3.3 沸腾传热
沸腾传热

沸腾传热开放分类:物理、热量沸腾传热boiling heat transfer热量从壁面传给液体,使液体沸腾汽化的对流传热过程。
化工生产中常用的蒸发器、再沸器和蒸气锅炉,都是通过沸腾传热来产生蒸气的。
类型按液体所处的空间位置,沸腾可以分为:①池内沸腾。
又称大容器内沸腾。
液体处于受热面一侧的较大空间中,依靠汽泡的扰动和自然对流而流动。
如夹套加热釜中液体的沸腾。
②管内沸腾。
液体以一定流速流经加热管时所发生的沸腾现象。
这时所生成的汽泡不能自由上浮,而是与液体混在一起,形成管内汽液两相流。
如蒸发器加热管内溶液的沸腾。
机理沸腾传热与汽泡的产生和脱离密切相关。
汽泡形成的条件是:①液体必须过热;②要有汽化核心。
这些条件是由汽泡与周围液体的力平衡和热平衡所决定的。
根据表面张力,可算出汽泡内的蒸气压力pv 为:式中pe为周围液体的压力,忽略液柱静压时,即为饱和蒸气压ps;σ为汽液界面张力;R为汽泡半径。
由于pv>ps,汽泡内蒸气的饱和温度Tv必然大于与ps对应的饱和温度Ts。
汽泡周围的液体若要汽化进入汽泡,则它的温度Te必须大于或至少等于汽泡内蒸气的饱和温度,即Te≥Tv。
从上式可知,当R=0时,pv将趋于无限大。
因此在一个绝对光滑的平面上是不可能产生汽泡的,必须有汽化核心。
加热表面上的划痕或空穴中含有的气体或蒸气,都可作为汽化核心。
紧贴这些核心的液体汽化后,形成汽泡并逐渐长大,然后脱离表面,接着又有新的汽泡形成。
在汽泡形成与脱离表面时造成液体对壁面的强烈冲击和扰动,所以对同一种液体来说,沸腾传热的传热分系数要比无相变时大得多。
常压下水沸腾时的传热分系数一般为1700~51000W/(m2·K)。
沸腾曲线池内沸腾根据过热度(加热壁面温度TW与液体饱和温度Tm之差,ΔT=TW-Tm)的大小,分为泡核沸腾和膜状沸腾(见图)。
当过热度很小时,传热取决于单相液体的自然对流。
当过热度增大时,汽泡不断在壁面上产生,并在液体中上升和长大,这对液体对流起着显著作用,称为泡核沸腾。
沸腾传热强化技术及方法

沸腾传热强化技术及方法
沸腾传热强化技术及方法是近年来受到越来越多的关注的技术,它能够显著提高传热效率,降低传热过程中的能耗。
沸腾传热强化技术及方法是一种在热传导过程中利用沸腾现象改善传热效率的技术,它主要通过改变传热介质的状态,使流体进入沸腾状态来提高传热效率。
沸腾传热强化技术及方法的主要方法包括:一种是通过改变传热介质的压力来改变沸腾温度,使流体进入沸腾状态,从而提高传热效率;另一种是通过改变流体的流速来改变沸腾温度,使流体进入沸腾状态;还有一种是可以通过改变流体的物性来改变沸腾温度,使流体进入沸腾状态。
沸腾传热强化技术及方法的应用场合非常广泛,主要用于控制热传导过程中的温度场、改善传热介质的流量分布、缩短传热过程的时间,以及在高压和超高压条件下的传热研究等。
沸腾传热强化技术及方法的使用,不仅可以提高传热效率,而且还可以节约能源,改善热能利用效率。
此外,沸腾传热强化技术及方法还具有一定的局限性,比如传热过程中存在较大的压力损失,同时也存在一定的操作风险,因此在沸腾传热强化技术及方法的运用中,必须谨慎操作,以避免因不当操作而可能带来的损失。
总之,沸腾传热强化技术及方法是一种可以显著提高传热效率的技术,它的应用场景非常广泛,可以节约能源,改善热能利用效率,但是在运用中也应该谨慎操作,以免造成不必要的损失。
沸腾传热技术在能源领域的应用

沸腾传热技术在能源领域的应用随着科技的不断进步,在能源领域,沸腾传热技术已经成为了必不可少的一种技术手段。
所谓沸腾传热就是热量通过热液体表面产生的沸腾现象向介质传递。
这种方法能够在提高能源利用率的同时,也能够提高生产效率,减少能源消耗。
本文将着重介绍沸腾传热技术在能源领域的应用。
一、沸腾传热在换热器中的应用换热器是能源领域中广泛使用的一种设备。
而沸腾传热技术在换热器中的应用也越来越多。
通过沸腾传热技术,可以极大地提高换热器的换热效率,降低能源的消耗。
另外,在太阳能热水器、电站锅炉、汽车发动机等领域中,也广泛使用着换热器。
二、沸腾传热在太阳能领域中的应用太阳能的利用是一种可持续发展的能源形式。
在太阳能的利用过程中,沸腾传热技术也扮演着重要的角色。
太阳能热水器就是一种应用沸腾传热技术的典型例子。
其工作原理是通过太阳能将水加热至一定温度,当水温达到一定程度时,水中的液体开始沸腾,从而将热量释放出来。
通过这种方式,可以将太阳能转化为电能和热能,实现太阳能利用的最大化。
三、沸腾传热在核能领域中的应用沸腾传热技术在核能领域中也有着广泛的应用。
在核电站中,沸腾传热技术可以将反应堆中的热能传递至蒸汽发生器中。
蒸汽发生器中的液体经过沸腾传热后,能够将热能转化为电能。
在核电站中,沸腾传热技术的应用可以大大提高电站的效率,也能够减少燃料的消耗。
四、沸腾传热在航空航天领域中的应用作为一种重要的先进技术,沸腾传热在航空航天领域中也有着广泛的应用。
例如在火箭发动机喷气式比冲优化、超音速输运器导热保护等方面,沸腾传热技术都有着很好的应用前景。
此外,还可以利用沸腾传热技术研究高温高压环境下材料的物理化学特性,提高航空航天技术的发展水平。
总之,沸腾传热技术在能源领域的应用非常广泛。
它可以帮助各个领域提高生产效率,减少能源消耗,从而实现节能减排的目标。
未来,随着科技的不断发展,沸腾传热技术在能源领域中的应用还将有更加广阔的前景。
沸腾换热与热管汇总课件

通过研究沸腾换热的规律和机理,可以更好地了解其传热机制和影响因素,为优化 传热过程和提高能源利用效率提供理论支持和技术指导。
在能源、动力、化工、航空航天等领域,沸腾换热都发挥着重要的作用,因此对其 研究也可以促进相关领域的发展和进步。
在电子器件的冷却中,热管可以快速导出器 件产生的热量,防止器件过热而损坏。同时 ,沸腾换热技术在其中起到了关键作用。
微通道热管在芯片冷却中 的应用
微通道热管具有较高的传热性能,适用于高 功率芯片的冷却。通过将微通道热管与沸腾 换热技术结合,可以更有效地导出芯片产生
的热量。
沸腾换热与热管在环保领域的应用及前景
沸腾换热在核能发电中的运用
在核反应堆中,沸腾的水可以作为介质吸收并导 出一部分核能,这部分能量再通过热管导出,进 而推动蒸汽轮机发电。
热管技术在地热能利用中的结合
地热能是一种清洁的能源,通过热管技术,可以 将地热井中的热能导出,用于区域供暖或者工业 用热。
沸腾换热与热管在电子器件冷却中的应用案例
电子器件的热管冷却
电子芯片冷却
在电子设备中,芯片会产生大量的热量,这些热量需要通过热管等散热装置迅速传递出去 ,以保持芯片的正常工作。此时,沸腾的液体被用来将芯片产生的热量传递到散热装置中 。
工业余热回收
在许多工业过程中,会产生大量的余热,这些热量可以通过沸腾换热等手段进行回收和再 利用,提高能源利用效率。
沸腾换热的研究意义
VS
在工业界的推广价值
沸腾换热和热管技术适用于各种工业领域 ,如能源、动力、化工等,能够提高设备 的能源利用效率和可靠性,具有巨大的推 广价值和应用前景。
八年级上册物理沸腾知识点

八年级上册物理沸腾知识点物理学是一门探究自然规律的学科,而沸腾作为一个普遍存在于我们日常生活中的现象,其背后的物理规律更是值得我们深入理解和学习。
通过学习沸腾的知识,我们可以更好地了解物质的变化和传热机制,有助于我们更好地应用物理知识来解决日常生活中的实际问题。
一、沸腾的概念和发生条件沸腾是指液体在加热过程中大量产生气泡并向上冒出,而气泡中的蒸汽从液体中脱离出来,使液体在瞬间发生剧烈膨胀和冷却而产生的现象。
沸腾的发生条件主要有以下三个方面:1.液体温度达到饱和温度时;2.液体表面存在气体或其他杂质;3.液体受到外界加热或局部加热。
二、沸腾传热机制沸腾作为液态传热的一种形式,其传热机制具有独特性。
沸腾传热主要包括以下几个方面:1.液体表面的温度较高,气泡在液体表面形成并扩大,产生蒸汽并释放出热量;2.蒸汽可裸露在气相中,热量的传递不受空气传导或对流等方式的影响,大大提高了传热效果;3.在沸腾过程中,同时有蒸汽、气泡和液体充满了整个液体体积,传热速度极快。
三、沸腾的应用场景沸腾在日常生活中有许多应用,有助于我们更好地应用物理知识解决实际问题,提高生活质量。
下面列举几个常见的应用场景:1.冷却电子设备:利用沸腾流将热量传到电子设备的散热片上,然后从散热片散热出去;2.提高燃油效率:在汽车、飞机等燃油的使用中,采用沸腾等技术可大幅提高燃油的效率;3.清洗污染物:沸腾可用于实现一些环境清洁工作,如清洗污染物、水处理、废弃物处置等。
总结:本文介绍了八年级上册物理沸腾的知识点,包括沸腾的概念、发生条件、传热机制和应用场景等。
物理学作为一门基础学科,其知识对于我们的生活和工作都有着重要的作用。
因此,我们应该认真学习,掌握物理规律,更好地将其应用于实际问题的解决当中。
凝结与沸腾传热知识点总结

凝结与沸腾传热知识点总结一、凝结传热1. 基本概念凝结传热是指气体或蒸汽在与冷凝器或凝析器接触时,由于在高温高压下从气态转变为液态而释放出的潜热,使得冷却表面获得热量,达到热交换的目的。
凝结传热广泛应用于蒸汽动力设备、空调制冷系统、核电站等领域。
2. 传热机理凝结传热的机理主要包括蒸汽在冷却表面附近冷凝成液态的过程。
蒸汽接触冷却表面后,从气态开始逐渐降温,当温度降至饱和温度时,蒸汽开始冷凝成液态,同时向冷凝器表面释放潜热。
这一过程中,冷凝器表面得到了传热,达到冷却的效果。
3. 影响因素凝结传热的影响因素主要包括冷凝器表面的特性、冷却介质的流动情况、冷凝器的结构设计等。
其中,冷凝器表面的特性对传热性能影响较大,如表面粗糙度、表面材质等都会对凝结传热产生影响。
二、沸腾传热1. 基本概念沸腾传热是指在液体受热时,液体表面发生气泡并从表面蒸发的过程,通过气泡与液体间传热的方式,将热量传递给液体。
沸腾传热广泛应用于锅炉、蒸馏器、冷却设备等领域。
2. 传热机理沸腾传热的机理主要包括液体受热后,液体表面产生气泡并从表面蒸发,同时气泡与液体之间发生传热。
气泡在液体中的形成、生长、脱离和再次形成的过程构成了沸腾传热的基本机理。
3. 影响因素沸腾传热的影响因素主要包括液体的性质、加热表面的特性、液体的流动情况等。
其中,液体的性质对沸腾传热产生较大影响,如液体的表面张力、黏度、温度等都会对沸腾传热产生影响。
三、凝结与沸腾传热的比较凝结传热与沸腾传热在传热机理、应用领域等方面存在显著差异。
凝结传热是气体或蒸汽在冷却表面附近冷凝成液态,释放潜热的过程,适用于蒸汽动力设备、空调制冷系统等领域。
而沸腾传热是液体受热后,液体表面产生气泡并从表面蒸发,通过气泡与液体间传热的方式,适用于锅炉、蒸馏器等领域。
在传热特性上,沸腾传热的传热系数通常比凝结传热高,因此在某些情况下,沸腾传热更适于热交换。
此外,在应用领域上,凝结传热主要应用于蒸汽动力设备、空调制冷系统等领域,而沸腾传热主要应用于锅炉、蒸馏器、冷却设备等领域。
3.3 沸腾传热

影响池式沸腾的因素
系统压力 主流液体的温度(或欠热度):欠热度对传热
强度影响很小,但对qc有显著影响,qc随欠热 度的增加而升高。 加热表面粗糙度:壁表面越粗糙,泡化空穴越 大,使泡核沸腾传热增强; 壁面方位和尺寸。 其他如液-壁接触角和液体中含不凝气体等
控制热流密度加热时大空间 饱和沸腾换热的烧毁点:
过冷度(欠热度)
过冷沸腾换热系数比单相水的对流换热系数高的主要 原因是气泡扰动了边界层。当过冷度较大时,水流温 度比较低,汽泡还来不及冲破边界层就已经凝结了, 这是汽泡对边界层的扰动不是很强烈,所以换热系数 提高的并不多。过冷度减小到水温就越接近于饱和温 度,汽泡就越不容易凝结成水,它走的距离就越大, 对边界层的破坏作用就越大,因而放热系数大大增加。 但过冷度小到一定程度,汽泡已经能够冲破边界层厚 度,这时即使再减小过冷度,放热系数也不会再提高 了,因为对流换热的热阻主要集中在热边界层内,湍 流中心区的扰动本来就很强烈,小汽泡的扰动作用在 那里是微不足道的,并且小汽泡一进入主流核心区就 凝结掉了
常用的泡核沸腾传热关系式
TW
TS
q 25(106
)0.25
exp( p / 6.2)
TW
TS
q 22.65(106
)0.5
exp( p / 8.7)
以上两式表明,在欠热和饱和沸腾工况下,传热机理 或传热关系式与欠热度TSUB(或含汽率xE)和流动速 度u(或质量流密度G)无关,主要受壁面过热度 (TW-TS)和系统压力p所支配。
最小膜态沸腾点和过渡沸腾工况
最小膜态沸腾点D:在降低壁面热流密度时, 可以发生从膜态沸腾向泡核沸腾的直接转变, 该转变点叫最小膜态沸腾点D。它是稳定膜态 沸腾的低限,相应于连续汽膜的破坏和液-固接 触的开始点。膜态最低热流密度qmin。
沸腾传热 ppt课件

影响池式沸腾的因素
系统压力 主流液体的温度(或欠热度):欠热度对传热
强度影响很小,但对qc有显著影响,qc随欠热 度的增加而升高。 加热表面粗糙度:壁表面越粗糙,泡化空穴越 大,使泡核沸腾传热增强; 壁面方位和尺寸。 其他如液-壁接触角和液体中含不凝气体等
控制热流密度加热时大空间 饱和沸腾换热的烧毁点:
临界热流密度
C点--临界热流密度点(CHF):标志着泡核沸 腾的上限。在C点之后由于部分加热表面被整 齐覆盖而使传热减弱。或者可能因为q的稍微 增加而导致壁温骤然增加(近1000℃),将可 能导致壁面烧毁。因此qmax亦称为烧毁点。
两种机理:1、汽泡合并;2、流体动力学不稳 定性(造成的结果都是蒸汽覆盖表面而传热恶 化)
随着q的增加,在 加热面上产生气泡, 但很快在跃离壁面 之前就被冷凝了, 在热边界层引起微 量的对流
当液体温度接近ts 时,气泡在加热面 上长大并跃离壁面, 它们升向自由表面 的过程中,被冷液 体所冷凝
当液体达到饱和温 度时,气泡将不再 在液体中凝结,而 是上升到自由表面
两种临界热流密度点(CHF)工况
TW TW TS TSUBTS Tf
大容积沸腾传热
定义:浸没在池内(大容积内)原来静止 (或流速很低)液体内的受热面上产生的 沸腾。又称池式沸腾。
当池内液体整体温度比系统压力下的饱和温度 低时的沸腾叫欠热沸腾;当池内液体处在与系 统压力相应的饱和温度时的沸腾叫饱和沸腾
饱和沸腾: tf ts,twts
,G是给定的,故易算出通道壁面温度超过液体饱和温度的起
in
➢ 当壁面温度超过饱和温度时,不会立即就形成稳定 的过冷沸腾
在液体的单相对流区与 充分发展的过冷区之间 存在一个“部分沸腾” 区
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小膜态沸腾点和过渡沸腾工况
最小膜态沸腾点D:在降低壁面热流密度时, 可以发生从膜态沸腾向泡核沸腾的直接转变, 该转变点叫最小膜态沸腾点D。它是稳定膜态 沸腾的低限,相应于连续汽膜的破坏和液-固接 触的开始点。膜态最低热流密度qmin。
过渡沸腾工况CD:汽液交替覆盖加热表面,表 现出瞬态变化的传热特性,因此是一种不稳定 工况。其特点是随壁面过热度的升高,热流密 度反而下降。
➢ 沸腾起始点(ONB)的判别:
如图,当加热面的温度小于流
体在该特定位置的饱和温度,
即 t w t s 时,是不会产生沸
腾的,显然产生沸腾的下限为
:
ts tw
∵
tw
tf
z
q h
t
f
(z)
4zq Gcp D
t
f
,in
∴
ts
q
4z Gcp D
垂直管内对流沸腾的流型和传 热工况(低q)
A:单相液体对 流 B:欠热泡核沸 腾 C+D:饱和泡 核沸腾 E+F:通过液膜 的强制对流蒸 发传热 G:缺液区传热 H:单相蒸汽对 流传热
高热流密度下的对流沸腾的流 型和传热工况
DNB-偏离泡核沸腾:在很高热流 密度下,当气泡产生的频率高到在 汽泡脱离壁面之前就形成了汽膜 时,就发生偏离泡核沸腾(即 DNB型CHF)。
1
h
t f ,in
过冷沸腾中壁面温度和液体温度的分布
➢ 沸腾起始点(ONB)的判别:
对于:ts
q
4z Gcp D
1
h
tf
,in
令:ts t f ,in tsub in
则得: tsub
in
常用的泡核沸腾传热关系式
TW
TS
q 25(106
)0.25
exp( p / 6.2)
பைடு நூலகம்
TW
TS
q 22.65(106
)0.5
exp( p / 8.7)
以上两式表明,在欠热和饱和沸腾工况下,传热机理 或传热关系式与欠热度TSUB(或含汽率xE)和流动速 度u(或质量流密度G)无关,主要受壁面过热度 (TW-TS)和系统压力p所支配。
TW TW TS TSUB TS Tf
大容积沸腾传热
定义:浸没在池内(大容积内)原来静止 (或流速很低)液体内的受热面上产生的 沸腾。又称池式沸腾。
当池内液体整体温度比系统压力下的饱和温度 低时的沸腾叫欠热沸腾;当池内液体处在与系 统压力相应的饱和温度时的沸腾叫饱和沸腾
流动沸腾
流动沸腾: 管内沸腾比大空间沸腾更为复杂,因为它的沸腾工况不 仅与压力、热通量有关;而且还受到流体的流速、流体中 每一管道截面上的蒸汽含量的影响。对这方面的了解还不 够,这里仅能在大空间沸腾研究的基础上对管内流动沸腾 加以概括介绍。 在较低热流密度时,流动沸腾的六种形式:单相对流传热、 欠热泡核沸腾、饱和泡核沸腾、通过液膜的强制对流蒸发 传热、缺液区传热和单相蒸汽对流传热。 在较高热流密度时,当汽泡产生的频率高到在汽泡脱离壁 面之前就形成汽膜时,就发生偏离泡核沸腾(即DNB型 CHF)。在DNB后是反环状流型,相应的传热工况为膜态沸 腾。
——热流密度不断增加到qc (106W/m2)附近时,沸腾状
态将由C点沿红线跳跃至E点, 壁温突然升至1000 ℃以上,
设备将在瞬间烧毁。
实例:在高压锅炉水冷壁设计中,务必使热流密度小于106W/m2
水的大空间沸腾 换热计算式:
已知热流密度: h 0 .5 3 3 q 0.7 p 0.1 5 已知壁温: h 0 .1 2 2 p 2.3 3 p 0.5
影响池式沸腾的因素
系统压力 主流液体的温度(或欠热度):欠热度对传热
强度影响很小,但对qc有显著影响,qc随欠热 度的增加而升高。 加热表面粗糙度:壁表面越粗糙,泡化空穴越 大,使泡核沸腾传热增强; 壁面方位和尺寸。 其他如液-壁接触角和液体中含不凝气体等
控制热流密度加热时大空间 饱和沸腾换热的烧毁点:
随着q的增加,在 加热面上产生气泡, 但很快在跃离壁面 之前就被冷凝了, 在热边界层引起微 量的对流
当液体温度接近ts 时,气泡在加热面 上长大并跃离壁面, 它们升向自由表面 的过程中,被冷液 体所冷凝
当液体达到饱和温 度时,气泡将不再 在液体中凝结,而 是上升到自由表面
核态沸腾传热
q
当液体温度远小于 ts时,在ONB上没 有明显可见的气泡, 只有热的液体从过 热边界层流到冷的 液体中去
过冷度(欠热度)
过冷沸腾换热系数比单相水的对流换热系数高的主要 原因是气泡扰动了边界层。当过冷度较大时,水流温 度比较低,汽泡还来不及冲破边界层就已经凝结了, 这是汽泡对边界层的扰动不是很强烈,所以换热系数 提高的并不多。过冷度减小到水温就越接近于饱和温 度,汽泡就越不容易凝结成水,它走的距离就越大, 对边界层的破坏作用就越大,因而放热系数大大增加。 但过冷度小到一定程度,汽泡已经能够冲破边界层厚 度,这时即使再减小过冷度,放热系数也不会再提高 了,因为对流换热的热阻主要集中在热边界层内,湍 流中心区的扰动本来就很强烈,小汽泡的扰动作用在 那里是微不足道的,并且小汽泡一进入主流核心区就 凝结掉了
饱和沸腾: t f ts,tw ts
过冷沸腾: t f ts,tw ts
大空间饱和沸腾 过程的四个阶段: (控制壁温加热)
对流沸腾 过渡态沸腾
泡态沸腾 膜态沸腾
大容积沸腾传热
大容器饱和沸腾曲 线(左图):
A点前:自然对流区; AB-核态(微弱)沸腾 BC-泡核沸腾 CD-过渡沸腾 DE和EF-稳定膜态沸
泡核沸腾进一步解释
由于汽泡在加热面上连续不断地生成和脱离表面后的 运动,从而加剧了层流底层的扰动,所以,液体在管 内流动时,有过冷沸腾时的放热系数要比无过冷沸腾 时的放热系数大得多。
在q较小,和过冷度较大的情况下,由于(tw-ts)较小, 形成的汽泡很少,而且主流水温比饱和温度低得较多, 故汽泡脱离加热面后只能运动一段很短距离就被凝结 掉了,所以此时换热没有明显的增加;
沸腾传热
为什么要研究沸腾换热
前面研究了单相流体和固体壁面间的对流换热.在反应 堆热工计算中,还会遇到液体沸腾或蒸汽凝结等有相变 的对流换热,在动力堆热工系统中,蒸汽发生器中必然 遇到沸腾时的对流换热。在压水堆堆芯中,为了提高堆 的热功率,允许燃料元件包壳外表面的温度超过水的饱 和温度,即在活性区内存在着不同程度上的过冷沸腾。 在正常运行状态下一般允许堆芯内冷却剂发生泡核沸腾, 即在堆芯内平均通道的出口段允许出现欠热泡核沸腾, 在最热通道的出口段甚至还允许出现饱和泡核沸腾。
稳定膜态沸腾(DEF)
机理:一层连续的蒸汽膜覆盖在加热表面上, 热量的传递主要通过这层蒸汽膜的导热、对流 和热辐射,蒸汽以汽泡的形式从汽膜中逸出。 主要热阻局限在这层汽膜中。壁面与液体之间 的温差非常大,液体不能接触壁面,以维持汽 膜的稳定。
膜态沸腾换热系数比核态小得多,高热流你读 下燃料包壳的温度必升得很高,因此反应堆正 常运行时不允许发生膜态沸腾。
临界热流密度工况是指传热机理正好发生变化 而使传热系数突然下降的状态。临界热流密度 (CHF)则指在该工况下的热流密度值。
偏离泡核沸腾工况(DNB):在高热流密度下,由 泡核沸腾直接向膜态沸腾的转变,后果是烧毁。
蒸干(dry out):在低热流密度和高含汽率的环流流 动区,附壁液膜会因蒸干或撕破等原因而消失,从 而导致壁面干涸。蒸干时的热流密度远低于实际烧 毁的热流密度。壁温上升不很剧烈,一般不会使壁 面烧毁。
临界热流密度
C点--临界热流密度点(CHF):标志着泡核沸 腾的上限。在C点之后由于部分加热表面被整 齐覆盖而使传热减弱。或者可能因为q的稍微 增加而导致壁温骤然增加(近1000℃),将可 能导致壁面烧毁。因此qmax亦称为烧毁点。
两种机理:1、汽泡合并;2、流体动力学不稳 定性(造成的结果都是蒸汽覆盖表面而传热恶 化)
在水冷核反应堆的某些事故规程中,堆芯内燃料元件外表 面可能经历欠热泡核沸腾、饱和泡核沸腾、强迫对流蒸 发、临界对流蒸发、临界热流密度、过渡沸腾和膜态沸 腾等一系列沸腾传热工况。
两种基本的沸腾型式:大容积沸腾和流动沸腾
两个定义:壁面过热度和欠热度
壁面过热度:壁 面温度与饱和温 度之差
欠热度:饱和温 度与主流流体温 度之差
随着q的增加,在 加热面上产生气泡, 但很快在跃离壁面 之前就被冷凝了, 在热边界层引起微 量的对流
当液体温度接近ts 时,气泡在加热面 上长大并跃离壁面, 它们升向自由表面 的过程中,被冷液 体所冷凝
当液体达到饱和温 度时,气泡将不再 在液体中凝结,而 是上升到自由表面
两种临界热流密度点(CHF)工况
随着q的增加,在 加热面上产生气泡, 但很快在跃离壁面 之前就被冷凝了, 在热边界层引起微 量的对流
当液体温度接近ts 时,气泡在加热面 上长大并跃离壁面, 它们升向自由表面 的过程中,被冷液 体所冷凝
当液体达到饱和温 度时,气泡将不再 在液体中凝结,而 是上升到自由表面
核态沸腾传热
q
当液体温度远小于 ts时,在ONB上没 有明显可见的气泡, 只有热的液体从过 热边界层流到冷的 液体中去
q
4z Gcp D
1 h
凡满足上式的都落入图中A区,在这个区域内不会产生任何气泡
随着距离z的增加,斜率减小;而质量流密度G、通道直径D或换热系数的增 加,斜率则增大
回升