曼光谱学进行了深入研究。

根据文献报道,MPCVD金刚石膜的拉曼光谱主要包括特征拉曼峰、线宽和位置等参数的研究。

五、MPCVD金刚石膜的拉曼光谱学研究存在的问题和挑战1. 样品表面形貌不均匀由于MPCVD金刚石膜在制备过程中容易出现表面粗糙和颗粒堆积等问题,导致样品表面形貌不均匀,进而影响了拉曼光谱的测试结果。

材料科学中的金刚石薄膜制备技术

材料科学中的金刚石薄膜制备技术

材料科学中的金刚石薄膜制备技术近年来,材料科学领域中的金刚石薄膜制备技术引起了广泛的关注。

金刚石是世界上最硬的物质之一,具有非常优异的力学性能、磁学性能和热学性能等。

由于其优异的机械和热学性能,金刚石薄膜已广泛应用于微电子、生物医学、航空航天和高速切削加工等领域。

金刚石薄膜制备技术有多种方法,包括化学气相沉积、物理气相沉积、等离子体增强化学气相沉积、离子束沉积、热解法、溅射法等。

这些方法都有自己的优势和限制,需要针对不同应用场合进行选择。

其中物理气相沉积是最常用的方法之一。

在物理气相沉积中,最常用的金刚石沉积源是石墨。

通过热解石墨在真空中形成的碳离子,然后在底板上沉积成薄膜。

这种方法制备的金刚石薄膜质量高,可控性强,具有较高的生长速率和生长面积,很适合制备大面积的金刚石薄膜。

此外,等离子体增强化学气相沉积也是一种常用的制备金刚石薄膜的方法。

它利用等离子体使一种气体解离成离子和自由基,然后将其沉积在底板上。

与物理气相沉积相比,等离子体增强化学气相沉积生长的金刚石薄膜结构更加致密,分子束需在高真空下进行,可有效控制沉积速率、形成金刚石结晶的取向、控制金刚石颗粒的大小等。

离子束沉积方法也被广泛用于制备金刚石薄膜。

离子束沉积是利用精细控制的离子束使靶材表面原子沉积在基体表面。

它具有高生长速率、大生长区域、高沉积效率和微观结构控制等特点。

这种方法需要在高真空环境下进行,因此需要昂贵的真空设备,制备成本较高。

与上述方法相似的是,热解法也是一种常见的制备金刚石薄膜的方法。

它通过热分解炔烃在真空或惰性气氛中生成金刚石结晶。

在生长过程中,金刚石薄膜的结晶取向和沉积速率都可以通过控制沉积条件来制定和改革。

这种方法具有简单、可控、可与微电子芯片制造过程相结合等优点,但由于需要高温条件和压力,对实验设备和技术人员要求较高。

溅射法则是制备金刚石薄膜的前沿研究热点之一。

该方法利用金刚石靶材的离子束轰击特定的沉积基底,通过反应在基底上沉积的碳溶质形成金刚石薄膜。

金刚石薄膜技术及其应用

金刚石薄膜技术及其应用

金刚石薄膜技术及其应用金刚石是一种硬度极高的天然矿物,于20世纪60年代起被学界广泛研究。

随着材料科学技术的不断进步,金刚石薄膜技术也逐渐成为研究的热点之一。

本文将从金刚石薄膜技术的原理、制备方法及其应用的方面进行阐述。

一、金刚石薄膜技术原理金刚石薄膜技术主要利用化学气相沉积(CVD)的方式在基材表面生长金刚石薄膜。

这种方法通常需要高温(在800℃以上)和高气压的气氛下进行,需要一些特殊的条件。

CVD是一种利用热分解气体在表面形成固体物质的工艺。

在CVD法生长金刚石薄膜的过程中,应先将气流中的气体分离出不含杂质、单质态的纯氢气,在高温下将氢气还原出单质氢原子,在这些氢原子的作用下,金刚石的碳原子就会在基材表面上生长。

二、金刚石薄膜技术制备方法金刚石薄膜的制备方法主要分为两大类:基于低压CVD技术和基于高压CVD技术。

基于低压CVD技术中,使用的气体通常是甲烷和氢气的混合物,在真空条件下进行反应。

将这些气体通过高温反应炉,使得甲烷分解成纯碳离子。

碳离子被氢气还原后,随后沉积在准备好的表面上,形成一层金刚石薄膜。

而基于高压CVD技术,则是在准备好的基板中,使用气压较高的气体进行反应。

这种方法通常能够得到更厚的金刚石薄膜。

三、金刚石薄膜技术的应用金刚石薄膜技术的应用场景非常广泛,以下将介绍一些典型的应用场景和案例:1. 电子技术领域金刚石薄膜是一个重要的电学材料,在电子技术领域有着广泛的应用价值。

例如,金刚石薄膜是一种优秀的绝缘材料,可以用于制造高性能半导体元件、纳米晶体管和高功率器件。

2. 机械工业领域由于金刚石薄膜极其硬度极高和耐磨性能强,在机械工业领域也有着广泛的应用价值。

例如,在高速切削和精细加工方面,金刚石薄膜的应用能够明显提高加工效率和加工精度。

另外,金刚石薄膜也可以用于制造高强度、高硬度的刀具和轴承零部件。

3. 生命科学领域除此之外,金刚石薄膜技术在生命科学领域也有另外一些应用场景。

例如,金刚石薄膜可以被用作人工眼视网膜和人工髋关节等器官的材料。

我国类金刚石薄膜主要制备技术及研究现状

我国类金刚石薄膜主要制备技术及研究现状

• 5.医疗设备和器具:手术刀片,手术剪, 心脏瓣膜,人工关节,血管支架。 • 6.内燃机工业:燃料喷射系统(气门挺杆, 柱塞,喷油嘴),动力传动系统(齿轮 轴 承 凸轮轴),活塞部件(活塞环,活塞 销),门扣锁,内饰。 • 7.娱乐健身:扬声器振膜,移动硬盘,光 盘,高尔夫球具,自行车部件,剃须刀片。 • 8.光学:红外增透膜,减反射膜,玻璃镀 膜,镜片镀膜,亚克力镀膜,保护膜。 • 9.装饰镀膜:手机外壳,高档手表,室内 外五金卫浴产品,饰品。 • 10.航空航天 :飞机,导弹整流罩镀膜, 卫星,太阳能电池镀膜。
激光法制备DLC膜的发展趋势
• DLC膜的沉积方法可分为物理沉积法和 化学沉积法两大类。化学沉积法已十分成 熟,但由于化学法沉积的DLC膜必然含氢, 导致膜层化学稳定性、热稳定性、硬度、 附着力较差。此外,化学法均需要在高温 下(>400oC)沉积,对于不耐高温的材料(如 玻璃、硫化锌等)无法在上面镀DLC膜;对 于耐高温的材料,虽然化学法可以镀膜, 但由于DLC膜热膨胀系数很小,和衬底热膨 胀系数差异大,沉积完成后,膜内部会产 生较大的热应力,甚至导致薄膜起皮、剥 落。因此,世界各国近年来都在积极开展 可以制备无氢DLC膜的物理沉积法研究。
我国类金刚石薄膜主要制备技 术及研究现状
汇报人:王培东 指导老师:胡鹏飞
主要内容
一、类金刚石薄膜介绍 二、类金刚石薄膜制备技术 三、类金刚石薄膜应用 四、类金刚石薄膜应用展望
一、类金刚石薄膜介绍
• 类金刚石薄膜(DiamondLike Carbon)是金刚石 的sp3杂化和石墨sp2杂 化两种结合键作为骨架 构成的非晶态碳膜,简 单地讲,由纳米级的金 刚石和碳混合形成,金 刚石占20%-80%。由sp3 结合的金刚石和sp2结合 的石墨与H(氢)组成的三 元相图右图:

金刚石薄膜的性质、制备及应用

金刚石薄膜的性质、制备及应用

金刚石薄膜的性质、制备及应用金刚石薄膜因其独特的物理、化学性质而备受。

作为一种具有高硬度、高熔点、优良光学和电学性能的材料,金刚石薄膜在许多领域具有广泛的应用前景。

本文将详细探讨金刚石薄膜的性质、制备方法以及在各个领域中的应用,旨在为相关领域的研究提供参考和借鉴。

金刚石薄膜具有许多优异的物理和化学性质。

金刚石是已知的世界上最硬的物质,其硬度远高于其他天然矿物。

金刚石的熔点高达3550℃,远高于其他碳材料。

金刚石还具有优良的光学和电学性能。

其透明度较高,可用于制造高效光电设备。

同时,金刚石具有优异的热导率和电绝缘性能,使其在高温和强电场环境下具有广泛的应用潜力。

制备金刚石薄膜的方法主要有物理法、化学法和电子束物理法等。

物理法包括热解吸和化学气相沉积等,可制备高纯度、高质量的金刚石薄膜。

化学法主要包括有机化学气相沉积和溶液法等,具有沉积速率快、设备简单等优点。

电子束物理法是一种较为新兴的方法,具有较高的沉积速率和良好的薄膜质量。

各种方法的优劣和适用范围因具体应用场景而异,需根据实际需求进行选择。

光电领域:金刚石薄膜具有优良的光学性能,可用于制造高效光电设备。

例如,利用金刚石薄膜制造的太阳能电池可将更多的光能转化为电能。

金刚石薄膜还可用于制造高品质的激光器、光电探测器和光学窗口等。

高温领域:金刚石的熔点高达3550℃,使其在高温环境下具有广泛的应用潜力。

例如,金刚石薄膜可应用于高温炉的制造,提高炉具的耐高温性能和加热效率。

金刚石薄膜还可用于制造高温传感器和热电偶等。

高压力领域:金刚石具有很高的硬度,使其在高压环境下保持稳定。

因此,金刚石薄膜可应用于高压设备的制造,如高压泵、超高压测试仪器等。

金刚石薄膜还可用于制造高精度的光学镜头和机械零件等。

本文对金刚石薄膜的性质、制备及应用进行了详细的探讨。

作为一种具有高硬度、高熔点、优良光学和电学性能的材料,金刚石薄膜在光电、高温、高压力等领域具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档