中考二次函数压轴题PPT优秀课件

合集下载

中考二次函数压轴题PPT

中考二次函数压轴题PPT

∴ 点 F 到 AC 的距离为 9 × = , 4
又∵ AC=
=3 ,
∴ △ ACE 的最大面积=×3 × = ,此时 E 点坐标为( 5 ,﹣ 3 ).
24
9
7、(2013•曲靖压轴题)如图,在平面直角坐标系 xOy 中,直线 y=x+4 与坐标轴分别交 于 A、B 两点,过 A、B 两点的抛物线为 y=﹣x2+bx+c.点 D 为线段 AB 上一动点,过 点 D 作 CD⊥x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式. (2)当 DE=4 时,求四边形 CAEB 的面积. (3)连接 BE,是否存在点 D,使得△ DBE 和△ DAC 相似?若存在,求此点 D 坐标; 若不存在,说明理由.
解得

所以,直线 AC 的解析式为 y=x﹣1,
∵ y=x2﹣4x+3=(x﹣2)2﹣1,
∴ 抛物线的对称轴为直线 x=2,
当 x=2 时,y=2﹣1=1,
∴ 抛物线对称轴上存在点 D(2,1),使△ BCD 的周长最小;
8
(3)如图,设过点 E 与直线 AC 平行线的直线为 y=x+m,联立, 消掉 y 得,x2﹣5x+3﹣m=0, △ =(﹣5)2﹣4×1×(3﹣m)=0,
7
解:(1)∵ 抛物线 y=ax2+bx+3 经过点 A(1,0),点 C(4,3),

,解得

所以,抛物线的解析式为 y=x2﹣4x+3;
(2)∵ 点 A、B 关于对称轴对称, ∴ 点 D 为 AC 与对称轴的交点时△ BCD 的周长最小, 设直线 AC 的解析式为 y=kx+b(k≠0),则,
S 四边形 CAEB=S△ ACE+S 梯形 OCEB﹣S△ BCO= ×2×6+ (6+4)×2﹣ ×2×4=12.

2025年中考数学复习专题 二次函数综合题复习课件(48张PPT)

2025年中考数学复习专题   二次函数综合题复习课件(48张PPT)
∴当m≤x≤4+m或x≥8+m时,y的值随x值的增大而减小,
∴当8≤x≤9时,y的值随x值的增大而减小,结合函数图象,得m的取值范围:
①m≤8且4+m≥9,得5≤m≤8,
②8+m≤8,得m≤0,由题意知m>0,
∴m≤0不符合题意,舍去,
综上所述,m的取值范围是5≤函数y=x2-2ax+3a,顶点坐标为(m,n).
1.(2022·贵阳第24题12分)已知二次函数y=ax2+4ax+b.
(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);
(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,
且图象过(1,c),(3,d),(-1,e),(-3,f)四点,判断c,d,e,f的大小,
并说明理由;
∴OP′=OB·tan∠OBP′=3× 3 =3 3 ,∴CP′=3 3 -3,
综上所述,线段CP的长为3- 3 或3 3 -3.
(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.
【分层分析】分对称轴x=1在a到a+1范围的右侧、中间和左侧三种情况,
结合二次函数的性质求解可得.
∴点B的坐标为(3,0),代入y=x2+bx+c,得
1 − + = 0,
= −2,

解得ቊ
9 + 3 + = 0,
= −3,
∴二次函数的解析式为y=x2-2x-3.
(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;
【分层分析】分点P在点C上方和下方两种情况,先求出∠OBP的度数,再
在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将
新函数图象向右平移m(m>0)个单位长度,平移后的函数图象在8≤x≤9时,

中考二次函数压轴题解题通法PPT课件

中考二次函数压轴题解题通法PPT课件

6
方程总有固定根问题
• 可以通过解方程的方法求出该固定根
已知关于的方程(mx2 3(m 1)x 2m 3 0 为实数),
求证:无论为何值,方程总有一个固定的根。
解:当 m 0 时, x 1
x1
当 m 0 时,
2
3 m
、x2
1
m3
2
0
,x
3m
1
2m

综上所述无论:m 为何值,方程总有一个固
19
2、“平行于y轴的动线段长度的最大值”的问题
2020/3/23
20
3、求一个已知点关于一条已知直线的对称点的坐标 问题Leabharlann 2020/3/2321
4、“抛物线上是否存在一点,使之到定直线的距离 最大”的问题
2020/3/23
22
5.常数问题
2020/3/23
23
6.“在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定 直线)上是否存在一点,使之到两定点的距离之和最小”的 问题
2020/3/23
2
两点间的距离公式
AB yA yB 2 xA xB 2
2020/3/23
3
中点坐标
• 线段的中点的坐标为:
xA xB ,yA yB 2 2
2020/3/23
4
一元二次方程有整数根问题
解题步骤如下:① 用和参数的其他要求确定
参数的取值范围 ② 解方程,求出方程的根
2020/3/23
28
10、“定四边形面积的求解”问题
• 有两种常见解决的方案: • 方案(一):连接一条对角线,分成两个三角形面积之和; • 方案(二):过不在x轴或y轴上的四边形的一个顶点,向

精品课件-《二次函数》中考总复习PPT课件

精品课件-《二次函数》中考总复习PPT课件

(D ) B.x > a
b
C.x < a
b
D.x < a
b
a <0,b <0
7、若抛物线y=ax2+3x+1与x轴有两
个交点,则a的取值范围是 ( D )
A.a>0
B.a>
4 9
C.a> 9
4
D.a< 9 且a≠0
4
练习:
1、已知抛物线 y=x²-mx+m-1.
(1)若抛物线经过坐标系原点,则m__=__1__;
2,函数 y(m2m2)xm22 当m取何值时,
(1)它是二次函数? (2)它是反比例函数?
(1)若是二次函数,则 m2 22 且m2m20
∴当 m 2时,是二次函数。
(2)若是反比例函数,则 m2 21且m2m20
∴当 m 1 时,是反比例函数。
驶向胜利的彼 岸
小结:
1. 二次函数y=ax²+bx+c(a,b,c是常数,a≠0)的几 种不同表示形式:
特别注意:在实际问题中画函数的图像时要注意自变量的取值范围,若图像是直线, 则 画图像时只取两个界点坐标来画(包括该点用实心点,不包括该点用空心圈);若是二次 函数的图像,则除了要体现两个界点坐标外,还要取上能体现图像特征的其它一些点
3、二次函数y=x2-x-6的图象顶点坐标是_(_—_12_,_-_—2_45)___ 对称轴是__x_=_—12_____。
x
A
B
C
√D
小结:双图象的问题,寻找自相矛盾的地方。即由一个图象得 出字母的取值范围,再去检验这个字母的符号是否适合另一个
图象
3、画二次函数y=x2-x-6的图象,顶点坐标是(__—12_,__-—2_45_)___

中考二次函数复习课件【优质PPT】

中考二次函数复习课件【优质PPT】

x=2,y最大值=3
练习 根据下列条件,求二次函数的解析式。
(1)、图象经过(-1,3), (1,3) , (2,6) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点
的纵坐标是3 。
顶点(6,3)
解法一设解析式为y=a(x-0)(x-12)
令y=1.4,则-0.2x2+3.2=1.4
B x解得x=-3或x=3 ∴M(-3,1.4),N(3,1.4) ∴MN=6 20 答:横向活动范围是6米。
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/10/10
14
5一.待般定式系数y法=a求x解2+b析x式+c (a≠0) 顶点式 y=a(x-h)2+k (a≠0)
交点式 y=a(x-x1)(x-x2) (a≠0)
6–
3–
-2 -1
12
练习 根据下列条件,求二次函数的解析式。
二次函数的图象是一条 对称轴平行于 y 轴.
抛物线
,它是 轴
对称图形,其
2021/10/10
2
y 3.二次函数的图象及性质y
0
x
0
x
抛物线 顶点坐标 对称轴 开口方向
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a

2020年河南中考复习专题八 二次函数压轴题_课件(共37张PPT)

2020年河南中考复习专题八 二次函数压轴题_课件(共37张PPT)
(3)点Q是线段BD上异于B,D的动点,过点Q作QF⊥x轴于点F,交抛物线于 点G,当△QDG为直角三角形时,直接写出点Q的坐标.
2.(2019·洛阳三模)在平面直角坐标系中,直线y= x-2与x轴交于点B, 与y轴交于点C,二次函数y= x2+bx+c的图象经过B,C两点,且与x轴的 负半轴交于点A.
(1)求该抛物线的解析式;
(2)若直线y=- x+m将△AOC的面积分成相等的两部分,求m的值;
(3)点B是该二次函数图象与x轴的另一个交点,点D是直线x=2上位于x轴 下方的动点,点E是第四象限内该二次函数图象上的动点,且位于直线x =2右侧.若以点E为直角顶点的△BED与△AOC相似,求点E的坐标.
1.(2020·原创)如图,抛物线y=ax2+bx+c关于直线x=1对称,
与坐标轴交于A,B,C三点,且AB=4,点D
在抛物线上,直
线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点.
(1)求抛物线的解析式;
(2)若直线l平分四边形OBDC的面积,求k的值;
(3)在抛物线上是否存在一点P,使得点Q在x轴上,点M在坐标平面 内,四边形CQPM是正方形,若存在,求点P的横坐标;若不存在, 请说明理由
(1)求b,c的值; (2)直线l与x轴交于点P. ①如图1,若l∥y轴,且与线段AC及抛物线分别相交于点E,F,点C关于直 线x=1的对称点为D,求四边形CEDF面积的最大值; ②如图2,若直线l与线段BC相交于点Q,当△PCQ∽△CAP时,求直线l的表 达式.
1.(2019·四川泸州)如图,在平面直角坐标系xOy中,已知二次函数y= ax2+bx+c的图象经过点A(-2,0),C(0,-6),其对称轴为直线x=2.
(1)求抛物线的解析式;

中考二次函数压轴题省名师优质课赛课获奖课件市赛课一等奖课件

中考二次函数压轴题省名师优质课赛课获奖课件市赛课一等奖课件
1.(2023•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)旳图象经过原点O,交x轴于点A ,其顶点B旳坐标为(3,﹣ )
(1)求抛物线旳函数解析式及点A旳坐标; (2)在抛物线上求点P,使S△POA=2S△AOB; (3)在抛物线上是否存在点Q,使△AQO与△AOB相同?假如存在,祈求出Q点旳坐标; 假如不存在,请阐明理由.
(1)请观察题中旳表格和图象,用所学过旳一次函数、反百分比函数或二次函数旳有关知识,分别
直接写出y1,y2与x之间旳函数关系式; (2)请你求出该企业去年哪个月用于污水处理旳费用W(元)最多,并求出这个最多费用;
(3)今年以来,因为自建污水处理设备旳全方面运营,该企业决定扩大产能并将全部污水全部本身
5.(2023•重庆)企业旳污水处理有两种方式,一种是输送到污水厂进行集中处理,另一 种是经过企业旳本身设备进行处理.某企业去年每月旳污水量均为12023吨,因为污水厂
处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同步进 行.1至6月,该企业向污水厂输送旳污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间 满足旳函数关系如下表:
4.(2023•株洲)如图,一次函数
分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点. (1)求这个抛物线旳解析式; (2)作垂直x轴旳直线x=t,在第一象限交直线AB于M,交这个抛 物线于N.求当t取何值时,MN有最大值?最大值是多少? (3)在(2)旳情况下,以A、M、N、D为顶点作平行四边形,求 第四个顶点D旳坐标.
7.(2023•湛江)如图,在平面直角坐标系中,直角三角形AOB旳顶点A、B分别落在坐 标轴上.O为原点,点A旳坐标为(6,0),点B旳坐标为(0,8).动点M从点O出发. 沿OA向终点A以每秒1个单位旳速度运动,同步动点N从点A出发,沿AB向终点B以每秒 个 单位旳速度运动.当一种动点到达终点时,另一种动点也随之停止运动,设动点M、N 运动旳时间为t秒(t>0).(1)当t=3秒时.直接写出点N旳坐标,并求出经过O、A、 N三点旳抛物线旳解析式;

2020年中考数学二模复习之二次函数中考压轴题(26张PPT)【精美版】

2020年中考数学二模复习之二次函数中考压轴题(26张PPT)【精美版】

利 用 铅 垂 线 求 面 积
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
四.逐问突破(2)→铅垂线
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
“类铅垂线”问题
利 用 铅 垂 线 求 面 积
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
本题不直接考察,而是利用铅垂线与已知直线的“几何关联”来求解 2.16-17连续考察平行四边形存在性,18年等腰三角形存在性,19年再次 考察“平行四边形存在性”的可能大,而且平行四边形难度也较大,正符合 “150分”下难度提升的大形势
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
四.逐问突破(3)→存在性
直接探讨“等腰三角形存在性”
等 腰 三 角 形
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
四.逐问突破(3)→存在性
利用“平行四边形”性质求解
平 行 四 边 形
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
四.逐问突破(3)→存在性
利用“等腰三角形”求点
等 腰 三 角 形
2020年中考数学二模复习之二次函数 中考压 轴题(2 6张PPT )【精 美版】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,解得:

故直线 AC 解析式为 y=﹣ x+3,
与抛物线解析式联立解得:


则点 D 坐标为(1, );
5
(3)存在,分两种情况考虑: ①当点 M 在 x 轴上方时,如答图 1 所示: 四边形 ADMN 为平行四边形,DM∥ AN,DM=AN, 由对称性得到 M(3, ),即 DM=2,故 AN=2,
10
解:(1)在直线解析式 y=x+4 中,令 x=0,得 y=4;令 y=0,得 x=﹣4, ∴ A(﹣4,0),B(0,4). ∵ 点 A(﹣4,0),B(0,4)在抛物线 y=﹣x2+bx+c 上,


解得:b=﹣3,c=4, ∴ 抛物线的解析式为:y=﹣x2﹣3x+4.
(2)设点 C 坐标为(m,0)(m<0),则 OC=﹣m,AC=4+m. ∵ OA=OB=4,∴ ∠ BAC=45°, ∴ △ ACD 为等腰直角三角形,∴ CD=AC=4+m, ∴ CE=CD+DE=4+m+4=8+m, ∴ 点 E 坐标为(m,8+m). ∵ 点 E 在抛物线 y=﹣x2﹣3x+4 上, ∴ 8+m=﹣m2﹣3m+4,解得 m=﹣2. ∴ C(﹣2,0),AC=OC=2,CE=6,
课程标题 二次函数综合题
1
二次函数压轴题设想
Ø第(1)问是求直线或抛物线的解析式 Ø第(2)(3)问是抛物线与几何结合 的问题
常见形式有以下类型
2
抛物线与几何结合常见形式:
①四点构成的四边形是平行四边形
四点构成的四 ②四点构成的四边形是菱形
边形
③四点构成的四边形是正方形
④四点构成的四边形是矩形
⑧求四边形的面积或最大面积
⑤以某三点构成的三角形与某个三角形 相似
三点构成的三 ⑥某三点构成等腰三角形 角形 ⑥某三点构成直角三角形
⑦某三角形的面积或最大面积
⑨两线段的和最小 两线段的和
⑩三角形的周长最小
直线与圆的位 置关系
⑾过某三点的圆与某条直线的位置关系
求点的坐标 或最大面积
证明
3
2、(2013•昆明压轴题)如图,矩形 OABC 在平面直角坐标系 xOy 中,点 A 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上,OA=4,OC=3,若抛物线的顶点在 BC 边上,且抛物线经过 O,A 两点,直线 AC 交抛物线于点 D. (1)求抛物线的解析式; (2)求点 D 的坐标; (3)若点 M 在抛物线上,点 N 在 x 轴上,是否存在以 A,D,M,N 为顶点 的四边形是平行四边形?若存在,求出点 N 的坐标,△ ACE 的面积最大,此时 x= 5 ,y=﹣ 3 ,
2
4
∴ 点 E 的坐标为( 5 ,﹣ 3 ), 24
设过点 E 的直线与 x 轴交点为 F,则 F( ,0),∴ AF= ﹣1= 9 , 4
∵ 直线 AC 的解析式为 y=x﹣1,
∴ ∠ CAB=45°,
7
解:(1)∵ 抛物线 y=ax2+bx+3 经过点 A(1,0),点 C(4,3),

,解得

所以,抛物线的解析式为 y=x2﹣4x+3;
(2)∵ 点 A、B 关于对称轴对称, ∴ 点 D 为 AC 与对称轴的交点时△ BCD 的周长最小, 设直线 AC 的解析式为 y=kx+b(k≠0),则,
4
解:(1)设抛物线顶点为 E,根据题意 OA=4,OC=3,得:E(2,3), 设抛物线解析式为 y=a(x﹣2)2+3,
将 A(4,0)坐标代入得:0=4a+3,即 a= 3 , 4
则抛物线解析式为 y= 3 (x﹣2)2+3= 3 x2+3x;
4
4
(2)设直线 AC 解析式为 y=kx+b(k≠0),则
∴ 点 F 到 AC 的距离为 9 × = , 4
又∵ AC=
=3 ,
∴ △ ACE 的最大面积=×3 × = ,此时 E 点坐标为( 5 ,﹣ 3 ).
24
9
7、(2013•曲靖压轴题)如图,在平面直角坐标系 xOy 中,直线 y=x+4 与坐标轴分别交 于 A、B 两点,过 A、B 两点的抛物线为 y=﹣x2+bx+c.点 D 为线段 AB 上一动点,过 点 D 作 CD⊥x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式. (2)当 DE=4 时,求四边形 CAEB 的面积. (3)连接 BE,是否存在点 D,使得△ DBE 和△ DAC 相似?若存在,求此点 D 坐标; 若不存在,说明理由.
解得

所以,直线 AC 的解析式为 y=x﹣1,
∵ y=x2﹣4x+3=(x﹣2)2﹣1,
∴ 抛物线的对称轴为直线 x=2,
当 x=2 时,y=2﹣1=1,
∴ 抛物线对称轴上存在点 D(2,1),使△ BCD 的周长最小;
8
(3)如图,设过点 E 与直线 AC 平行线的直线为 y=x+m,联立, 消掉 y 得,x2﹣5x+3﹣m=0, △ =(﹣5)2﹣4×1×(3﹣m)=0,
S 四边形 CAEB=S△ ACE+S 梯形 OCEB﹣S△ BCO= ×2×6+ (6+4)×2﹣ ×2×4=12.
∴ N1(2,0),N2(6,0); ②当点 M 在 x 轴下方时,如答图 2 所示:
过点 D 作 DQ⊥x 轴于点 Q,过点 M 作 MP⊥x 轴于点 P,可得△ ADQ≌ △ NMP, ∴ MP=DQ= ,NP=AQ=3,
将 yM=﹣ 代入抛物线解析式得:﹣ =﹣ x2+3x,
解得:xM=2﹣ 或 xM=2+ , ∴ xN=xM﹣3=﹣ ﹣1 或 ﹣1, ∴ N3(﹣ ﹣1,0),N4( ﹣1,0). 综上所述,满足条件的点 N 有四个:N1(2,0),N2(6,0),N3(﹣
﹣1,0),N4(
6
﹣1,0).
5、(2013•新疆压轴题)如图,已知抛物线 y=ax2+bx+3 与 x 轴交于 A、B 两 点,过点 A 的直线 l 与抛物线交于点 C,其中 A 点的坐标是(1,0),C 点 坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点 D,使△ BCD 的周长最小?若 存在,求出点 D 的坐标,若不存在,请说明理由; (3)若点 E 是(1)中抛物线上的一个动点,且位于直线 AC 的下方,试求 △ ACE 的最大面积及 E 点的坐标.
相关文档
最新文档