认识分式第二课时(教学设计)
分式教案(2)

分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。
本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会分式的运算方法,提高运算能力。
3. 学会解分式方程,提高解决问题的能力。
三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。
难点:分式方程的解法。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。
问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。
2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。
3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。
4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。
5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。
6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。
7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。
8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。
9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。
10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。
六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。
分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。
北师大版八年级数学下册《认识分式(第2课时)》精品教案

《认识分式》精品教案同伴交流。
分式a a 2与21相等,在分式a a2中,a ≠0,所以a a 2=a a a a ÷÷2=21;分式mn n 2与m n也是相等的。
在分式mn n 2中,n ≠0,所以mn n 2=n mn n n ÷÷2=m n 。
例2下列等式的右边是怎样从左边得到的?(1)x b 2=xy by 2(y ≠0);(2)bx ax =ba小结:应用分式的基本性质时,一定要确定分式在有意义的情况下才能应用.应用时要注意是否符合两个“同”:一是要同时作“乘法”或“除法”运算;二是“乘(或除以)”的对象必须是同一个不等于0的整式.例3化简下列各式:(1)ab bc a 2;(2)12122+--x x x 。
活动探究二:观察与思考,回答下面的问题。
(小组讨论,3min )1、约分的依据是什么?2、当分子、分母是多项式时,约分时应先怎样?把一个分式的分子和分母的公因式约去,这种变形我们称为分式的约分。
约分的基本步骤:(1)若分子﹑分母都是单项式,则约简系数,并同学们可以注意到(1)中的分式,分子、分母都是单项式,把公有的因式分离出来,然后利用分式的基本性质,把公因式约去即可,这样的公因式如何分离出来呢?同学们可小组讨论。
利用分数的基本性质可以对分数进行化简。
利用分式的基本性质也可以对分式化简。
化简一个分数,首先找到分子、分母的最大公因数,然后利用分数的基本性质就可将分数化简。
让学生明白,约分过程中,有时还需运用分式的符号法则使最后结果形式简捷;约分的依据是分式的基本性质。
(1)y x xy 2205;[师]在刚才化简第(1)题中的分式时,一位同学这样做的议一议在化简y x xy 2205时,小颖是这样做的:y x xy 2205=2205x x;小明是这样做的:y x xy 2205=你对他们两人的做法有何看法?与同伴交流。
注意:在化简结果中,分子和分母已没有公因式,这样的分式称为最简分式.化简分式时,通常把结果成为最简分式或整式。
数学北师大版八年级下册5.1认识分式 第2课时教学设计

5.1认识分式 第2课时教学设计 教学目标知识与技能1.能正确理解和运用分式的基本性质.2.能解决一些与分式有关的简单的实际问题.3.会进行简单分式的乘除运算,具有一定的代数化归能力.4.增强学生的代数推理能力与应用意识.过程与方法通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法. 情感态度与价值观通过运用分式的基本性质对分式进行变形,获得分式变形的基本方法,体验学习的乐趣. 重点、难点【重点】 理解分式的基本性质,会进行分式的化简.【难点】 灵活应用分式的基本性质将分式变形.教学准备【教师准备】 预设学生学习过程中容易出错的地方.【学生准备】 复习分数的基本性质.教学过程新课导入:2163 的依据是什么? 这个问题同学们会很快说出答案,依据就是分数的基本性质,那么分式是否具有和分数一样的性质呢?[设计意图] 提示学生运用类比的思想进行本课时的学习,为学生提供本课时学习方法方面的指导.新知构建一、分式的基本性质[过渡语] 下面我们来看看分式是否具有与分数类似的性质.请看下面的问题.(1)填空:==;==.(2)你认为a a 2与21相等吗?m n 2n 与mn 呢? 学生独立思考第(1)题,根据分数的基本性质,的分子分母同乘4,可得,的分子分母同时除以2,可得,小组讨论类比第(1)题解决第(2)题.类比分数的基本性质,你能猜想出分式的基本性质吗?学生尝试归纳,相互补充,总结得出分式的基本性质.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:这一性质可以用式子表示为:=,=(m ≠0).教师强调:a,b,m 均为整式,m ≠0.引导学生分析分数的基本性质与分式的基本性质的区别:在分数的基本性质中,“数”是一个具体的、唯一的确定值,在分式的基本性质中,“整式”的值随整式中的字母的取值不同而变化.[设计意图] 一方面提高学生对分式的基本性质的认识,另一方面通过师生归纳,进一步加深对分式基本性质的理解.二、例题讲解[过渡语] 利用分式的基本性质只是改变分式的形式,不改变分式的值.请看下面的例题. (教材例2)下列等式的右边是怎样从左边得到的?(1)=(y ≠0); (2)=.处理方式:引导学生观察等式的左边和右边各发生了什么变化,讨论解题思路.〔解析〕 (1)的分母2x 乘y 才能化为2xy,为保证分式的值不变,根据分式的基本性质,分子b 也要乘y,才能得到.(2)的分子ax 除以x 得到a,所以分母bx 也需要除以x 得到b.在这里,由于已知,所以x≠0.解:(1)因为y≠0,所以==.(2)因为x≠0,所以==.(教材例3)化简下列分式:(1);(2).处理方式:引导学生观察分式的分子和分母是否有公因式,利用分式的基本性质,对分式进行化简.〔解析〕(1)的分子和分母均有因式ab,所以根据分式的基本性质,可以同时除以ab,则分式可化为ac.(2)对于分式,先对分子和分母进行因式分解,x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,发现分子分母有公因式x-1,由分式的基本性质可化简.解:(1)==ac.(2)==.总结:像上面的例3,把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.[知识拓展] 1.从已知的两个分子或分母的比较中,找到分式变形的依据,再运用分式的基本性质求未知,是解决这类题的方法.2.应用分式的基本性质对分式进行变形需要注意的问题:(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘或除以的必须是同一个整式;(3)所乘或除以的整式的值应该不等于零.三、做一做化简下列分式:(1);(2).〔解析〕根据分式的基本性质进行化简.解:(1)==.(2)==.四、议一议在化简时,小颖和小明出现了分歧,小颖认为=,而小明认为==,你对他们两人的做法有何看法?与同伴交流.解:在小明的化简结果中,分子和分母已没有公因式,这样的分式称为最简分式.小明的做法正确.[知识拓展]化简分式时,通常要使结果成为最简分式或整式.约分是应用分式的基本性质把分式的分子、分母同时除以同一个整式,使分式的值不变,所以要找准分子和分母的公因式,约分的结果要是最简分式或整式.[设计意图]通过做一做和议一议,检查学生对分式的约分的掌握情况,对于错误及时指出并纠正.五、想一想(1)与有什么关系?(2),与-有什么关系?解:(1)的分子分母都乘-1与相等.(2)同样的道理,与-相等.与-相等.分式的符号法则:分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数.[设计意图]通过想一想的设计,让学生掌握分式的符号法则.检测反馈1.若将分式(a,b均为正数)中的字母a,b的值分别扩大为原来的2倍,则分式的值()A.扩大为原来的2倍B.缩小为原来的C.不改变D.缩小为原来的解析:此分式中的字母分别扩大为原来的2倍,则分式的分子扩大为原来的2倍,分式的分母扩大为原来的4倍,所以分式的值缩小为原来的.故选B.2.填写下列等式中未知的分子或分母.(1)=;(2)=;(3)=(b≠0).解析:(1)先观察分子,等式左边分式的分子是x+y,而等式右边分式的分子为x2-y2,由于(x+y)·(x-y)=x2-y2,即将等式左边分式的分子乘x-y可得到等式右边分式的分子,因而等式左边分式的分母也要乘x-y,所以应填(x-y)2.(2)先观察分母,等式左边分式的分母为(a-c)(a-b)(b-c),等式右边分式的分母为a-c,根据分式的基本性质,应将等式左边分式的分子、分母同时除以(a-b)·(b-c),因为(b-a)(c-b)÷[(a-b)(b-c)]=1,所以应填1.(3)先观察分母,等式左边分式的分母为a,等式右边分式的分母为ab,根据分式的基本性质,应将等式左边分式的分子、分母同时乘b,因此应填b2-ab.答案:(1)(x-y)2(2)1(3)b2-ab3.下列从左到右的变形是否正确?(1)=; (2)=;(3)=; (4)=.解析:此类题主要考查分式的基本性质.对于,条件中隐含a≠0,分子、分母同时乘a,可得=成立,因此(1)正确;分子、分母同时加上c,只有当c=0时成立,其余条件下不一定成立,因此(2)错误;当c=0时,=不成立,因此(3)错误;在=中,隐含c≠0,分子、分母同时除以c,式子成立,因此(4)正确.解:(1)(4)正确,(2)(3)不正确.4.不改变分式的值,将式子的分子与分母的系数化为整数.解析:利用分式的基本性质,分子与分母同时乘6即可.解:==.5.不改变分式的值,使下列分式的分子、分母都不含负号.(1); (2)-.解析:根据分式的符号法则,(1)可同时改变分子和分式本身的符号;(2)可同时改变分式本身和分母的符号.解:(1)=-.(2)-=.课堂小结1.分式的基本性质:=,=(m≠0).(1)分式的基本性质的作用:分式进行变形的依据.(2)在运用分式的基本性质时,必须注意分式的分子分母同时乘或除以的是同一个整式,且不为0.(3)分式的基本性质的研究方法:从分数类比到分式,从特殊到一般.2.分子和分母已没有公因式的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式.3.分式的符号法则:分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数.布置作业【必做题】教材第112页随堂练习的1,2题.【选做题】教材第113页习题5.2的3,4题.教学反思成功之处从相等分数的变形依据:分数的基本性质作为复习引入,类比到相等分式的变形依据,归纳概括出分式的基本性质.对分数的基本性质和分式的基本性质做了对比研究,实现了从“数”到“式”的提升.找公因式是分式约分的关键,设计一些找公因式的练习作为铺垫,这样学生可能对分式的约分掌握得更好.不足之处在让学生小组讨论之前应给学生一定的时间独立思考,不要让一些思维活跃的同学的回答代替了其他学生的思考,从而掩盖了其他学生的疑问和错误.教师应对学生的讨论给予引导,对学习有困难的学生给予及时的帮助,使小组合作学习更具实效性.再教设计在分式的约分教学中,要及时发现学生的错误,并当作错误例题进行全班范围的分析,找出原因,让其他学生也认识到这种错误,不能只是改正答案.。
分式的基本性质第二课时分式的约分教案人教版八年级数学上册

,其中
教师引导学生:整式的除法也可以写成
分式的形式,利用约分进行计算.
教师出示课堂练习(同步练习)
课堂总结:本节课学习了哪些知识?
学生观察练习第2题,概括分式约分的概念,了解分式约分的关键是确定公因式,由学生归纳确定公因式的具体方法.
学生熟悉约分过程,归纳分子分母是单项式的分式约分的方法,学生独立完成练习,之后交流做题方法,得出最简分式的概念,了解约分一定要彻底,要化简到最简分式.
通过拓展提高,使学生理解整式的除法也可以写成分式的形式,利用约分进行计算,尤其是多项式除以多项式.
课堂小结
课堂总结:本节课学习了哪些知识?
.什么是分式的约分?
.怎样进行分式的约分?
.什么是最简分式?
学生对学习情况进行反思,帮助学生获得成功的体验,积累学习经验.
板书
15. 1. 2分式的基本性质(第二课)
人教版数学八年级上册分式的基本性质第二课时教学设计
课题
分式的约分
单元
第十五章
学科
知识与技能:1.经历观察、类比、抽象等活动过程,探索分式约分和最简分式的概念,理解约分的依据是分式的基本性质。2.掌握分式约分的方法和步骤,能对分式进行约分。3.能利用分式的意义和分式的约分进行整式的除法运算。
问题4、类比分数的约分,你认为分式也能约分吗?
分式约分的依据是什么?
学生先独立思考,然后回答,并写出练习第2题的过程
学生先独立完成,议论后在小组内交流,总结得出结论.类比分数的约分,根据分式的基本性质,分式也能约分
通过练习进一步加深对分式基本性质的理解与应用.
这个活动激活了学生原有的知识,借助学生对于分数的约分的认识,学习分式的约分是十分自然的知识扩充,教学中按照从特殊到一般、从具体到抽象的认识过程,启发学生温故而知新.
《分式(第2课时)》教学设计

《分式(第2课时)》教学设计【教材内容分析】本节的主要内容是:分式的基本性质。
分式的基本性质是分式的约分、通分、运算等恒等变形的依据。
课本通过具体的例子,用分数的基本性质引入分式的基本性质易于学生理解、接受。
与传统教材不同的是课本中没有明确给出分式的符号法则,而是在想一想中渗透的,所以在教学中应注意让学生体会。
【教学目标】1、通过类比分数的基本性质,说出分式的基本性质,并能用字母表示。
2、理解并掌握分式的基本性质和符号法则。
3、能运用分式的基本性质和符号法则对分式进行变性和约分。
【教学重点】分式的基本性制及利用基本性质进行约分【教学难点】对符号法则的理解和应用及当分子、分母是多项式时的约分。
【教学过程】(一)类比引入,探求新知下面这些式子成立吗?依据是什么?23 =2×53×5 =1015 1642 =16÷242÷2 =821待学生讲出分数的基本性质后,再让学生讲出分数的基本性质的内容。
类似地,分式也有以下基本性质:(板书)分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变。
(并举例对性质中的关键词:都、同一个、不等于0的整式加以理解)设计说明:分式与分数有许多相似之处,通过类比几个浅显的例子,直观易懂,让学生经历分式的基本性质的得来过程;对几个关键词的理解,目的是让学生更好的掌握和应用性质。
用式子表示为A B =A ×M B ×M ,A B =A ÷M B ÷M(其中M 是不等于零的整式) (二)应用新知,巩固新知想一想:下列等式成立吗?为什么?-a -b =a b -a b =a -b =-a b先让学生讨论,待学生回答后,教师引导学生得出结论:(板书)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
做一做:(课内练习)1、不改变分式的值,把下列各式的分子与分母中的各项子数都化为整数。
《分式的基本性质》第2课时教学设计【初中数学人教版八年级上册】

《分式的基本性质》教学设计第2课时分式的基本性质是分式运算的基础,它们是后续学习分式运算的强有力武器.分数与分式关系密切,它们是具体与抽象、特殊与一般的关系,所以在教学分式的基本性质时,要利用学生已有的分数基础,通过分数类比,并注意从具体到抽象、从特殊到一般的认识过程,引导学生理解分式的基本性质,要充分突显类比方法在教学中的统帅作用.分式的约分和通分,是进行分式四则运算中不可或缺的变形.分式的约分找出公因式是关键,约分时,一定要约去分子、分母的所有公因式;分式的通分找出最简公分母是是关键,确定最简公分母先要将各分母分解因式,然后确定公倍式.所教学分式基本性质的运用时,要引导学生观察、分析题目的特点,选择恰当的方法给分式进行变形.如不改变分式的值,使分子、分母里的系数变为整数的题,分子分母系数既有小数的,又有分数的,引导学生思考分子分母既要化整,又要最简.在约分或通分的过程中,要依据分式的性质,千万不能改变分式值的大小.1. 理解分式的基本性质;并能灵活运用这些性质进行分式的恒等变形.2. 通过分式的恒等变形的过程提高学生的运算能力.3. 通过类比、探索分数的基本性质,初步掌握类比的思想方法,积累数学活动经验. 【教学重点】理解分式的基本性质,对分式基本性质的初步运用.【教学难点】灵活运用分式的基本性质对分式进行化简、变形.多媒体课件、教具等.一、提出问题,思考引入问题1 喜羊羊和美羊羊共同去一块面积为a 的草地吃草,吃草前,二位决定平分地盘,喜羊羊说:“我要把它平分2份,我要1份.”美羊羊说:“我要把它平分4n 份,我要2n 份.”聪明的同学,你知道他们的分地方案分到的面积都是一样多的吗?追问1:按照喜羊羊的分地方案,喜羊羊分地多少?喜羊羊分地是2a . 追问2:按照美羊羊的分地方案,美羊羊分地多少?美羊羊分地是n na 42. 追问3:2a 与nna 42相等吗? 通过有趣的问题情景引出问题,激发学生的学习兴趣,为学习分式的基本性质做好铺垫.二、合作交流,探究新知问题2 请同学们思考:32与64相等吗?276与92相等吗?为什么? 32与64相等,因为32262464=÷÷=. 276与92相等,因为9232736276=÷÷=. 追问1:通过32与64,276与92之间的变形过程,你能说出这样变形的依据是什么吗? 根据分式的性质,分式的分子、分母同时除了同一个不等于零的数,分式的值不变. 追问2:分数的基本性质是什么?你能类比猜想出分式的基本性质吗?分数的基本性质:分数的分子、分母乘(或除以)同一个不等于0的数,分数的值不变. 分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.追问3:你能说出分数的基本性质与分式的基本性质的区别吗?在分数的基本性质中,“数”是一个具体的、唯一确定值.在分式的基本性质中,“整式”的值随整式中的字母的取值不同而变化.追问4:你能尝试用符号语言表示分式的基本性质吗?分式的基本性质:MB M A B A M B M A B A ÷÷=⨯⨯=;(M 是不等于零的整式) 追问5:上面的等式中,M B A ,,三个字母分别表示什么?M 的取值范围为什么不等于零?归纳:M B A ,,三个字母分别表示整式,M 是不等于零的整式.三、运用新知例1 下列等式的右边是怎样从左边得到的?(1)()022≠=c bcac b a ;(2)y x xy x 23=;(3)()01≠++=+z z xy z xz xy x . (1)解:∵c ≠0,∴bcac c b c a b a 222=⋅⋅=; 追问:为什么“c ≠0”?(2)解:∵x ≠0,∴yx x xy x x xy x 233=÷÷=; 追问:为什么题目没有给出x ≠0的条件?(3)解:∵z ≠0,∴()zxy z xz z xy z x xy x ++=⋅⋅+=+11. 例2 填空(在括号内填入适当的整式,使分式的值不变):(1)()ba ab b a 2=+;(2)()b a ab a b a +=--222. 分析:(1)从左边分式到右式,要保证分式的值不变,需根据分式的基本性质对分式的分子、分母同时乘以a . (2)先将分式的分子、分母分解因式,其中隐含0≠-b a ,要使分子变为b a +,就要分子分母同除以b a -.解:(1)∵()ba ab a a ab a b a ab b a 22+=⋅⋅+=+,∴括号内填ab a +2. (2)∵()()()a b a b a a b a b a aba b a +=--+=--222,∴括号内填a . 归纳约分定义:在例2(2)中,我们利用分式的基本性质,约去aba b a --222的分子、分母的公因式b a -,这就是约分.即:把分式分子、分母的公因式约去,这种变形叫分式的约分.追问:分式约分的依据是什么?分式约分的依据:分式的分子与分母都除以同一个不等于零的整式,分式的值不变. 归纳通分定义:在例2(1)中,我们利用分式的基本性质,将分式abb a +的分子、分母同时乘以a ,把ab b a +和b a ab a 22+化成同分母的分式,这就是通分.即: 把几个异分母的分式化成与原来的分式相等的同分母的分式,叫做分式的通分. 追问:分式通分的依据是什么?分式通分的依据:分式的分子与分母都乘以同一个不等于零的整式,分式的值不变.例3 约分:(1)c ab bc a 2321525- (2)96922++-x x x (3)y x y xy x 33612622-+- 分析:约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.解:(1)b ac b abc ac abc cab bc a 353555152522232-=⋅⋅-=-; (2)()()()33333969222+-=+-+=++-x x x x x x x x ; (3)()()()y x y x y x y x y xy x -=--=-+-236336126222. 追问:现在会解决课前提出的问题吗?(2a 与n na 42是否相等) 相等.理由如下:2242242a n n n na n na =÷÷=. 例4 通分:(1)b a 223与cab b a 2-;(2)52-x x 与53+x x . 分析:通分之前,首先要确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.解:(1)cb a bc bc b a bc b a 2222232323=⋅⋅=,()c b a ab a a c ab a b a c ab b a 2222222222-=⋅⋅-=-; (2)()()()2510255525222-+=+-+=-x x x x x x x x x ,()()()25153********--=-+-=+x x x x x x x x x . 四、巩固新知1. 约分:(1)c ab b a 2263;(2)2228mn n m ;(3)532164xyz yz x -;(4)x y y x --3)(2.答案:(1)bc a 2;(2)n m 4;(3)24zx -;(4)-2(x -y )2.2. 通分:(1)321ab 和c b a 2252 (2)xy a 2和23x b (3)223ab c 和28bca - (4)11-y 和11+y 答案:(1)321ab = c b a ac 32105,c b a 2252= c b a b 32104;(2)xy a 2= y x ax 263,23x b = y x by 262;(3)223ab c = 223812c ab c , 28bc a -= 228c ab ab ;(4)11-y =)1)(1(1+-+y y y ,11+y =)1)(1(1+--y y y .3. 不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) 233ab y x --;(2) 2317b a ---;(3) 2135x a --; (4) m b a 2)(--.答案:(1) 233ab y x ;(2) 2317b a -;(3) 2135x a ; (4) m b a 2)(--. 五、归纳小结1. 分式的基本性质.(1)分式的基本性质MB M A B A M B M A B A ÷÷=⨯⨯=;(M B A ,,均为整式,且0≠M ) (2)分式的基本性质的作用:分式进行变形的依据.2. 运用基本性质需要注意的问题;3. 分式基本性质的研究方法.从分数→分式,从特殊→一般.4. 利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.略.。
《认识分式》第2课时示范公开课教案【八年级数学下册北师大版】

《认识分式》教学设计第2课时教学目标1 .让学生初步掌握分式的基本性质.2 .掌握分式约分方法,熟练进行约分.3.了解什么是最简分式,能将分式化为最简分式.4.通过研究解决问题的过程,培养学生合作交流意识与探究精神,形成勤奋学习的良好习惯.二、教学重难点重点:掌握分式的基本性质.难点:掌握分式约分方法,熟练进行约分.三、教学用具电脑、多媒体、课件四、教学过程设计你认为分式2a a 与12相等吗?2n mn 与nm呢?类比分数的基本性质,你能猜想分式有什么性质吗? 【归纳】分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变. 式子表示:b b m =a a m ⋅⋅,÷÷b b m =a a m(m ≠0),其中a ,b ,m 是整式.教师活动:强调1. 分子,分母同乘(除以)同一个数式. 2.乘(除以)对象为非零整式. 做一做:教师活动:给出分析(解决分式的恒等变形有关的题目,一般从分子或分母的已知部分入手,先观察等号两边的分子(或分母)发生了怎样的变化,再通过对分母(或分子)作相同的变形求解). 填空:(1)2()a b ab a b=-;(2)22()x xy x y x ++=; (3)2()()x y x yx y =++-;(4)22()()m n m n m n m n=≠+--. 分析:解决分式的恒等变形有关的题目,一般从分子或分母的已知部分入手,先观察等号两边的分子(或分母)发生了怎样的变化,再通过对分母(或分子)作相同的变形求解. 预设答案:回顾:教师活动:引领学生们复习分数的约分,并与学生一起得出问题答案,且详细过程展示在PPT 上. 给下列分数约分.分数的约分:把一个分数的分子、分母同时除以公因数,分数的值保持不变,这个过程叫做分数的约分.根据分式的基本性质填空.【思考】教师活动:安排俩人一组讨论,并请同学展示讨论结果,强调要找分子、分母的公因式. 思考:联想分数的约分,根据分式的基本性质,你能想出如何对下列分式进行约分吗?3xxy 22336x xy x + 答案:3x xy 2=x xyx ⋅⋅2=x x x x x y ÷⋅⋅÷2=x y 22336x xy x +()=323x y x x x ⋅+⋅()=33233x x x x y x x ⋅+⋅÷÷=2x y x +【归纳】教师活动:给出结论,并分别给出例子,强调要找到分子、分母的公因式.把一个分式的分子与分母的公因式约去,这种变形叫做分式的约分. 举例:3x xy 2=x x yx ⋅⋅2=x x x x x y ÷⋅⋅÷2=x y 22336x xy x +()=323x y x x x ⋅+⋅()=33233x x x x y x x ⋅+⋅÷÷=2x y x +一起探究:在对分式2520xyx y进行约分时,小颖和小明出现了分歧.谁做得对呢?预设答案:小颖的分式化简完后,分式的分子和分母还存在公因式x ,小明的分式化简完之后,分子和分母不存在公因式. 归纳 最简分式:分子与分母没有公因式的分式,叫做最简分式. 教师活动:判断分式哪些不是最简分式.2x y , 2x y x +, 22x y x y ++, 22a a b b --, 2.2x x x- 不是最简分式的是:22a ab b --,2.2xx x- 【归纳】分式的约分的一般方法:(1)若分式的分子、分母都是单项式,就直接约去分子、分母的公因式,即分子、分母系数的最大公约数和分子、分母中的相同字母的最低次幂的乘积,使所得结果成为最简分式或者整式. (2)若分式的分子或分母含有多项式,应先分解的取值范围,因此在确定分式中字母的范围时,不能进行约分.举例:2336x xyx+中x 的取值范围是_____.错误解法:2336x xx+ ()1=233x x x ⋅+⋅ 1=2x +. x 为任意实数.正确解法:2336x xx+中6x ≠0,即x ≠0.(2)分式的约分,一般要约去分子和分母的所有的公因式,使所得结果成为最简分式或者整式. 举例:3x x 2=x xx⋅ 2=x (整式) 22336x xy x+ ()=323x y x x x ⋅+⋅ =2x y x + (最简分式)【想一想】 (1)x y --与xy有什么关系? (2)x y -,x y -与x y-有什么关系? 例如:不改变分式的值,使下列分式的分子分母都不含“–”号. (1)37a b --; (2) 3y x-; (3) 25mn -.【归纳】 分式的符号法则分式的分子、分母与分式本身这三处的正负号,同时改变两处,分式的值不变. 式子表示:22b b ---【典型例题】 【例1】下列等式的右边是怎样从左边得到的? (1)()02 2by b x y xy =≠;(2) ax bx ab=.解:(1)因为0y ≠,所以222b b byx x yy x y ==; (2)因为0x ≠,所以÷÷bx ax a bx b x a ==. 分析:在式子(2)中,因为左边的分式中,分母包含了x ,因此隐含了0x ≠这一条件,需要注意.【例2】化简下列分式: (1)2a bc ab ;(2)22121x x x --+.【随堂练习】。
北师大版数学八年级下册5.1认识分式(第2课时) 教学设计(含教学反思)

北师大版数学八年级下册《5.1认识分式(第2课时)》教学设计第一环节:回顾联系,类比推理一、复习提问Q1.请同学们根据上面的式子和以前学过的分数的基本性质,总结出分式的基本性质是什么?学生回答出来,教师及学生补充完整.Q2.分式的基本性质是什么?活动目的:通过分数的约分复习分数的基本性质,通过类比来学习分式的基本性质.学生对于分数的基本性质掌握较好,基本能说出分数的分子分母同时乘以或除以同一个不为零的数,分数的值不变。
注意:分式的基本性质的条件是乘(除以)一个不等于0的整式。
指出分式的性质与分数的性质的不同,乘以(除以)一个不等于0的整式,分数是乘以(除以)一个不等于0的数。
第二环节:及时应用,巩固内化【例1】若把分式的x,y同时扩大2倍,则分式的值()【变式训练1】把分式中的x和y都扩大2倍,分式的值()A.扩大2倍 B.扩大4倍 C.不变D.缩小2倍【变式训练2】下列各式从左到右的变形中,正确的是()通过对分数的基本性质的理解,可类比得出分式的基本性质,但学生只想到分式的分子分母同时乘以或除以一个数,不容易想到整式,另外这个整式不能为零,老师要引导学生想到这一点。
活动目的:及时巩固分式的基本性质,感受恒等变形。
第三环节:例题讲解,方法引领探究1:1.化简分式:2.化简分式:.问题1:分式的分子和分母有公因式吗?分子因式分解后;分母因式分解后;分子、分母的公因式是.思考:1.当分式的分子和分母都是单项式时,可以直接找分子、分母的公因式进行约分.2.当分式的分子或是分母是多项式时,需要先因式分解,然后找分子、分母的公因式,最后进行约分。
活动目的:通过题目加深学生对分式的基本性质的理解和应用,让学生了解把一个分式的分子和分母的公因式约去,这种变形称为分式的约分,分子和分母已没有公因式,这样的分式称为最简分式,引导学生找出他们的公因式,并学会利用分式的基本性质进行约分,使结果为最简分式或整式。
第四环节:即时训练,归纳方法2.分式的化简【⑤即时训练】归纳:1.约分实质上是将分式的分子和分母同除以它们的公因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 分式与分式方程
1 认识分式(二)
引入:
(1) 2
163= 的依据是什么? 解:依据是分数的基本性质,分数的分子与分母都乘以或除以同一个不为零的数,分数的值不变.
(2)你认为分式 a a 2与2
1相等吗? mn n 2与m n 呢? 自主学习
预习教材110页至111页,并思考问题:
1、分式的基本性质是什么?
2、利用分式的基本性质约分的过程中需要注意什么?
分式的基本性质:
● 分式的分子与分母都乘以或除以同一个
● 不为零的整式,分式的值不变.
● 类比理由:因为字母可以表示任何数.
● 强调:
● 性质中是同时乘以或除以同一个不为零的整式;同乘以时要交代条件;同除以的时候有时原题已经隐含了不等于零的条件,可以不用重复交代。
仔细阅读下面的例题,细心体会!
例1 下列等式的右边是怎样从左边得到的?
●
● (1)
xy by x b 22=(0y ≠) (2) b a bx ax = ●
● 解:(1)因为y ≠0,所以 xy
by x b 22=
● (2)因为x ≠0
例2 化简下列分式:
●
● 解: ● 2(1)a bc ab ac ac ab ab ⋅==
●
2221(1)(1)1(2)21(1)1x x x x x x x x --++==-+-- 说明: 在(1)中相当于分子、分母同时约去了整式ab ;在(2)中相当于分子、分母同时约去了整式(x-1);把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.
● 注意:
同除以的ab 、 (x-1)在原分式中充当了分母的因式,所以默认是不等于0的,否则原分式无意义。
这就不再交代ab 、 (x-1)不等于0。
约分的基本步骤:
(1)若分子﹑分母都是单项式,则约简系数,并约去相同字母的最低次幂;
(2)若分子﹑分母含有多项式,则先将多项式分解因式,然后约去分子﹑分母所有的公因式.
注意:约分过程中,有时还需运用分式的符号法则使最后结果形式简捷;约分的依据是分式的基本性质.
辨一辨:下面哪个正确?
x xy x xy y x xy x x y x xy 4154520520520522
2=•==
注意:化简分式时,通常把结果成为最简分式或整式。
归纳:
分式的约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
最简分式:分子和分母没有公因式的分式叫最简分式。
(化简分式时,通常要使结果成为最简分式或者整式)
做一做
化简下列分式
课堂练习
1.填空 ()__________2()()x
x y
x y x y =--+ ()221(2)4_______y y +=-
2.化简下列分式: (1)ab bc a 2 (2)1
2122+--x x x (3)
y x xy 2205 (4))
()(a 22a b b b a -+ 归纳提炼
1﹑分式的基本性质。
2﹑分式基本性质的应用。
3﹑化简分式,通常要使结果成为最简分式或者整式。