低渗砂岩气藏裂缝孔渗参数及储层分类研究

合集下载

低孔低渗致密砂岩储层裂缝研究现状及发展方向

低孔低渗致密砂岩储层裂缝研究现状及发展方向

低孔低渗致密砂岩储层裂缝研究现状及发展方向裂缝发育是致密砂岩储层天然气获得高产、稳产的关键。

在进行大量文献调研的基础上,对地质、测井、地震和裂缝建模及构造应力场等裂缝识别预测方法进行分析比较,指出未来裂缝研究的发展方向。

标签:裂缝;致密砂岩;识别方法;发展方向多年来的油气勘探实践表明,裂缝性油气藏是我国含油气盆地中一种重要的油气藏类型,其探明地质储量已经超过40×108t,超过目前探明油气资源总量的1/3,此外我国剩余资源量中,约有60%的油气资源量分布与储层裂缝有关。

因此,裂缝性油气藏的勘探开发在中国石油工业中的地位越来越重要。

1 储层裂缝识别方法1.1 地质识别方法地质识别方法是指通过对致密砂岩储层野外露头剖面、岩心或岩石薄片进行裂缝观察,从而对裂缝类型、产状、组系、方向、密度、长度、张开度及充填程度等方面特征进行描述和统计,该方法可以对致密砂岩储层中3种尺度裂缝发育程度进行定量表征。

岩石薄片观察中可以采用聚焦离子束抛光(FIB)技术、场发射扫描电镜、透射电子显微镜(TEM)、纳米CT三维无损扫描成像技术及核磁共振(NMR)等技术对致密砂岩储层的微裂缝及纳米级超微裂缝进行定性观察及定量表征。

岩心观察描述中,应对取芯井段裂缝测井参数进行提取,为后续裂缝测井识别打好基础。

该方法所获取的裂缝参数代表卸载压力条件下的情况,因此开度相对原位应力条件下可能偏大几个量级,只能代表裂缝张开度的相对大小;同时,当地下裂缝规模较大时,取芯观察到的裂缝只能是其部分特征。

1.2 测井识别方法测井资料由于单井纵向分辨率高,因此常用来对裂缝进行识别。

该方法主要包括基于常规测井资料的裂缝识别及基于特殊测井资料的裂缝识别。

对于常规测井而言,裂缝的存在往往能引起地层声波时差增大,密度测井值降低,中子密度测井值增加,电阻率略微发生降低。

基于这些常规测井数据既可以根据经验公式计算裂缝产状、密度、开度、裂缝孔隙度及裂缝渗透率参数;还可以构建如三孔隙度比值、等效模量差比、次生孔隙度指标、双感应幅度差指标、龟裂系数、井径相对异常、胶结指数指标等裂缝敏感参数。

低孔低渗储层测井地质特征及评价方法研究

低孔低渗储层测井地质特征及评价方法研究

低孔低渗储层测井地质特征及评价方法研究发布时间:2022-06-21T08:03:52.104Z 来源:《工程管理前沿》2022年(2月)4期作者:孟子棋[导读] 低孔低渗透储层将是今后相当一个时期增储上产的主要资源基础。

孟子棋(中国石油集团测井公司培训中心陕西省西安市)摘要:低孔低渗透储层将是今后相当一个时期增储上产的主要资源基础。

因此,低渗透油气藏的勘探和研究具有良好的前景,对我国石油工业的发展具有特殊的意义。

近年来,在对低渗透储层的勘探开发过程中发现了相对优质的储层。

本文研究了低孔低渗储层的地质特征,介绍低孔低渗储层测井评价原理,低孔低渗储层测井评价方法。

关键词:低孔低渗,测井,地质特征,评价方法前言1低孔低渗储层的地质特征根据我国油田的开发实践和理论研究,低孔低渗砂岩储层一般是指孔隙度小于20%、空气渗透率低于50×10-3μm2,且大于0.01×10-3μm2的砂岩储层。

在低渗透储层中,河流-三角洲相砂体占主体,矿物和结构成熟度较低等因素会加剧储层向低渗透的演化。

低渗透储层具有自身的典型特征,如沉积物成熟度低、储层物性差、孔喉半径小、储层非均质性强、裂缝比较发育以及储层油水非达西渗流等。

1.1岩石学特征我国陆相低孔低渗储层的主要特征是矿物成熟度低,主要表现为长石和岩屑含量高,粘土或碳酸盐胶结物含量高,基岩类型为长石和岩屑砂岩,石英砂岩少见。

岩石颗粒粒径分布范围广,粒径差异大,分选圆度差,颗粒多呈线接触。

因此,在早期成岩阶段,沉积物容易被机械压实,岩石的孔隙空间将大大减少,储层将变得致密,物性将变得更差。

1.2孔隙结构特征孔隙度、渗透率和地层因素通常用来描述岩石孔隙结构的宏观特征。

渗透率的大小主要受岩石孔喉的控制。

表征孔喉尺寸的参数包括孔喉平均值、最大孔喉半径等。

地层因素可以测量孔隙度对地层电阻率的影响。

我国大多数低孔低渗砂岩储层都受到成岩作用的强烈改造。

孔隙类型主要为粒间孔隙,孔隙非常小,喉道主要为管状和片状喉道,喉道非常薄,毛管压力高。

广安地区低渗砂岩气藏储层特征及主控因素

广安地区低渗砂岩气藏储层特征及主控因素

图 1 须 四段储 层岩石成 因类 型三角图
l 4期
詹燕涛 , 等: 广安地区低渗砂岩气藏储层特征及主控因素
3 9 9 1
3 O
25
23 55
渗透率均值 = 1 1 2 2 9 样 品数 - 1 7 0 6 个


l Ⅲ . ; I { L
鋈 2 0
圆较 好 , 普遍 呈孔 隙一 接触 式胶结 J 。碎 屑 成分 主 要
长石 , % 3 1 1 / 3 岩屑 +云母 、绿泥石 , %
2 0 1 2年 1 2月 5日收 到
第一作者简介: 詹燕涛( 1 9 8 7 -) , 女, 汉族, 四川乐山人, 博士研究
生 。研 究 方 向 : 盆地构造与成藏。E — ma i l : z h a n b e  ̄ i n g @1 2 6 . t o m。

据岩心观察 和扫描 电镜分 析 ( 表2 ) , 须 四段孔 隙 类 型主要 以粒间孔、 粒 内溶孔为 主( 图4 ) , 发 育有少量
第1 3卷
第 l 4期
2 0 1 3年 5月







Vo 1 . 1 3 No . 1 4 Ma y 2 01 3
1 6 7 1 —1 8 1 5 ( 2 0 1 3 ) 1 4 — 3 9 9 0 — 0 5
S c i e n c e T e c h n o l o g y a n d En g i n e e in r g
物 性好 。
坏, 伴 生断层 所发 育 的微 裂 缝 有 效 地改 善 了储 层 的
渗 流能 力 , 有 利 于油气 的聚集 和成 藏 。

致密气藏地层评价中的矿物学裂缝及构造分析

致密气藏地层评价中的矿物学裂缝及构造分析

致密气藏地层评价中的矿物学、裂缝及构造分析摘要致密气藏通常被定义为渗透率低于0.1毫达西,需要水力压裂以实现商业性生产。

复杂的成岩历史过程中压实和矿物成长减小了孔隙和孔喉尺寸,从而造成低渗透率。

致密含气砂岩也通常深埋地下,承受巨大的压力。

一次这种储层的地层评价过程包含5个部分:岩性(矿物学)、纹理、沉积环境、现在压力和构造历史(裂缝类型和方位)。

有必要成功结合这些地质、岩石物理、地质力学等学科评价这类储层。

由于它们的矿物及纹理的非均质性和低孔隙度,与那些常规储层相比致密气藏的流体和储层特性评价更为困难。

早期储层评价的目标—完井前进行---在致密气层也不同;优先考虑确定那些需要水力裂缝压裂的地区而不是静态储层评价(孔隙度、饱和度)。

操作人员通常这样描述致密气藏评价的策略:(1)确定烃的位置(2)确定流动性以及(3)进行储层表征(孔隙度,饱和度)(参考文献1)。

其他人这样描述他们所担心的“在没有气体显示的情况下水力裂缝的策略又是什么?”很明显,致密气层烃的体积以及储层生产力的评价需要针对性的测量和评价方法来定位并且量化油气,并在水力裂缝压力之前和之后确定储层生产力。

在这里我们提出几种致密气层砂岩的评价的概念和方法,我们并非描述地质力学的方法或者地层测试和取样,我们也不详谈由于低孔隙度和可能的坏井眼条件带来的评价的不确定性。

矿物学致密砂岩储层的矿物学组成可能会很复杂。

尽管矿物学复杂性是纹理复杂性的一个特征,致密砂岩的矿物学可能很简单,但是仍然体现出复杂的纹理和相对应的低渗透率。

南非的低渗透率储层证实了这一点(图1)。

尽管不同的矿物组成和孔隙度,这2种砂岩显示出相似的低渗透率,同时两个都需要水力裂缝压裂已达到商业性开采。

·哈姆拉石英岩地层(阿尔及利亚,奥陶系时期)含有98%的石英颗粒和石英附晶生长,颗粒密度达到2.65。

在大概3500m处平均孔隙度低于5%,渗透率0.1~2毫达西。

·阿卡库斯地层(突尼斯,志留纪时期)的岩性复杂,包括石英、颗粒连接线中的绿泥石、菱铁矿胶结,颗粒密度2.82。

气藏储层类别识别的研究

气藏储层类别识别的研究

气藏储层类别识别的研究摘要:致密砂岩气藏是目前油气勘探中寻找的重要资源之一,对其进行分类评价是保证评价精度的关键。

目前来看,常规测井方法在反应气藏特性都方面都不够准确,相对而言,运用核磁测井方法所得到的结果较好,但核磁测井成本较高,一般情况下都是对为数不多的井进行核磁测井。

本文实现在无取心、压贡资料的情况下,利用k-均值聚类方法和核磁测井数据对气藏储层类别进行快速的定性判断,效果较好。

关键词:核磁测井k-均值聚类储层类别一、用核磁测井数据建立毛管压力曲线[1][2]。

油藏毛细管性质决定油气水分布,因此毛管压力的测定是油藏表征的基本要素。

迄今毛管压力曲线的测定仅限于岩心分析,通常岩心数量非常有限;其次取心有机械风险,且费用高,实验室岩心分析常常不能完全代表井下的渗透条件。

通过大量的岩心资料对比分析发现,岩样的孔隙度、渗透率与横、纵向转换系数均存在较好的对应性,为提高计算的准确性,提出了将孔隙度、渗透率结合的孔渗综合指数:式中,为渗透率,;为孔隙度,%。

由此可利用孔渗综合指数来获取区域横、纵向刻度转化系数:式中,为横向刻度转换系数。

利用t2谱转化为毛管压力曲线。

在利用测井资料获得横向转换系数以后,即可实现将核磁t2谱经过横、纵向刻度转换得到毛管压力曲线的微分形态,为第个对应的时间刻度;为根据第个转换的毛细管压力,;为第个对应的幅度增量;为根据第个转换的进贡饱和度增量。

做出之间的关系曲线,即为谱转换的毛细管压力微分曲线,对微分曲线求积分即可得到毛细管压力曲线的积分形式。

把a井在3832.3094深度处的原始t2谱(图1所示)和转化的毛细管压力曲线(如图2所示)得到进行对照。

二、储层分类1. k-均值聚类k-均值聚类[5]算法基本思想:基于使聚类性能指标最小化,所用的聚类准则函数是聚类集中每一个样本点到该类中心的距离平方之和,并使其最小化。

k均值聚类算法步骤:①为每个聚类确定一个初始聚类中心,这样,就有个初始聚类中心。

致密天然气砂岩储层成因和讨论

致密天然气砂岩储层成因和讨论

致密天然气砂岩储层成因和讨论随着全球能源需求的不断增长,天然气的地位越来越重要。

而致密天然气砂岩储层作为天然气的主要储藏之一,其成因和特征备受。

本文将致密天然气砂岩储层的成因作为主题,探讨形成该储层的主要因素及特征,旨在为相关领域的研究和应用提供参考。

致密天然气砂岩储层是指以砂岩为主要储集岩石,孔隙度较低,渗透率较低,储层压力较高的天然气储层。

致密天然气砂岩储层的成因类型主要包括沉积环境、成岩作用、构造运动和古气候等因素。

沉积环境是致密天然气砂岩储层形成的重要因素。

在一定的地质历史时期,特定的沉积环境导致砂岩沉积物的沉积方式和沉积厚度会影响砂岩储层的孔隙度和渗透率。

例如,在盆地中心和盆地边缘的砂岩沉积厚度较大,但孔隙度和渗透率较低,而在盆地边缘和斜坡上的砂岩沉积厚度较小,孔隙度和渗透率较高。

成岩作用也是致密天然气砂岩储层形成的重要因素。

在砂岩沉积后,会发生压实、胶结、重结晶等成岩作用,这些作用会改变砂岩的孔隙度和渗透率。

例如,压实作用会导致砂岩孔隙度降低,渗透率显著降低;胶结作用也会降低砂岩孔隙度,但渗透率降低程度较小;重结晶作用会改善砂岩的孔隙度,提高渗透率。

构造运动和古气候也是致密天然气砂岩储层形成的重要因素。

构造运动会影响砂岩的沉积环境和成岩作用,进而影响砂岩储层的孔隙度和渗透率。

古气候则会影响砂岩沉积物的成分和粒度,进而影响砂岩储层的孔隙度和渗透率。

致密天然气砂岩储层的成因是多方面的,主要包括沉积环境、成岩作用、构造运动和古气候等因素。

这些因素相互作用,共同影响着砂岩储层的特征和发育。

因此,在研究和应用致密天然气砂岩储层时,应该综合考虑这些因素,以期更加深入地了解该储层的特征和发育。

也需要注意保护环境,合理利用资源,实现可持续发展。

致密砂岩气藏是一种非常丰富的天然气资源,但由于其储层特征的复杂性和隐蔽性,使得致密砂岩气藏的储层识别和开发难度较大。

因此,研究致密砂岩气藏储层特征及有效储层识别方法对提高天然气开采效率和降低开发成本具有重要意义。

特低渗砂岩储层物性下限确定方法_郝海燕

特低渗砂岩储层物性下限确定方法_郝海燕

第41卷第4期 辽 宁 化 工 Vol. 41,No. 42012年4月 Liaoning Chemical Industry April,2012收稿日期: 2012-01-13 作者简介: 郝海燕(1978-),女,工程师,硕士研究生,山西孝义人,2003年毕业于西南石油学院矿产普查与勘探专业,从事石油储量计算、SEC 储量评估研究工作。

E-mail:hhyan_cq@。

(中国石油长庆油田分公司勘探开发研究院, 陕西 西安 710018)摘 要:鄂尔多斯盆地西峰油田合水地区庄31井区储层岩性主要为长石质岩屑砂岩和长石岩屑质石英砂岩。

孔隙类型为粒间孔和长石溶孔,孔径一般10~40 μm。

产层平均孔隙度9.5%,平均渗透率0.25 mD,属典型的低渗透特征。

通过美国岩心公司经验统计法、含油产状法、测试法确定了研究区有效储层物性下限,孔隙度为7%,渗透率为0.06 mD,为有效厚度划分及储量计算提供了依据。

关 键 词:特低渗砂岩储层;物性下限;西峰油田中图分类号:TE 122 文献标识码: A 文章编号: 1004-0935(2012)04-0361-02合水地区区域构造属伊陕斜坡西南段,局部构造位于庆阳鼻褶带,本区构造形态为一个由东南向西北倾伏的平缓单斜,地层倾角约0.5度,局部发育微弱鼻状构造。

合水地区长6储层主要为长石质岩屑砂岩和长石岩屑质石英砂岩,其岩性特征明显受控于其所处沉积环境和物源区性质,主要为河流、三角洲和浊流沉积环境中形成的碎屑岩[1-3],并且大都具有沉积时离物源区较近,搬运距离较短,堆积速度相对较快的特点,为典型的低孔低渗储集岩。

研究区砂岩孔隙类型主要有原生粒间孔、长石溶孔和岩屑溶孔,局部发育粒间溶孔、高岭石晶间孔和微裂隙。

产层平均孔隙度9.5%,平均渗透率0.25 mD [4],是典型的低孔渗储层。

本文结合西峰油田延长组现今的储层特征,多种方法相结合,具体分析了西峰油田合水地区庄31井区有效储层物性的下限。

低孔低渗

低孔低渗

低孔低渗砂砾岩油气藏测井评价综合技术研究现状摘要砂砾岩是油气储集的有利地层之一,但由于其岩性复杂、埋藏深、低孔低渗、非均质性强等特点, 影响了一系列储层参数(岩石矿物成分、孔隙度、饱和度、有效厚度等)的计算精度,使该类油藏的开发难度明显增大。

这些因素综合起来导致难以划分有效储层与非有效储层,无法准确判断油水层。

本文主要是从低孔低渗砂砾岩储层参数测井解释现状方面进行调研,论述了各参数的测井解释新方法。

同时介绍了核磁共振、高分辨率阵列感应、多级阵列声波以及成像测井等测井新技术在低孔低渗储层中的应用。

关键词:砂砾岩测井参数引言由于砂砾岩体具有内部岩性复杂多变,母岩成分变化大,成熟度较低等特点,致使难以确定岩石骨架,而岩石骨架和孔隙结构又严重影响电阻率变化,这就导致电阻率很难反映储层孔隙流体性质的信息,再加上其他因素的影响(如:储层岩性、结构、粘土含量及含油性等),油层、气层、水层、干层界限的测井响应特征也表现的极不明显,极大的提升了流体识别的难度,这时再利用常规的解释图版就很难判别油水层。

此外,砂砾岩储层非均质性严重、孔隙结构复杂多样。

储层基质含量和储层间非渗透性隔层含量均较多,很难建立储层参数的计算模型,从而导致地质参数计算精度不高。

针对上述情况,不少人先后提出可以应用深侧向、岩性密度、声波时差等综合评价参数交会图法,分测井系列、岩性建立解释模型,或者针对不同岩石物理相类型建立储层参数解释模型,采用主成分分析等数学方法,提取反映油水特征的综合特征参数,进行油水层判别。

此外,还可以用多矿物模型测井最优化法和BP神经网络法等非参数数学建模方法,其效果要更好。

在遇到常规测井系列解决不了的问题时,还可以使用核磁共振测井、高分辨率阵列感应、多级阵列声波以及成像测井等,其对砂砾岩有效储层划分、流体识别、孔隙结构研究等方面作用巨大等等。

一:储层参数测井解释在总结前人研究的基础上,可以得到他们对砂砾岩储层参数测井解释的研究主要包括以下几个方面内容:1、划分砂砾岩储集层在测井解释中首要问题是储集层的划分,以便集中精力对其进行研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档