高中数学:三角函数模型的简单应用(1)
四中高中数学 三角函数模型的简单应用提高巩固练习 新人教A版必修1

北京四中高中数学 三角函数模型的简单应用提高巩固练习 新人教A 版必修1【巩固练习】1. 02年北京国际数学家大会会标是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为θ,大正方形的面积为1,小正方形的面积是125,则sin 2θ-cos 2θ的值是 ( ) (A) 1 (B) 2425(C) 725(D) -7252.单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间t s 的函数关系式为:6sin 26s t ππ⎛⎫=+ ⎪⎝⎭,那么单摆来回摆动一次所需的时间为( )A .2πsB .πsC .0.5 sD .1 s 3.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为(A )2sin 2cos 2-+αα; (B )sin 3+αα(C )3sin 1+αα; (D )2sin cos 1-+αα4.电流强度I (A )随时间t (s )变化的关系式是5sin 1003I t ππ⎛⎫=+⎪⎝⎭,则当1200t =s 时,电流强度I 为( )A .5 AB .2.5 AC .2 AD .-5 A 5.如图为一半径为3 m 的水轮,水轮圆心O 距离水面2 m ,已知水轮自点A 开始旋转,15 s 旋转一圈.水轮上的点P 到水面距离y (m )与时间x (s )满足函数关系sin()2y A x ωϕ=++,则有( )A .215πω=,A=3 B .152ωπ=,A=3 C .215πω=,A=6 D .152ωπ=,A=66.2008年北京奥运会的帆船比赛在青岛奥林匹克帆船中心举行,已知该中心比赛场馆区的海面上每天海浪高度y (米)可看作是时间t (0≤t ≤24,单位:时)的函数,记作()y f t =,经长期观测,()y f t =的曲线可近似地看成是函数cos y A t B ω=+,下表是某日各时的浪高数据:A .1cos 126y t π=+ B .13cos 262y t π=+C .32cos62y t π=+D .13cos 622y t π=+7.如图所示,有一广告气球,直径为6 m ,放在公司大楼上方,当行人仰望气球中心的仰角∠BAC=30°时,测得气球的视角为β=1°,若β很小时,可取sin β≈β,试估算该气球的高BC 约为( )A .70 mB .86 mC .102 mD .118 m8.设()y f t =是某港口水的深度y (m )关于时间t (h )的函数,其中0≤t ≤24,下表是该港口某一天从0至24 h 记录的时间t 与水深y 的关系:经长期观察,函数()y f t =的图象可以近似地看成函数sin()y A t ωϕ=+的图象.下面的函数中,最能近似地表示表中数据间对应关系的函数是( )A .123sin6y t π=+,t ∈[0,24]B .123sin 6y t ππ⎛⎫=++ ⎪⎝⎭,t ∈[0,24] C .123sin12y t π=+,t ∈[0,24]D .123sin 122y t ππ⎛⎫=++⎪⎝⎭,t ∈[0,24]9.如图,是一弹簧振子做简谐振动的图象,横轴表示振动的时间,纵轴表示振子的位移,则这个振子振动的函数解析式是________.10.甲、乙两楼相距60米,从乙楼望甲楼顶的仰角为45°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高度分别为________.11.如图表示的是相对于平均海平面的某海湾的水面高度h (米)在24小时内的变化情况,若变化情况近似于函数危sin()h A t ωϕ=+(ω>0,ϕ>0),则水面高度h 与时间t 的函数关系式为________.12.某昆虫种群数量在1月1日时低至700只,而在当年7月1日时高达900只,其数量在这两个值之间按正弦曲线呈规律性变化.(1)求出种群数量关于时间t 的函数解析式,t 以月为单位; (2)画出种群数量关于时间t 的简图.13.某港口水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,下表是水深数据:根据上述数据描成的曲线如图所示,经拟合,该曲线可近似地看成正弦函数sin y A t b ω=+的图象.(1)试根据数据表和曲线,求出sin y A t b ω=+的表达式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)【答案与解析】 1. 【答案】D【解析】由题意,大正方形的边长为1,小正方形的边长为15,设θ所对的直角边为x 则由勾股定理得:221()15x x ++=,解得35x =,34sin ,cos 55θθ∴==,7sin 5cos θθ∴+=,进一步求得1sin 5cos θθ-=-,所以227sin cos 25θθ-=-,故选D.2.【答案】D 【解析】周期212T ππ==(s ). 3.【答案】A【解析】八边形的面积144sin 22cos 2S S S αα∆=+=⨯+-正=2sin 2cos 2αα-+ 4.【答案】B【解析】 155sin 1005sin 5cos (A)20032332I πππππ⎛⎫⎛⎫=⨯+=+== ⎪ ⎪⎝⎭⎝⎭5.【答案】A【解析】 ∵T=15,故2215T ππω==,显然max min y y -的值等于圆O 的直径长,即max min 6y y -=,故max min 6322y y A -===. 6.【答案】B【解析】由周期T=12,得6πω=,max min 122y y A -==,max min 322y y B +==. 7.【答案】B【解析】由已知CD=3 m ,1180πβ=︒=,又sin 180CD AC πββ=≈=, ∴1803172(m)AC π=⨯≈,∴BC=AC ·sin30°≈86(m ).故选B .8.【答案】A【解析】在sin()y A t b ωϕ=++中,15932A -==. 159122b +==,2T πω=,而T=12,6πω=,显然0ϕ=. 9.【答案】52sin 24y t ππ⎛⎫=+⎪⎝⎭【解析】A=2,T=2(0.5-0.1)=0.8,∴250.82πωπ==, 将点(0.1,2)代入52sin 2y t πϕ⎛⎫=+⎪⎝⎭,得4πϕ=.10.【答案】60米,(60-米 【解析】 如图甲楼的高度AC=AB=60米,在Rt △CDE 中,tan 3060DE CE =⋅︒==∴乙楼的高度为(60BD BE DE =-=-米. 11.【答案】6sin6h t π=-【解析】由题图知A=6,T=12,22126T πππω===,又由6sin 366πϕ⎛⎫⨯+=- ⎪⎝⎭,得cos 1ϕ=-,2k ϕππ=+,k ∈Z .所以6sin 26sin 6sin 666h t k t t ππππππ⎛⎫⎛⎫=++=+=-⎪ ⎪⎝⎭⎝⎭.12.【解析】(1)设所求的函数解析式为sin()y A t b ωϕ=++,则7009008002b +==,A=100,且212T πω==,所以2πω=.又12πωϕ⨯+=-.所以23πϕ=-.因此所求的函数解析式为2100sin 80063y t ππ⎛⎫=-+ ⎪⎝⎭. (2)图象(简图)如图.13.【解析】(1)从拟合的曲线可知,函数sin y A t b ω=+在一个周期内由最大变为最小需要9―3=6个小时,此为半个周期,所以函数的最小正周期为12小时,因此212πω=,6πω=.又当t=0时,y=10;当t=3时,y max =13,得b=10,A=13―10=3. 于是所求函数解析式为3sin106y t π=+.(2)由于船的吃水深度为7米,船底与海底的距离不少于4.5米,故在船舶航行时水深y 应大于等于7+4.5=11.5(米).令3sin 1011.56y π=+≥,可得1sin62t π≥. ∴522666k t k πππππ+≤≤+(k ∈Z ). ∴12k+1≤t ≤12k+5(k ∈Z ).取k=0,则1≤t ≤5;取k=1,则13≤t ≤17; 而取k=2时,则25≤t ≤29(不合题意).∴船只可以安全进港的时间为1~5点和13~17点,船舶要在一天之内在港口停留的时间最长,就应从凌晨1点(1点到5点都可以)进港,而下午17点(即13点到17点之间)前离港,在港内停留的时间最长为16小时.。
高中数学新课程中数学建模教学设计案例—《三角函数模型的简单应用》教学设计

高中数学新课程中数学建模教学设计案例—《三角函数模型的简单应用》教学设计湖南省常德市第六中学颜春湖南常德415000一.教学分析(教材分析与学情分析)1.教材分析:本节课是在学习了三角函数图象和性质的前提下单独一节来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.学情分析:本节课是在学习学习了第一章函数的应用和三角函数的性质和图象的基础上来习三角函数模型的简单应用,学生已经有了数学建摸的基本思想和方法,应用三角函数的基本知识来解决实际问题对学生来说应该顺理成章,所以对本节的学习应让学生能够多参与多思考,培养他们的分析解决问题的能力,提高应用所学知识的能力.二.教学目标1、基础知识目标:a通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法;b根据解析式作出图象并研究性质;c体验实际问题抽象为三角函数模型问题的过程;d体会三角函数是描述周期变化现象的重要函数模型.2、能力训练目标:让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力.3、个性情感目标:让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用,让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用从而激发学生的学习兴趣,培养锲而不舍的钻研精神;培养学生勇于探索、勤于思考的精神.三.教学重点、难点教学重点:用三角函数模型刻画潮汐变化规律,用函数思想解决具有周期变化的实际问题.教学难点:对问题实际意义的数学解释,从实际问题中抽象出三角函数模型.四.教学过程设计教学环节师生活动设计意图(一)呈现实际情境海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后,在落潮时返回海洋,下面是某港口在某季节每天的时间与水深的关系表:(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值。
高中课件 三角函数模型的简单应用

1.通过对三角函数模型的简单应用的学习, 初步学会由图象求解析式的方法; 2.体验实际问题抽象为三角函数模型问题的 过程; 3.体会三角函数是描述周期变化现象的重要 函数模型.
在我们现实生活中有很多现象在进行周而复始地变化,用
数学语言可以说这些现象具有周期性1、,物理情而景—我—们所学的三角
①简谐运动
.
(2)货船需要的安全水深为 4+1.5=5.5 (米),所以
当y≥5.5时就可以进港.令
化简得
sin
6
x
2.5 sin
0.2
6
x
5
5.5
由计算器计算可得
6
x
0.2014,或来自6x0.2014
y
6
4
AB
CD
2
O
3 6 9 12 15 18 21 24
x
解得 xA 0.3848, xB 5.6152
1.6三角函数模型的简单应 用
本节课以三角函数各种实践生活中的模型让学生 体验一些具有周期性变化规律的实际问题的数学“建 模”思想,从而培养学生建模、分析问题、数形结合、 抽象概括等能力.
让学生切身感受数学建模的过程,体验数学在解 决实际问题中的价值和作用,从而激发学生的学习兴 趣,培养锲而不舍的钻研精神;培养学生勇于探索、 勤于思考的精神.
分析:根据地理知识,能够被太阳直射到的地区为——
南,北回归线之间的地带.画出图形如下,由画图易知
H
A
B
C
解:如图,A、B、C分别为太阳直射北回归线、赤道、南回 归线时,楼顶在地面上的投影点,要使新楼一层正午的太 阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情 况考虑,此时的太阳直射纬度为-23º26',依题意两楼的间 距应不小于MC.
5.7.1三角函数的应用教学设计(第1课时)(高硕)-高中数学新教材必修第一册小单元教学专家指导(视

5.7 三角函数的应用第一课时教学设计一、内容和及其解析 (一)教学内容本小节内容选自《普通高中数学必修第一册》人教A 版(2019)第五章《三角函数》的第七节《三角函数的应用》。
(二)教学内容解析本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,通过例题,循序渐进地介绍三角函数模型的应用,在素材的选择上注意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用.培养他们综合应用数学和其他学科的知识解决问题的能力.进一步突出函数来源于生活应用于生活的思想培养学生的建模、分析问题、数形结合、抽象概括等能力.发展学生数学建模、数据分析、数学直观、数学抽象、逻辑推理的核心素养,从而培养学生的创新精神和实践能力. 二、教学目标及解析 (一)教学目标1.会通过建立三角模型,解决实际问题。
2.体会三角函数是描述周期变化现象的重要函数模型.掌握对函数sin()y A x ωϕ=+图像的应用,培养直观想象和逻辑推理核心素养能力。
3.通过学习三角函数模型的实际应用,能使学生学会把实际问题抽象为数学问题,培养数学建模素养。
(二)教学目标解析①要读懂题目所要反映的实际问题的背景,领悟其中的数学本质,根据相等关系或不等关系列式. ②在建立三角函数模型这一关键步骤上,要充分运用数形结合的思想来打开思路,解决问题. ③在应用研究数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助解决问题.④实际问题通常涉及复杂的数据,因此可能需要用到计算机或计算器. 三、教学问题诊断分析问题1 如何理解函数sin 00[0y x x A ωϕA ω=+>>∈+∞()(,)(,))中,A ω ϕ,,的物理意义. 突破:通过对弹簧振子振动、及交变电流两个物理问题来说明三角函数模型的简单应用.包括函数模型的拟合、作散点图、确定参数A ω ϕ,,从而确定出相应的函数解析式.了解简谐运动可以用函数sin 00[0y x x A ωϕA ω=+>>∈+∞()(,)(,))表示,理解描述简谐运动的物理量,如振幅、周期、频率等与这个解析式中常数有关,理解A ω ,,的物理意义. 问题2 三角函数模型的作用突破:三角函数作为描述现实世界中(周期现象)的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测未来等方面发挥着重要作用. 三角函数模型的应用体现在两个方面: ①已知函数模型求解数学问题;②把实际问题转化成数学问题,抽象出有关的数学模型,再利用三 角函数的有关知识解决问题. 问题3 利用三角函数模型解决实际问题的一般步骤 突破:教学难点:重点:了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题; 难点:实际问题抽象为三角函数模型.四、教学支持条件PPT 课件,视频五、教学过程设计(主体内容) (一)情景导入现实生活中存在大量具有周而复始、循环往复特点的周期运动变化现象,如果某种变化着的现象具有周期性,那么就可以考虑借助三角函数来描述.问题1:你能举出生活中具有周期性现象的实例吗?【学生经过思考和讨论之后,举出一些生活中的实例,教师进行补充】 【预设的答案】:预想学生所举周期性现象的例子可能包括以下几方面: (1)匀速圆周运动。
《三角函数的应用(一)》示范课教学设计【高中数学人教】

第一课时 三角函数的应用(一)任务一、整体感知问题 1 你能列举一些生活中具有周期性现象的例子吗?前面已经用三角函数模型刻画过哪些周期性现象?答案:生活中周期性现象的例子大致有三种类型:(1)匀速圆周运动.如水流量稳定条件下的筒车运动,钟表指针的转动,摩天轮的运动等;(2)物理学中的周期性现象.如弹簧振子运动,交变电流等;(3)生活中的周期性现象.如潮汐变化,一天当中的气温变化,四季变化,生物钟,波浪,音乐等.已经用三角函数模型刻画过匀速圆周运动.例如筒车运动、摩天轮的运动、钟表指针的转动等.任务二、新知探究1.问题研究1——简谐运动问题 2 观看弹簧振子的运动视频,振子运动过程中有哪些周期性现象?可以利用哪些变量之间的函数关系来刻画振子运动过程中的周期性现象?弹簧振子的运动(如图1).答案:振子离开中心位置的位移随着时间呈周期性变化;振子所受的回复力随着时间呈周期性变化.所以可以用振子离开中心位置的位移s 与时间t 之间的函数关系,也可以用振子所受的回复力F 与时间t 之间的函数关系来刻画其运动过程中周期性现象.例1 某个弹簧振子在完成一次全振动的过程中,时间t (单位:s )与位移y (单位:mm )之间的对应数据如表1所示.试根据这些数据确定这个振子的位移关于时间的函数解析式.图12.建模解模问题3 例1中没有给出振子的位移关于时间的函数模型,根据以往的数学建模经验,我们应该按照什么样的流程完成这个建模过程?答案:搜集数据,画散点图——观察散点图并进行函数拟合,选择函数模型——利用数据信息,求解函数模型.活动:教师或者学生画出散点图.问题4观察画出的散点图,你认为可以用怎样的函数模型进行刻画位移y 随时间t 的变化规律?答案:根据散点图(如图2),分析得出可以用y =A sin(ωt +φ)这个函数模型进行刻画. 问题5 由数据表和散点图,你将如何求出函数的解析式?答案: 依据数据表和散点图,可得A =20,T =60s ,求得ω=3π10,然后将点(0,-20)的坐标代入解析式y =20sin(3π10t +φ),解得φ=-2π+2k π,k ∈Z ,所以函数的解析式为y =20sin(3π10t -2π),t ∈[0,+∞). 教师补充:现实生活中存在大量类似弹簧振子的运动,如钟摆的摆动,水中浮标的上下浮动,琴弦的震动,等等.这些都是物体在某一中心位置附近循环往复的运动.在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的坐标系下,简谐运动可以用函数y =A sin(ωx +φ),x ∈[0,+∞)表示,其中A >0,ω>0.描述简谐运动的物理量,如振幅、周期和频率等都与这个解析式中的常数有关:图2表1A 就是这个简谐运动的振幅,它是作简谐运动的物体离开平衡位置的最大距离; 简谐运动的周期是2π=T ω,它是作简谐运动的物体往复运动一次所需要的时间; 简谐运动的频率是π21ω==T f ,它是作简谐运动的物体在单位时间内往复运动的次数; ωx +φ称为相位;x =0时的相位φ称为初相.问题6 例1中简谐运动的振幅、周期与频率各是多少?相位、初相分别是什么?答案:振幅A =20mm ,周期T =53s ,频率f =35次,相位为3π10t -2π,初相为-2π. 3.问题研究2——交变电流例2 如图3(1)所示的是某次实验测得的交变电流i (单位:A )随时间t (单位:s )变化的图象.将测得的图象放大,得到图3(2).(1)求电流i 随时间t 变化的函数解析式;(2)当601,6007,1501,6001,0=t 时,求电流i .4.建模解模问题7 观察图象,交变电流i 随时间t 的变化满足怎样的函数模型?其中每个参数的物理意义是什么?答案:由交变电流的产生原理可知,电流i 随时间t 的变化规律可以用i =A sin(ωt +φ),t ∈[0,+∞)来刻画.其中A 为振幅,ωπ2为周期,ωt +φ为相位,φ为初相.问题8 根据图象3(2),你能说出电流的的最大值A ,周期T ,初始状态(t =0)的电流吗?由这些值,你能进一步完成例2的解答吗?答案:由图可知,A =5,T =501s ,初始状态的电流为4.33A . 解:由图3(2)可知,电流最大为5A ,因此A =5;电流变化的周期T =501s ,即ωπ2=501s ,解得ω=100π;再由初始状态(t =0)的电流约为4.33A ,可得sin φ=0.866,因此φ约为3π.所图3(1) 图3(2)以电流i 随时间t 变化的函数解析式是 π5sin(100π)[0,)3i t t =+∈+∞,. 当0=t 时,235=i ; 当6001=t 时,5=i ; 当1501=t 时,0=i ; 当6007=t 时,5-=i ; 当601=t 时,0=i . 练习1 如图4,一根绝对刚性且长度不变、质量可忽略不计的线,一端固定,另一端悬挂一个沙漏.让沙漏在偏离平衡位置一定角度(最大偏角)后在重力作用下铅锤面内做周期摆动.若线长l cm ,沙漏摆动时离开平衡位置的位移为s (单位:cm )与时间t (单位:s )的函数关系是).∞,0[∈),3cos(3++=t t l g s π (1)当l =25时,求沙漏的最大偏角(精确到0.0001rad );(2)已知g =9.8m/s 2,要使沙漏摆动的周期是1s ,线的长度应当是多少(精确到0.1cm )?解:(1)∵)3cos(3π+=t l g s ,∴可得s 的最大值为3. 设偏角为θ,可得最大偏角满足sin θ=253.利用计算器计算可得θ=0.1203rad . 答:当l =25时,沙漏的最大偏角为0.1203rad .(2)沙漏摆动的周期为1π2==lgT ,解得2)π2(g l =,故cm 8.2)π2(8.92≈=l . 图4答:要使沙漏摆动的周期是1s,线的长度l应当为24.8cm.任务三、归纳小结问题9 对于一个周期性现象,你该如何利用三角函数来刻画?在本节课中,涉及哪些数学思想?答案:利用三角函数刻画周期性现象,就是要找出这一现象中哪两个变量满足“当其中一个变量增加相同的常数时,另一个变量的值重复出现”,然后通过数学建模,求出这两个变量之间满足的三角函数关系.在本节课的学习中,涉及到数形结合思想和数学建模思想.。
人教版高中数学必修4A版三角函数模型的简单应用课件

10 14
t/h
y A sin( x ) b
思考3:如何确定函数 式中 w和 j 的值?
3 , 8 4
T/℃
30
20 10 o 6 10 14 t/h
思考4:这段曲线对应的函数是什么?
3 y 10sin( x ) 20, x [6,14]. 8 4
时刻 0
3
6
9
12
15
18
21
24
水深 5
7.5
5
2.5
5
7.5
5
2.5
5
时刻 0
3
6 5
9
12 15 18
21 2.5
24 5
水深 5 7.5
2.5 5 7.5 5
思考1:观察表格中的数据,每天水深 的变化具有什么规律性?
呈周期性变化规律.
时刻 水深
8 6 4 2 o
0
y
3
6
9
12 15 18
思考5:这一天12时的温度大概是多少 (℃)? 27.07℃.
涨潮
圣米切尔山
落潮
【背景材料】 海水受日月的引力,在一 定的时候发生涨落的现象叫潮.一般地, 早潮叫潮,晚潮叫汐.在通常情况下,船 在涨潮时驶进航道,靠近码头;卸货后, 在落潮时返回海洋.下面是某港口在某季 节每天的时间与水深关系表:
21 2.5
24 5
5 7.5 5
2.5 5 7.5 5
6
12
18
24
x
y Asin( x ) h
A 2.5, h 5, T 12, 0,
6
三角函数的图象、性质及应用(高中数学知识点讲解)

(5)不能认为y=tan
x在定义域上为增函数,应在区间
kπ-
π 2
,kπ
+
π 2
(k∈Z)内
为增函数.
知能拓展
考法一 关于三角函数图象的问题
例1 (1)(2018广东茂名化州二模,9)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<
φ<π)的部分图象如图所示,且f(α)=1,α∈
求φ及ω,从而
得到f(x)的解析式,由f(α)=1求α,进而得cos
2α
+
5π 6
.
A = 5,
(2)①根据已知表格中的数据可得方程组
π 3
ω
+
φ
=
π 2
,
解之可得函数f(x)的
5π 6
ω
+
φ
=
3π 2
,
解析式,进而可补全表格.
②由①并结合函数图象平移可得,g(x)=5sin
2
x
+
2θ -
π 3
-2x
实质上是y=tan
x与y=
π 3
-2x的复合,应
按复合函数单调性求解.
方法总结 三角函数的单调性问题的常见类型及解题策略
1.已知三角函数解析式求单调区间
(1)求函数的单调区间应遵循简单化原则,将解析式进行化简,并注意复合
函数单调性规律“同增异减”.
(2)求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中ω>0)的单调区间时,要视“ωx
2π ω
=4×
7π 12
-
π 3
=π,得ω=2,故f(x)=3sin(2x+φ),将
20.高中数学三角函数模型的简单应用说课课件

(3)若某船的吃水深度为4米,安全间隙为1.5米, 该船在2:00开始卸货,吃水深度以每小时0.3米的 速度减少,那么该船在什么时间必须停止卸货,将 船驶向较深的水域?
1、让学生 从感性上理 解潮起潮落 这一自然现 象。
2、让学生 巩固解决具 有周期性的 实际问题的 建模思想和 解题方法。
教学内容
(一)、设计思想
引导学生观察日常生活, 通过对具 有周期性变化这一类实际问题进行建模 练习,让学生尝到数学建模成功的“甜 ”和难于解决实际问题的“苦”,从而 拓广视野,增长知识,积累经验;在建 模过程中,让学生自觉地运用问题所给 的条件进行自主探究,寻求解决问题的 最佳方法和途径,从而培养学生的创新 精神和实践能力.
学生归纳三个实 际问题的共同点
及本节课的数学 思想和方法。
培养学生的 归纳能力
进一步培养 学生的创新 精神和实践 能力.
教学内容
布置作业:
下面是某位同学做单摆实验 时测得的数据,x(单位:s) 为时间,y(单位:cm)为单 摆离开平衡位置的位移。
教师活动
其中T= ,l为摆线的长 度,g为当地的重力加速度。 (1)试求这些数据近似满足 的函数解析式。 (2)当摆长为100cm时,测 得单摆的周期为1s,则当地的 重力加速度为多少?
人教A版 数学必修4 第一章第六节
(说课稿)
前 言
“数学教育不仅要重视基础知识和基 本技能的落实,而且要重视学生能力的培 养,特别是学生的创新精神和实践能力的 培养。”
教材分析 教学目标分析 教法与学法分析 教学过程分析 教学评价分析
教材分析
(一)、设计思想 (二)、地位和作用 (三)、学情分析 (四)、教学重点与难点分析
逆时针方向开始运动,运 动t(s)后与地面的距为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纵坐标不变,横坐标伸长或缩短到原来的
1倍
| |
练习
1.把正弦曲线向左平移 7 个单位长度,然后
把每个点的横坐标扩大到原来3倍(纵坐标不
变),然后再把每个点的纵坐标扩大到原来的4
倍(横坐标不变),所得到的图象的函数是: ____y___4_si_n_ _13_x___7 _ __.
练习
1.把正弦曲线上每个点的横坐标缩短到原来1/3倍
Z
3
2
y 3sin(1 x )
26
例1 如图1.6-1,某地一天从6~14时的温度变化
曲线近似满足函数 y Asin(x ) b y
(1)求这一天6~14时的最大温差;
(2)写出这段曲线的函数解析式.
30
20
解:(1)由图可知,这段时间的最大温差是200C.
10
(2)从图中可以看出,从6~14时的图象是
3、由图象求函数性质
例2、画出函数y | sin x |的图象,并观察周 期性和奇偶性.
GSP
变式1、画出函数y sin | x |的图象,并观察 周期性和奇偶性.
GSP
从图中可以看出,函数 y sin x是以π为 周期的波浪形曲线。
我们也可以这样进行验证:
由于 sin(x ) sin x sin x , 所以,函数 y sin x是以π为周期的函数。
1.6三角函数模型的简单应用 (一)
一、复习:三角变换
1.y=sinx →y=Asinx(振幅变换)
横坐标不变,纵坐标伸长或缩短到原来的A倍
2.y=sin x →y=sin( x+ ) (平移变换)
向左或向右平移 个单位
当=1时,平移| |个单位长度
3.y=sinx →y=sin x (周期变换)
天某个时刻的温度变化情况,因此应当特别注
意自变量的变化范围.
如何求A、b、ω、φ:
A 最大值 最小值 2
b 最大值 最小值 2
2
T
: 把最高点(或最低点)坐标代入函数,解出 .
练习:
函数 y Asin(x ) b. 的最小值是-2,
其图象在一个周期内最高点与最低点横坐标的
差是3 ,且图象过点(0,1),求函数解析式.
3
y Asin(x )
(1)A 3
yA 3
(2) T 10 4 2
23 3
又T 2 1
2
T 4
O
4
10
3
x
(3)
y
3
1 sin(
x
)
3
2 A点的坐标为(
4
, 3)
3
3sin( 1 4 ) 3
23
2
sin(
)
1
3
2k , k Z
当k
6
0时 ,
6
2
3
2k , k
(纵坐标不变),然后向右平移
个单位长度
4
最后再把每个点的纵坐标缩短到原来的1/5倍(横坐
标不变),所得到的图象的函数是:
___y___15__s_in___3_x___3_4_.
二、新课:三角函数模型的简单应用
1、由图象求振幅A
y 2sin x
5
向上平移3个单位长度
4 3
y 2sin x 3
2
y Asin x b
1
O
2
A
最 大 值
最小值
5
1
2
2
2
2
b
最 大 值
最小值
5
1
3
2
2
y
y Asin x b
最 大 值 最 小 值
4
A 2
3
4 (2) 3 2
2 1
b 最 大 值 最 小 值 2
O 2
4 (2) 1 2
y 3sin x 1
x
2
2、由图象求解析式
y Asin(x )
利用函数图象的直观性,通过观察图象而 获得对函数性质的认识,这是研究数学问题 的常用方法.
练习:求的函数 y sin x 周期. sin x
若函数为 y sin 2x sin 2x ,则周期如何.
作业
a:根据图象求解析式
y
A
4
O
5
2
11
2
x
4
(1)A 2
(2) T
4 12 6 4
T
又T 2 2
(3) y 2sin(2x )
A点的坐标为( , 2)
12
2sin(2 ) 2
sin(
12
) 1
6
2k , k Z
6
2
yA 2
O
x
6 12
2
一般2k取 ,:k | Z|≤π当kLeabharlann 3 0时,
3
y 2sin(2x )
函数 y Asin(x ) b的半个周期
0 6 10 14 x
的图象, 所以,A
1 • 2 14 6 2
1 2
30 10
. 将x
8
10,
6
b, y12103代0 入10上 式2, 0 解得=34
.
综上,所求解析式为y
10 sin(
x
3
)
20,
x 6,14
84
一般的,所求出的函数模型只能近似刻画这