09高中物理竞赛复赛模拟试题(有答案)
高中生物理竞赛复赛试题及答案

全国中学生物理竞赛复赛试题全卷共六题,总分为140分。
一、(20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。
平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。
若让其继续作等温膨胀,使体积再次加倍。
试计算此时:1.汽缸中气体的温度;2.汽缸中水蒸气的摩尔数;3.汽缸中气体的总压强。
假定空气和水蒸气均可以当作理想气体处理。
二、(25分)两个焦距分别是1f 和2f 的薄透镜1L 和2L ,相距为d ,被共轴地安置在光具座上。
1. 若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件?2. 根据所得结果,分别画出各种可能条件下的光路示意图。
三、(25分)用直径为1mm 的超导材料制成的导线做成一个半径为5cm 的圆环。
圆环处于超导状态,环内电流为100A 。
经过一年,经检测发现,圆环内电流的变化量小于610A -。
试估算该超导材料电阻率数量级的上限。
提示:半径为r 的圆环中通以电流I 后,圆环中心的磁感应强度为02I B rμ= ,式中B 、I 、r 各量均用国际单位,720410N A μπ=⨯⋅--。
四、(20分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。
双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。
一般双星系统距离其他星体很远,可以当作孤立系统处理。
现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L 。
他们正绕两者连线的中点作圆周运动。
1. 试计算该双星系统的运动周期T 计算。
2. 若实验上观测到的运动周期为T 观测,且:1:1)T T N =>观测计算。
为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。
全国中学生物理竞赛复赛模拟试题汇编(PDF版 共6套)

M 3m T g (2分) 1 2 T M m g (2分) 2 2
第 29 届复赛模拟赛题
12
其中 M sv0 (
3gl 2l l 2l l ) s ( ) g u1 g u1 2
第三题(20 分) 在光滑平面上放有一个质量为 m 的匀质圆环,内径为 r 。从圆环的三个三等分点上各连出一根轻 质弹簧,原长几乎为 0,劲度系数为 k ,三根弹簧连到一个质量为 m 的质点上。 (1)用一个恒力 F 沿着 x 方向作用于圆环,若质点与圆环保持相对静止,则 m 相对圆心位移为多少? (2)初态圆环和质点保持静止,沿着某根弹簧方向给圆环一个冲量,使得速度为 v0 圆环和质点的运动方程。
A
B k。 t
C B
第 29 届复赛模拟赛题
7
第七题(20 分) 井底之蛙 在一个圆柱形的井底中心有一只青蛙。当水注满整个井的时候,青蛙刚好能看见全部天空,水的 折射为 n 1.33 。 (1)若此时月亮位于天顶,则青蛙看见的月亮和此时地上的人看到的月亮的大小之比为多少? (2)当水漏掉一半的时候,青蛙看到的星星数目和此时地上的人看到的星星数目之比约为多少?(认 为星星很多,均匀的分布在天空中) (3)接上一问,青蛙的视野中, “天空”的边缘与“天空”的中心,星星的密度之比为多少?
度。记下段绳子为 n 方向,上段绳子为 方向。轮子的角加速度为 a0 r a0
M
第 29 届复赛模拟赛题
10
在地面上看 B 的加速度:
aBn a0 2 2 r
2 2 , aB 2 r 2 2
(3 分)
地面上看墙角 M 加速为 aM 0 ,由于下段绳子没有转动,所以下端绳子上靠近滑轮的点沿绳加 速度为 0,所以相对滑轮下段绳子进入绳子的加速度为
高中物理竞赛复赛模拟试题二(有答案)

q。今在相对于环不动的参照系中设法让这些
小球均以匀速 u 沿环边运动,各边上相邻两球的间距均为
a,且 L 远大于 a(参见图 52-2 ),
环是用不导电的线制作的,在相对于环不动的参照系中它有均匀的电荷线密度,正好把全部
小球的电荷完全抵消掉。 考虑相对论效应, 在一个从其上看环的运动速度为
照系上计算以下各量:
轴与 v 同向, y 沿着 DA边的方向, z 轴则垂直于环路所在平面) 。S 系各轴平行于 S 系各对
应轴, S 与 S 系的坐标原点在 t=0 时重合。
(1) AB边
建立与 AB边上的小球一起运动的参照系 S ,它的各坐标轴与 S,S 系的坐标轴平行。 S
相对 S 具有速度 u。
据洛仑兹收缩, S 测得的 AB边上相邻两个小球之间的距离 ar 为
(3) DA边
v2
a CD
1 c2 a uv
1 c2
( 7)
在 S 系中,令 DA边上的某一小球在 t 0 时刻位于 x1 y1 z1 0 处。在同一时刻邻近的
一个小球应位于 x2 0, y2 a , z2 0 处。
各球相对于 S 系的空—时坐标可由洛仑兹变换式给出
1
x
(x
v2
1 c2
y y ,z z ,
a
ar
u2
1 c2 ,
(1)
(只要 ar 是在相对小球静止的参照系中测得的相邻两球间距,上式对任何一条边均成
立。) 据相对论速度求和公式, S 系中的观察者认为 AB边上诸球具有的速度为
uv
u AB
, uv
1 c2
再据洛仑兹收缩,此观察者将测得
( 2) AB边上相邻两球的间距为
高中物理竞赛复赛模拟试题(有答案)

复赛模拟试题一1.光子火箭从地球起程时初始静止质量(包括燃料)为M 0,向相距为R=1.8×1061.y.(光年)的远方仙女座星飞行。
要求火箭在25年(火箭时间)后到达目的地。
引力影响不计。
1)、忽略火箭加速和减速所需时间,试问火箭的速度应为多大?2)、设到达目的地时火箭静止质量为M 0ˊ,试问M 0/ M 0ˊ的最小值是多少?分析:光子火箭是一种设想的飞行器,它利用“燃料”物质向后辐射定向光束,使火箭获得向前的动量。
求解第1问,可先将火箭时间a 250=τ(年)变换成地球时间τ,然后由距离R 求出所需的火箭速度。
火箭到达目的地时,比值00M M '是不定的,所谓最小比值是指火箭刚好能到达目的地,亦即火箭的终速度为零,所需“燃料”量最少。
利用上题(本章题11)的结果即可求解第2问。
解:1)火箭加速和减速所需时间可略,故火箭以恒定速度υ飞越全程,走完全程所需火箭时间(本征时间)为a 250=τ(年)。
利用时间膨胀公式,相应的地球时间为221c υττ-=因υτR=故221c Rυτυ-=解出()10220222021096.0111-⨯-=⎪⎪⎭⎫ ⎝⎛-≈+=c R c c Rc c ττυ可见,火箭几乎应以光速飞行。
(2)、火箭从静止开始加速至上述速度υ,火箭的静止质量从M 0变为M ,然后作匀速运动,火箭质量不变。
最后火箭作减速运动,比值00M M '最小时,到达目的地时的终速刚好为零,火箭质量从M 变为最终质量0M '。
加速阶段的质量变化可应用上题(本章题11)的(3)式求出。
因光子火箭喷射的是光子,以光速c 离开火箭,即u=c ,于是有21011⎪⎪⎭⎫⎝⎛+-=ββM M (1)c βυ=为加速阶段的终速度,也是减速阶段性的初速度。
对减速阶段,可应用上题(本章题11)的(4)式,式中的m 0以减速阶段的初质量M 代入。
又因减速时必须向前辐射光子,故u=-c ,即有21011⎪⎪⎭⎫⎝⎛+-=ββM M (2) 由(1)、(2)式,得1020222022010441411⨯=≈-=-+='ττββc R c R M M2.如图52-1所示,地面上的观察者认为在地面上同时发生的两个事件A 和B ,在相对地面以速度u (u 平行于x 轴,且与正方向同向)运动的火箭上的观察者的判断正确的是( )A 、A 早于B B 、B 早于AC 、A 、B 同时发生D 、无法判断解:在地面(S 系)上,,A B x x x -=∆0=-=∆A B t t t ,在火箭(S '系)中,⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-='-'='∆22c ux t r c ux t r t t t A A B B A B ()()B A A A B x x c uxt t r -+-=2()B A A x x c ux-=2因0>r ,0>u ,0<-B Ax x ,故0<'∆t 。
2009年第26届全国中学生高中物理竞赛复赛试题(Word版,含答案)

第26届全国中学生物理竞赛复赛试卷一、填空(问答)题(每题5分,共25分)1.有人设想了一种静电场:电场的方向都垂直于纸面并指向纸里,电场强度的大小自左向右逐渐增大,如图所示。
这种分布的静电场是否可能存在?试述理由。
2.海尔-波普彗星轨道是长轴非常大的椭圆,近日点到太阳中心的距离为0.914天文单位(1天文单位等于地日间的平均距离),则其近日点速率的上限与地球公转(轨道可视为圆周)速率之比约为(保留2位有效数字) 。
3.用测电笔接触市电相线,即使赤脚站在地上也不会触电,原因是 ;另一方面,即使穿绝缘性能良好的电工鞋操作,测电笔仍会发亮,原因是。
4.在图示的复杂络中,所有电源的电动势均为E 0,所有电阻器的电阻值均为R 0,所有电容器的电容均为C 0,则图示电容器A 极板上的电荷量为 。
5.如图,给静止在水平粗糙地面上的木块一初速度,使之开始运动。
一学生利用角动量定理来考察此木块以后的运动过程:“把参考点设于如图所示的地面上一点O ,此时摩擦力f 的力矩为0,从而地面木块的角动量将守恒,这样木块将不减速而作匀速运动。
”请指出上述推理的错误,并给出正确的解释:。
二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。
已知桌腿受力后将产生弹性微小形变。
现于桌面中心点O 至角A 的连线OA 上某点P 施加一竖直向下的力F ,令c OAOP=,求桌面对桌腿1的压力F 1。
三、(15分)1.一质量为m 的小球与一劲度系数为k 的弹簧相连组成一体系,置于光滑水平桌面上,弹簧的另一端与固定墙面相连,小球做一维自由振动。
试问在一沿此弹簧长度方向以速度u 作匀速运动的参考系里观察,此体系的机械能是否守恒,并说明理由。
2.若不考虑太阳和其他星体的作用,则地球-月球系统可看成孤立系统。
若把地球和月球都看作是质量均匀分布的球体,它们的质量分别为M 和m ,月心-地心间的距离为R ,万有引力恒量为G 。
高中物理竞赛模拟试题+物理竞赛复赛试题及答案

高中物理竞赛模拟试题+物理竞赛复赛试题及答案模拟训练试卷①第一题 (16分)1.天文学家根据观测宣布了如下研究成果:银河系中心可能存在一个大黑洞.黑洞是一种神秘的天体,这种天体的密度极大,其表面的引力如此之强,以至于包括光在内的所有接近黑洞的物体都不能逃脱其引力的作用.人们用口径为3.5m的天文望远镜对猎户座中位于银河系中心附近的星体,进行了长达6年的观测,发现距黑洞6×1012m的星体以2000km /s的速度绕其旋转.另外,根据相对论知识,光子在运动时有质量.设光子在运动时质量为m0,光子与黑洞间的吸引力同样符合万有引力定律。
由以上知识可以求出黑洞的最大半径R= m.已知引力恒量G=6.67×10-11N•m2/kg2。
计算结果取l位有效数字.2.电子电量为e,质量为m,经过电压为U的加速电场加速后,电子具有的德布罗意波的波长表达式是λ= .若le=1.6×10-19C,m=9.1×10-31kg,代人数据计算,当U=150V时,λ= m.第二题 (20分)如图所示,半径为r的孤立金属球远离其他物体,通过电阻可以忽略的理想细导线和电阻为R的电阻器与大地连接.电子束从远处以速度v射向金属球面,若稳定后每秒钟落到金属球上的电子数目为n,电子质量为m,电子电量数值为e,不考虑电子的重力势能,试求:1.稳定后金属球每秒钟自身释放的热量Q和金属球所带电量q;2.稳定后每秒钟落到金属球上的电子数目n不会超过多少?第三题 (20分)在水平地面某一固定点用枪射击,射出的子弹在水平地面上落点所能够覆盖的最大面积是A.若在这一固定点正上方高度为h的位置用同一支枪射击.射出的子弹在水平地面上落点所能覆盖的最大面积是多大?不计空气阻力,不计枪支的长度,每次射出的子弹初速度大小相同.第四题 (18分)如图所示,固定在竖直平面内的椭圆环,其长轴沿竖直方向.有两个完全相同的小圆环套在椭圆环上,不计质量的轻线将两个小圆环连接在一起,轻线跨过位于椭圆焦点F的水平轴,小圆环与轻线系统处于平衡状态.不计各处的摩擦,小圆环的大小忽略不计.试分析说明,系统属于哪一种平衡状态?第五题 (20分)摩尔质量是μ、摩尔数是n的单原子理想气体发生了未知的状态变化(我们称之为x过程).状态变化过程中,可以认为气体在每一状态都处于平衡状态.气体的x过程曲线在P—V图像中,向下平移P0后恰好与温度是T0的等温曲线重合,如图所示.1.试写出x过程中气体体积V随温度T变化的关系式;2.试写出x过程中气体的比热容c与压强P变化的关系式.第六题 (24分)如图所示,真空中平行板电容器水平放置,电容器下极板固定不动,上极板用轻弹簧连接在极板中心位置悬挂起来.已知电容器极板面积是A.当上极板静止不动时,弹簧伸长量为x0,此时两极板间距为d0.现将电容器与电势差为U的电源连接,使两极板充上等量电荷,上面是正电荷,下面是负电荷,上极板会发生小幅度振动.上极板在振动的平衡位置时两极板间距为d l,不计电容器边缘效应,不计电源内阻,试求:1.弹簧的劲度系数k;2.上极板做小幅度振动的周期T;3.若弹簧的劲度系数k为某一确定值,上极板做小幅度振动时,电容器充电电压不会超过多少?第七题 (22分)如图所示,在焦距f=0.15m的凸透镜L主轴上有一小光源S,凸透镜L另一侧有两个反射面相向放置的平面镜OM l和OM2.平面镜OM l和OM2彼此垂直,且与透镜L主轴成45°,两平面镜的交线与透镜主轴垂直.已知小光源中心到两平面镜的交线距离SO=0.9m,透镜到两平面镜的交线距离010=0.3m,试求:1.小光源S在透镜主轴上共成多少个像?2.小光源S在透镜主轴外共成多少个像?分别指出像的虚实、位置及放大率.答案与分析全国中学生物理竞赛复赛试题一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.v三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y X t X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)xy z E E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a)图(b)八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰, 1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知xm e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .第30届全国中学生物理竞赛复赛解答与评分标准一参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv .设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1)这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v .(3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得220sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
高中的物理竞赛试题及答案

高中的物理竞赛试题及答案高中物理竞赛试题一、选择题(每题3分,共30分)1. 一个物体从静止开始做匀加速直线运动,经过4秒后速度达到4m/s。
求物体的加速度。
A. 0.5 m/s²B. 1 m/s²C. 2 m/s²D. 4 m/s²2. 两个质量分别为m1和m2的物体,通过一根轻绳连接并悬挂在无摩擦的定滑轮上。
如果m1 > m2,系统将如何运动?A. 系统静止不动B. 系统加速下降C. 系统加速上升D. 系统减速上升3. 一个电子在电场中受到的电场力大小为F,如果电场强度增加到原来的两倍,电子受到的电场力将如何变化?A. 保持不变B. 增加到原来的两倍C. 增加到原来的四倍D. 增加到原来的八倍4. 一个物体在水平面上以初速度v0开始滑行,摩擦系数为μ。
求物体停止滑行所需的时间。
A. 无法确定B. \( \frac{v_0}{\mu g} \)C. \( \frac{v_0}{\sqrt{\mu g}} \)D. \( \sqrt{\frac{v_0}{\mu g}} \)5. 一个弹簧振子的振动周期为T,当振幅减半时,振动周期将如何变化?A. 保持不变B. 减半C. 增加到原来的两倍D. 增加到原来的四倍6. 一个点电荷Q产生电场的强度在距离r处为E,当距离增加到2r时,电场强度将如何变化?A. 保持不变B. 减半C. 增加到原来的两倍D. 增加到原来的四倍7. 一个物体在竖直方向上做自由落体运动,忽略空气阻力。
经过时间t后,物体的速度和位移分别是多少?A. 速度v=gt,位移s=1/2gt²B. 速度v=2gt,位移s=gt²C. 速度v=gt,位移s=gt²D. 速度v=2gt,位移s=2gt8. 一个物体从高度h自由落下,不计空气阻力。
求物体落地时的速度。
A. \( \sqrt{2gh} \)B. \( \sqrt{gh} \)C. \( 2\sqrt{gh} \)D. \( \sqrt{h/g} \)9. 一个物体在水平面上以初速度v0开始滑行,经过时间t后,其速度变为v。
全国高中物理竞赛历年(2009-2013年)试题与详解答案汇编

法拉第电磁感应定律。
楞次定律。
自感系数。
互感和变压器。
6、交流电
交流发电机原理。交流电的最大值和有效值。
纯电阻、纯电感、纯电容电路。
整流和滤波。
三相交流电及其连接法。感应电动机原理。
7、电磁振荡和电磁波
电磁振荡。振荡电路及振荡频率。
电磁场和电磁波。电磁波的波速,赫兹实验。
电磁波的发射和调制。电磁波的接收、调谐,检波。
全国高中物理竞赛历年试题与详解答案汇编
———广东省鹤山市纪元中学
2014年5月
全国中学生物理竞赛提要
编者按:按照中国物理学会全国中学生物理竞赛委员会第九次全体会议的建议,由中国物理学会全国中学生物理竞赛委员会常务委员会根据《全国中学生物理竞赛章程》中关于命题原则的规定,结合我国目前中学生的实际情况,制定了《全国中学生物理竞赛内容提要》,作为今后物理竞赛预赛和决赛命题的依据,它包括理论基础、实验基础、其他方面等部分。其中理论基础的绝大部分内容和国家教委制订的(全日制中学物理教学大纲》中的附录,即 1983年教育部发布的《高中物理教学纲要(草案)》的内容相同。主要差别有两点:一是少数地方做了几点增补,二是去掉了教学纲要中的说明部分。此外,在编排的次序上做了一些变动,内容表述上做了一些简化。1991年2月20日经全国中学生物理竞赛委员会常务委员会扩大会议讨论通过并开始试行。1991年9月11日在南宁由全国中学生物理竞赛委员会第10次全体会议正式通过,开始实施。
功能原理。机械能守恒定律。
碰撞。
6、流体静力学
静止流体中的压强。
浮力。
7、振动
简揩振动。振幅。频率和周期。位相。
振动的图象。
参考圆。振动的速度和加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新高物理竞赛试题复赛模拟试题一1.光子火箭从地球起程时初始静止质量(包括燃料)为M 0,向相距为R=1.8×1061.y.(光年)的远方仙女座星飞行。
要求火箭在25年(火箭时间)后到达目的地。
引力影响不计。
1)、忽略火箭加速和减速所需时间,试问火箭的速度应为多大?2)、设到达目的地时火箭静止质量为M 0ˊ,试问M 0/ M 0ˊ的最小值是多少?分析:光子火箭是一种设想的飞行器,它利用“燃料”物质向后辐射定向光束,使火箭获得向前的动量。
求解第1问,可先将火箭时间a 250=τ(年)变换成地球时间τ,然后由距离R 求出所需的火箭速度。
火箭到达目的地时,比值00M M '是不定的,所谓最小比值是指火箭刚好能到达目的地,亦即火箭的终速度为零,所需“燃料”量最少。
利用上题(本章题11)的结果即可求解第2问。
解:1)火箭加速和减速所需时间可略,故火箭以恒定速度υ飞越全程,走完全程所需火箭时间(本征时间)为a 250=τ(年)。
利用时间膨胀公式,相应的地球时间为221c υττ-=因υτR=故221c Rυτυ-=解出()10220222021096.0111-⨯-=⎪⎪⎭⎫ ⎝⎛-≈+=c R c c Rc c ττυ可见,火箭几乎应以光速飞行。
(2)、火箭从静止开始加速至上述速度υ,火箭的静止质量从M 0变为M ,然后作匀速运动,火箭质量不变。
最后火箭作减速运动,比值00M M '最小时,到达目的地时的终速刚好为零,火箭质量从M 变为最终质量0M '。
加速阶段的质量变化可应用上题(本章题11)的(3)式求出。
因光子火箭喷射的是光子,以光速c 离开火箭,即u=c ,于是有21011⎪⎪⎭⎫⎝⎛+-=ββM M (1)c βυ=为加速阶段的终速度,也是减速阶段性的初速度。
对减速阶段,可应用上题(本章题11)的(4)式,式中的m 0以减速阶段的初质量M 代入。
又因减速时必须向前辐射光子,故u=-c ,即有21011⎪⎪⎭⎫⎝⎛+-=ββM M (2) 由(1)、(2)式,得1020222022010441411⨯=≈-=-+='ττββc R c R M M2.如图52-1所示,地面上的观察者认为在地面上同时发生的两个事件A 和B ,在相对地面以速度u ϖ(u ϖ平行于x 轴,且与正方向同向)运动的火箭上的观察者的判断正确的是( )A 、A 早于B B 、B 早于AC 、A 、B 同时发生D 、无法判断解:在地面(S 系)上,,A B x x x -=∆0=-=∆A B t t t ,在火箭(S '系)中,⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-='-'='∆22c ux t r c ux t r t t t A A B B A B ()()B A A A B x x c uxt t r -+-=2()B A Ax x c ux -=2因0>r ,0>u ,0<-B Ax x ,故0<'∆t 。
即从火箭上观察,B 事件在前,A 事件在后,选B 。
3. 如图11-195所示,正方形均质板重G ,用4根轻质杆铰链水平悬挂,外形构成边长为a 的立方体,现将方板绕铅垂对称轴旋转θ角度,再用一细绳围绕四杆的中点捆住,使板平衡于θ角位置。
试求绳内的张力。
分析:初看此题,一般都会觉的比较复杂,因为题中铰链就有8个,加上4根轻质杆与绳子有4个接触点,一共有12个受力点,而且初看甚至想象不出木板旋转θ角度以后整个系统是什么样子,即使把各个受力点的力逐个画出来也无济于事。
应该先想一想哪些点都是对称的(等价的),找出最基本的部分,再把空间方向确定下来,然后好画出各个力点的受力情况。
解:把木板绕铅垂对称轴旋转θ角度以后,系统虽然不是一个很对称的立方体,但把系统绕铅直轴旋转90度的整数倍,系统的与自身重合,说明四根轻杆的受力情况是完全一样的。
系统处于平衡状态,把四根轻杆,木板,绳组成的部分看成刚体,则刚体受四个铰接部分的力而平衡,重力方向的平衡可以得出,竖直方向对每根轻杆的拉力T 上为:GT =上4 (1)而铰接处是否对轻杆有水平方向的作用力,暂时还不好确定,不过可以为N //,从俯图来看四根轻杆的受力情况(如图11-196所示):图中虚线表示正方形对角线的外延部分,如果N //不在对角线方向上,则四个N //对O 点有一个力偶矩,将使得下面的部分旋转,与平衡假设相矛盾,因此水平弹力必然在对角线方向,要么都向外,要么都向里(设向外为正,这种设法不会影响结果)。
同样的道理,把木板隔离开来,可知木板对轻杆往下的拉力下T 为:图52-1 图11-195图11-196GT =下4 (2)而水平方向的作用力必沿对角线方向(否则木板旋转),木板对杆的作用力向里向外的性质与上端铰链的方向相同,否则以绳对杆的作用点为支点,力矩无法平衡。
下面再看整个系统的俯视图(如图11-197所示),把轻杆隔离出来作为平衡的刚性杆,利用力的平衡条件和力矩的平衡条件可求出拉力T 的大小。
绳作用在每根转杆的中点,在俯视图上不难看出,绳子构成一个正方形,且在水平面内,因而可以知道绳对轻杆仅有水平面内,因而可以知道绳对轻杆仅有水平面内的拉力,轻杆在竖直方向上力的平衡是满足的:下上T T = (3)取一根轻杆为研究对象不难求出//N 与//N '的关系,以及//N 与//T 的关系,设绳的张力为T ,则水平合力T T 2//=。
x 方向水平力平衡:2sin2sin ////θθN N =' (4)y 方向水平力平衡:TT N N 22cos2cos //////==+'θθ(5)在过轻杆的竖直面内来分析力矩平衡(只研究平面内转矩),如图11-198。
对于A 点,力矩平衡2sin2cos 2sin //θθθa T a N ⋅=⋅'下 (6)联合(2)、(4)、(5)、(6)式可得θθcos 22cos ⋅=G T4. 如图12-30所示,一小车对地以加速度a 1=1m/s 2向左由静止开始作匀加速运动,车上一人又以加速度a 2=2m/s 2相对于车向右同时由静止开始作匀加速运动。
求:(1)人对地的加速度;(2)经历时间t 1=1s ,人对地的瞬时速度;(3)经历时间t 2=2s ,人对地的位移。
解:(1)车地人车人地aa a += Θa 1与a 2方向相反选a 2为正方向 则22/2s m s m a -=人地2/1s m = (2)t=1s 时,2/m sυ=人车sm /1-=车地υ∴ sm s m /1/2-=人地υs m /1=(3)Θ 2/1s m a =人地∴ ms t a 221212122=⨯⨯==⨯⨯y//2θ图11-198图12-305.有一小直径为d 的试管,管内装有理想气体,其中有一段质量m=2g 的水银将理想气体和空气隔开。
当试管口向上时,气体在试管中的长为L 1(图24-30(a )中的(a )),当将管口向下时,气体在试管中长为L 2(图24-30(b )中的(b )),试求L 2/L 1为多少? 解:如果是等温过程,可得理想气体的状态方程 常数=PV 对于上述两种情况,可有2211V P V P= 现在考虑在每一情况作用中在气体上的压强,如图24-30(b )所示,可得S W P S W P P P V V -+==大气大气2112 式中S 为试管内部的截面积,W 为水银的重量,W=mg ,则S mg P S mg P SL SL V V -+==大气大气1212消去S 得221244d mg P d mg P L L ππ-+=大气大气6.有一个两端开口、粗细均匀的U 型玻璃细管,放置在竖直平面内,处在压强为0p 的大气中,两个竖直支管的高度均为h ,水平管的长度为2h ,玻璃细管的半径为r,r«h,今将水平管内灌满密度为ρ的水银,如图24-54(a )所示。
1.如将U 型管两个竖直支管的开口分别封闭起来,使其管内空气压强均等于大气压强,问当U 型管向右作匀加速移动时,加速度应多大才能使水平管内水银柱长度稳定为h35。
2.如将其中一个竖直支管的开口封闭起来,使其管内气体压强为1atm ,问当U 型管绕以另一个竖直支管(开口的)为轴作匀速转动时,转数n 应为多大才能使水平管内水银柱长度稳定为h 35。
(U 型管作以上运动时,均不考虑管内水银液面的倾斜)解:1、当U 型管向右加速移动时,水平管内的水银柱将向左边的竖直支管中移动,其稳定的位置是留在水平管内的水银柱所受的水平方向的合力等于使其以恒定加速度a 向右运动时所需的力。
由于竖直支管内空气在膨胀或压缩前后的温度相等,根据气态方程有 右管: hS p hS p 1034=左管: hSp hS p 2032=S 为管的截面积,图24-54(b )中,A 、B 两处压强分别为:ghp p A ρ312+=1p p B =PatP P 图24-30(b )图24-54(a )图24-54(b )而留在水平管内的水银柱质量hS m ρ35=其运动方程为 a m S p p B A ⋅=-)(由以上各式可得)20/()49(0h gh p a ρρ+=2.当U 型管以开口的竖直支管为轴转动时,水平管内的水银柱将向封闭的竖直支管中移动,其稳定位置是水平管内的水银柱所受的水平方向的合力,正好等于这段水银柱作匀速圆周运动所需的向心力。
由于封闭竖直支管内空气在压缩前后的温度相等,根据气态方程有hS hS p ρ320=S 为管的截面积。
图24-54(c )中A 、B 两处的压强分别为ghp p A ρ31+=0p p B=留在水平管内的水银柱的质量 hS m ρ35=其运动方程为mR n R m S p p B A 2224)(πω==-其中 h R 67=由以上各式可得[]21220)140/()69(h gh p n ρπρ+= 7. 有一块透明光学材料,由折射率略有不同的许多相互平行的,厚度d=0.1mm 的薄层紧密连接构成,图33-40表示各薄层互相垂直的一个截面,若最下面一层的折射率为n 0,从它往上数第K 层的折射率为n K =n 0-K v ,其中n 0=1.4,v=0.025,今有一光线以入射角i=60°射向O 点,求此光线在这块材料内能达到的最大深度?解:设光线进入材料后的折射角为r ,则根据折射定律有r n i sin sin 0•=,此光线从最下面一层进入向上数第一层时,入射角为02φπ-=r ,折射角为12φπ-=r ,同样根据折射定律有⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-•11002sin 2sin φπφπn n ,也即 1100cos cos φφn n =• 光线从第一层进入第二层时,同样可得1201cos cos φφn n =•综合以上分析可得:K K n n n n φφφφcos cos cos cos 221100•====•ΛΛ图24-54(c )4n n 5n 图33-40因为0025.00⨯-=K n n K ,所以K φcos 随着K 的增大而增大,K φ则随着K 的增大而减小,即光线在顺序变化的介质中传播时将偏向折射率变大的方向。