陶瓷的烧结过程

合集下载

烧制陶瓷的化学反应方程式

烧制陶瓷的化学反应方程式

烧制陶瓷的化学反应方程式陶瓷是一种由非金属材料烧制而成的材料,其主要成分是氧化物。

烧制陶瓷的过程中涉及到多个化学反应方程式。

陶瓷的原料主要包括粘土、石英、长石等。

在烧制过程中,这些原料会发生化学反应,形成陶瓷的主要成分。

1. 粘土的化学反应方程式:粘土的主要成分是硅酸盐矿物,其中包含氧化硅、氧化铝等成分。

在高温下,粘土中的硅酸盐矿物会发生热分解反应,生成二氧化硅和氧化铝:2Al2Si2O5(OH)4 → Al2O3 + 2SiO2 + 4H2O2. 石英的化学反应方程式:石英是一种含有高纯度二氧化硅的矿石。

在高温下,石英会发生热分解反应,生成二氧化硅:SiO2 → SiO23. 长石的化学反应方程式:长石是一种含有铝、钠、钾等元素的矿石。

在高温下,长石会发生热分解反应,生成氧化铝和氧化钠或氧化钾:3KAlSi3O8 → 3Al2O3 + 3SiO2 + 3K2O以上是陶瓷原料中的主要成分的化学反应方程式。

在烧制陶瓷的过程中,这些原料经过混合、成型和烧结等步骤,最终形成陶瓷制品。

烧制陶瓷的过程中,主要涉及以下几个化学反应:1. 陶瓷的成型:在成型过程中,原料经过混合后进行模具成型。

这个过程中不涉及明显的化学反应,主要是物理过程,通过施加压力和/或挤压使原料具有一定的形状。

2. 烧结过程:烧结是烧制陶瓷的关键步骤之一。

在烧结过程中,陶瓷制品经过高温处理,使其形成致密的结构。

在这个过程中,原料中的氧化物会发生化学反应,形成陶瓷的晶体结构。

例如,氧化铝和二氧化硅会发生反应,形成莫来石(Mullite)晶体结构:3Al2O3 + 2SiO2 → 3Al2SiO5 + O2氧化钠或氧化钾也会与其他氧化物发生反应,形成不同的晶体结构。

3. 烧结过程中的氧化还原反应:在高温下,陶瓷中的某些金属元素可能发生氧化还原反应。

例如,氧化铁(Fe2O3)可以与氧化铝(Al2O3)发生反应,生成铁铝尖晶石(FeAl2O4):Fe2O3 + Al2O3 → FeAl2O4这些化学反应在烧制陶瓷的过程中发生,对陶瓷的结构和性质产生重要影响。

第五章 烧结-1

第五章 烧结-1

2. 中温阶段(300~950℃)
• 任务:脱水、分解、氧化、晶型转变
• 结构水排除(高岭土) Al2O3 . 2SiO2 . 2H2O
Al2O3 . 2SiO2+2H2O
• 碳酸盐分解
✓由原料中带入
✓分解反应
500~850℃
MgCO3
MgO+CO2
CaCO3 850~1050℃CaO+CO2
MgCO3 . CaCO3 730~950℃ CaO+MgO+2CO2
研究表明,较小的颗粒尺寸分布范围是获取高烧结密度的必要条件。
二、影响陶瓷材料烧结的工艺参数
(1)烧成温度对产品性能的影响
烧成温度是指陶瓷坯体烧成时获得最优性质时的相应温度,即操作 时的止火温度。
烧成温度的高低直接影响晶粒尺寸和数量。对固相扩散或液相重结 晶来说,提高烧成温度是有益的。然而过高的烧成温度对特瓷来说,会因总 体晶粒过大或少数晶粒猛增,破坏组织结构的均匀性,因而产品的机电性能 变差。
颗粒间由点接触转变为面接触,孔隙缩小,连通孔 隙变得封闭,并孤立分布。 ③ 小颗粒间率先出现晶界,晶界移动,晶粒长大。
2)烧结后期阶段 ① 孔隙的消除:晶界上的物质不断扩散到孔隙处, 使孔隙逐渐消除。 ② 晶粒长大:晶界移动,晶粒长大。
➢ 烧结的分类:
烧结
固相烧结(只有固相传质) 液相烧结(出现液相) 气相烧结(蒸汽压较高)
颗粒形状和液相体积含量对颗粒之间作用力的影响 只有在大量液相存在的情况下,才能使这些具有一定棱角形状 的陶瓷粉体之间形成较高的结合强度。
(4)颗粒尺寸分布对烧结的影响
颗粒尺寸分布对最终烧结样品密度的影响可以通过分析有关的动力学 过程来研究,即分析由不同尺寸分布的坯体内部,在烧结过程中“拉出气孔” (pore drag)和晶粒生长驱动力之间力的平衡作用。

《陶瓷材料的烧结》课件

《陶瓷材料的烧结》课件
资源循环利用
对废弃的陶瓷材料进行回收和再利用,实现资源的循环利用,降 低对自然资源的依赖。
THANKS。
致密度、均匀性和性能。
烧结设备的改进
03
随着技术的进步,烧结设备的性能和效率也将得到提升,为陶
瓷材料的制备提供更好的设备支持。
环保和可持续发展在陶瓷烧结领域的应用
环保材料的研发
为了降低陶瓷产业对环境的影响,未来将大力研发环保型的陶瓷 材料,如低毒陶瓷、可降解陶瓷等。
节能减排技术的应用
通过采用新型的节能技术,降低陶瓷烧结过程中的能耗和排放, 实现低碳、环保的生产。
04
陶瓷材料的烧结性能
烧结密度和孔隙率
烧结密度
烧结后的陶瓷材料密度,影响材料的 机械性能和热学性能。
孔隙率
陶瓷材料内部孔隙的多少,与材料的 强度、热导率和绝缘性能有关。
烧结陶瓷的力学性能
01
硬度
烧结陶瓷的硬度取决于其成分和 显微结构,硬度高的陶瓷耐磨、 耐划痕。
02
03
抗弯强度
韧性
陶瓷抵抗弯曲应力的能力,与材 料的成分、显微结构和制备工艺 有关。
航天器结构材料
陶瓷材料具有轻质、高强度和耐高温的特性,适用于航天器结构材料,如卫星天线骨架、太阳能电池板支架等。
06
未来展望
新型陶瓷材料的开发
高性能陶瓷
随着科技的发展,对陶瓷材料性能的要求越来越高,未来 将开发出具有更高强度、硬度、耐磨性、耐高温等高性能 的新型陶瓷材料。
多功能陶瓷
除了传统的结构陶瓷外,未来还将开发出具有多种功能如 导电、导热、压电、磁性等功能的新型陶瓷材料。
05
陶瓷材料的烧结应用
在电子行业的应用
电子封装

陶瓷烧制过程中的化学反应

陶瓷烧制过程中的化学反应

陶瓷烧制过程中的化学反应
在陶瓷烧制的过程中,存在着多种化学反应。

其中最主要的是以下三种反应:
1. 脱水反应:在烧制陶瓷的过程中,陶瓷中的水分会被脱除。

这个过程被称为脱水反应,其化学式为
2Al(OH)3 → Al2O3 + 3H2O
这个反应是由于陶瓷中的水分被高温下的热能转化为水蒸气,而水蒸气在烧结过程中被排出。

2. 烧结反应:这个反应是指在高温下,陶瓷中的各种原料会发生固相反应,形成一种致密的结构。

这个反应的化学式可以用以下式子表示:
mAl2O3 + nSiO2 → (m/n)Al2O3·SiO2
这个反应会形成一个非常硬的矿物质质地,使得陶瓷具有高强度和较好的耐磨损性能。

3. 氧化还原反应:在烧制陶瓷的过程中,存在着氧化还原反应。

例如,在釉上陶瓷上添加的铁氧化物可以在烧制过程中被还原,形成黑色的金属铁颜色。

总的来说,陶瓷的烧制过程中存在多种化学反应。

这些反应的影响和结果,决定了陶瓷的性能和特性。

- 1 -。

陶瓷的烧结工艺流程

陶瓷的烧结工艺流程

陶瓷的烧结工艺流程嘿,咱今儿来聊聊陶瓷的烧结工艺流程呀!你可别小瞧这陶瓷,那可是咱老祖宗留下来的宝贝呢!先来说说原料准备吧,这就好比是要做一顿大餐,得先把食材准备好呀!各种黏土、石英啥的,都得精挑细选,就跟咱买菜得挑新鲜的一样。

然后把它们按照一定的比例混合在一起,这可是个技术活,多一点少一点都可能影响最后的效果。

接下来就是成型啦!就像是捏泥巴,不过这可比咱小时候玩的高级多了。

可以用各种方法,什么拉坯呀、注浆呀,把那一堆原料变成各种各样好看的形状。

想象一下,一块泥巴在师傅的巧手下慢慢变成了一个精美的花瓶,是不是很神奇?然后呢,就该干燥啦!这就好比洗完衣服要晾干一样。

把成型的陶瓷放在合适的地方,让水分慢慢跑掉。

可不能着急哦,要是没干好,后面可就麻烦啦!终于到了最重要的烧结环节啦!这就像是陶瓷的一场大考。

把陶瓷放进高温的炉子里,那温度高得吓人,就像夏天里的大太阳。

在里面经过一番“烤验”,陶瓷才能变得坚硬、漂亮。

这过程可不简单,火候得掌握好,时间也得恰到好处,不然不是没烧好就是烧过头啦,那不就前功尽弃了嘛!你说这陶瓷的烧结工艺流程是不是很有意思?从一堆普通的原料,经过这么多道工序,最后变成了让人爱不释手的艺术品。

这就像我们的人生呀,要经过各种磨练才能变得更加精彩。

咱再想想,要是没有这精细的烧结工艺流程,哪来那些精美的陶瓷呢?那些摆在博物馆里的珍贵瓷器,可都是经过了无数人的心血和努力才诞生的呀!所以说呀,做什么事都得认真对待,就像对待陶瓷的烧结一样,不能马虎。

咱平时用的碗呀、杯子呀,看着普通,可背后都有着这么复杂的工艺呢!咱可得好好珍惜这些陶瓷制品,它们可都是来之不易的呀!你说是不是这个理儿?反正我觉得是这么回事儿!这陶瓷的烧结工艺流程,真的是充满了智慧和魅力,让人不得不佩服咱老祖宗的厉害呀!。

陶瓷烧结过程中的物理化学变化

陶瓷烧结过程中的物理化学变化

陶瓷烧结过程中的物理化学变化陶瓷烧结过程和物理变化:随着温度升高,陶瓷坯体中具有比表面大,表面能较高的粉粒,力图回向降低表面能答的方向变化,不断进行物质迁移,晶界随之移动,气孔逐步排除,产生收缩,使坯体成为具有一定强度的致密的瓷体。

烧结的推动力为表面能。

烧结可分为有液相参加的烧结和纯固相烧结两类。

烧结过程对陶瓷生产具有很重要的意义。

为降低烧结温度,扩大烧成范围,通常加入一些添加物作助熔剂,形成少量液相,促进烧结。

如添加少量二氧化硅促进钛酸钡陶瓷烧结;又如添加少量氧化镁、氧化钙、二氧化硅促进氧化铝陶瓷烧结。

陶瓷烧结过程和化学变化:陶瓷的主要成分的化学式是SiO2 在高温下,陶瓷生坯固体颗粒的相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,其总体积收缩,密度增加,最后成为具有某种显微结构的致密多晶烧结体,这种现象称为烧结。

这个过程中包含有物理变化和化学变化瓷是由粘土、石英及长石等天然矿物原料按不同配方配制,经加工、成型及烧成而得,其化学组成取决于所用天然原料及配方,不同地区不同窑口的古陶瓷由于所用原料的不同,配方的不同以及烧制工艺的不同,其胎釉化学组成、显微结构及物理性能就会有各自的特点。

如果收集不同窑口发掘时有可靠地层年代的陶瓷标本进行系统地研究,把积累的数据资料如化学组成数据(包括主次量元素含量以及微量元素含量)建立数据库,并用适当的处理方法,譬如多元统计分析等方法对数据进行处理,找出具有特征意义的规律。

对要鉴定的陶瓷的化学组成、显微结构、物理性能以及烧制工艺等方面进行研究,并将其化学组成数据与已知窑口和年代的古陶瓷的化学组成数据进行比较处理,再综合显微结构、物理性能以及烧制工艺等方面的信息就可能对陶瓷作出鉴定。

陶瓷是混合物,成分特别多而复杂,而且根据陶瓷的产地不同成分也不同。

其主要成分是二氧化硅和硅酸盐(硅酸铝,硅酸钙等)。

陶瓷烧结四个过程

陶瓷烧结四个过程

陶瓷烧结四个过程陶瓷烧结是一种重要的陶瓷加工方法,通过高温下的压制和烧结将陶瓷原料转变为致密的陶瓷制品。

它主要包括四个过程:原料制备、成型、烧结和后处理。

一、原料制备陶瓷烧结的第一个过程是原料制备。

通常,陶瓷烧结所用的原料主要包括粉末、添加剂和溶剂。

粉末是陶瓷的主要成分,可以是氧化物、硝酸盐、碳酸盐等,根据不同的陶瓷材料选择合适的粉末。

添加剂用于改善陶瓷的性能,如增加强度、改善导电性等。

溶剂用于调节陶瓷糊料的流动性和粘度。

二、成型成型是陶瓷烧结的第二个过程,它将原料制备好的糊料通过成型工艺转变为成型体。

常见的成型方法有压制、注塑、挤出等。

其中,压制是最常用的方法之一,通过将糊料放入模具中,施加一定的压力使其成型。

注塑则是将糊料注入模具中,通过模具的空腔形状使其成型。

挤出则是将糊料通过挤出机挤出成型。

三、烧结烧结是陶瓷烧结的核心过程,通过高温下的加热和压制使成型体中的颗粒结合成致密的陶瓷制品。

烧结过程中需要控制温度、时间和压力等参数,以确保陶瓷制品的质量。

烧结温度一般高于原料的熔点,但低于熔融温度,使得陶瓷颗粒能够粘结在一起。

烧结压力可以提高陶瓷的致密度和强度,但过高的压力会导致产品变形或开裂。

四、后处理烧结后的陶瓷制品还需要进行后处理,以提高其性能和外观质量。

后处理的方法包括抛光、研磨、清洗等。

抛光和研磨可以去除陶瓷制品表面的粗糙度,使其更加光滑。

清洗则是去除烧结过程中产生的灰尘和残留物,以保证产品的纯净度。

陶瓷烧结的四个过程分别是原料制备、成型、烧结和后处理。

每个过程都起着重要的作用,相互关联,缺一不可。

只有在严格控制每个过程的参数和工艺条件下,才能生产出优质的陶瓷制品。

陶瓷烧结技术的不断发展和改进,使得陶瓷制品在各个领域得到了广泛的应用,如电子、化工、航空等。

陶瓷烧结炉工艺原理及烧结方式

陶瓷烧结炉工艺原理及烧结方式

陶瓷烧结炉工艺原理及烧结方式陶瓷烧结是指坯体在高温下致密化过程和现象的总称。

随着温度升高,陶瓷坯体中具有比表面大,表面能较高的粉粒,力图向降低表面能的方向变化,不断进行物质迁移,晶界随之移动,气孔逐步排除,产生收缩,使坯体成为具有一定强度的致密的瓷体。

烧结的推动力为表面能。

烧结可分为有液相参加的烧结和纯固相烧结两类。

烧结过程对陶瓷生产具有很重要的意义。

为降低烧结温度,扩大烧成范围,通常加入一些添加物作助熔剂,形成少量液相,促进烧结。

一般粗线条结炉的燃烧方法主要有以下几种:热压烧结、热等静压、放电等离子烧结、微波烧结、反应烧结、爆炸烧结。

固相烧结一般可表现为三个阶段,初始阶段,主要表现为颗粒形状改变;中间阶段,主要表现为气孔形状改变;最终阶段,主要表现为气孔尺寸减小。

烧结是在热工设备中进行的,这里热工设备指的是先进陶瓷生产窑炉及附属设备。

烧结陶瓷的窑炉类型很多,同一制品可以在不同类型的窑内烧成,同一种窑也可以烧结不同的制品。

主要常用的有间歇式窑炉,连续式窑炉和辅助设备。

间歇式窑炉按其功能可分为电炉,高温倒焰窑,梭式窑和钟罩窑。

连续式窑炉的分类方法有很多种,按制品的输送方式可分为隧道窑,高温推板窑和辊道窑。

与传统间歇式窑炉相比较,连续式窑具有连续操作性,易实现机械化,大大改善了劳动条件和减轻了劳动强度,降低了能耗等优点。

温度制度的确定,包括升温速度,烧成温度,保温时间和冷却速度等参数。

通过飞行坯料在烧成过程中性状变化,初步得出坯体在各温度或时间阶段可以允许的升、降温速度(相图,差热-失重、热膨胀、高温相分析、已有烧结曲线等)。

升温速度:低温阶段,氧化分解阶段,高温阶段。

烧成温度与保温时间:相互制约,可在一定程度上相互补偿,以一次晶粒发展成熟,晶界明显、没有显著的二次晶粒长大,收缩均匀,致密而又耗能少为目的。

冷却速度,随炉冷却,快速冷却。

压力制度的确定,压力制度起着保证温度和气氛制度的作用。

全窑的压力分布根据窑内结构,燃烧种类,制品特性,烧成气氛和装窑密度等因素来确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在烧结驱动力的作用下烧结过程中的基本现象
5.2.3 烧结参数
粉体
形貌,粒度,粒度分布,团聚,混合均匀性等
材料参数
化学特性
化学组分,纯度,非化学计量性,绝对均匀性等
工艺参数
烧结温度,时间,压力,气氛,升温和降温速率等
5.2.4 烧结参数对烧结样品性能的影响
一、材料参数对烧结的影响
(1)颗粒尺寸对烧结的影响
陶瓷烧结过程
裴李岗文化时期(约8000年)
商代(约3700年)
汉代(约1800年)
秦代(约2200年)
唐代(约1200年)
宋代(约1000年)
明清代
元代(约700年)
《世博和鼎》
世博会纪念品
瓷器的作用-征服世界的经济工具
西方学者汉斯 . 布罗埃尔( 1972 年)在其 著作中说:“中国凭借着在丝绸、瓷器等方 面无与匹敌的制造业和出口,与任何国家贸 易都是顺差”。
颗粒形状和液相体积含量对颗粒之间作用力的影响 只有在大量液相存在的情况下,才能使这些具有一定棱角形状的 陶瓷粉体之间形成较高的结合强度。
(4)颗粒尺寸分布对烧结的影响
颗粒尺寸分布对最终烧结样品密度的影响可以通过分析有关的动力 学过程来研究,即分析由不同尺寸分布的坯体内部,在烧结过程中 “拉出气孔”(pore drag)和晶粒生长驱动力之间力的平衡作用。
结论:较小的颗粒尺寸分布范围是获取烧结高 致密度的必要条件。
影响陶瓷材料烧结的材料参数:
(1)颗粒尺寸大小
(2)粉体结块和团聚 (3)颗粒形状
(4)颗粒尺寸分布
本节小结
1、 烧结的定义和烧结的方法 2、 烧结的类型 3、烧结的驱动力
4、烧结参数及其对产品性能的影响
材 料 参 数 颗粒尺寸大小 粉体结块和团聚 颗粒形状 颗粒尺寸分布
烧结的驱动力就是总界面能的减少。粉末坯体的 总界面能可表示为 γA ( γ 为界面能, A 为总的比表面 积)。那么总界面能的减少为:
A A A
其中,界面能的变化(Δγ)是因为样品的致密化, 比表面积的变化是由于晶粒的长大。对于固相烧结, Δγ主要是固/固界面取代固/气界面。
中外学术界公认明代中国已具有占全球财 富总量的1/3的经济实力。
第五章 陶瓷材料的烧结
5.1 概述
烧结( sintering ):是一种利用热能使粉末坯体 致密化的技术。其具体的定义是指多孔状陶瓷坯体在 高温条件下,表面积减小、孔隙率降低、机械性能提
高的致密化过程。
烧结的方法:
普通热烧结 电炉热压烧结 等离子体烧结 微波烧结
在一定温度下,半径为r烧结时间为t2,则:
t 2 (r2 / r1 ) n t1
如果颗粒尺寸从1 m减小到0.01 m,则烧结时间降低106到108数量 级。同时,小的颗粒尺寸可以使烧结体的密度提高,可降低烧结温度、 减少烧结时间。
自蔓延烧结
5.2 烧结参数及其对烧结性影响
5.2.1 烧结类型 液相烧结: 烧结过程有液相存在的烧结。
固相烧结: 坯体在固态情况下达到致密化的烧结过程。
温 度
T3 T2 T1
过渡液 相烧结
液相烧结
固相烧结
A
x1 组分
B
烧结过程示意相图
(a)固相烧结和(b)液相烧结样品显微结构
5.2.2 烧结驱动力
(2)粉体结块和团聚对烧结的影响
结块:是指一小部分质量的颗粒通过表面力和/或固体桥接作用结合 在一起;团聚:是指颗粒经过牢固结合和/或严重反应形成的粗大颗粒。 结块和团聚形成的粗大颗粒都是通过表面力结合。
细小颗粒在液体和固体介质中承受吸引力和排斥力形成结块和团聚体示意图
(3)颗粒形状对烧结的影响
相关文档
最新文档