角速度ω定义对匀速圆周运动
匀速圆周运动物理教案:揭示圆周运动中动能和角动量的变化。

引言:在经典力学中,圆周运动是一种常见的运动形式,它不仅在自然界中广泛存在,而且在工业、交通等领域中也有着重要的应用。
匀速圆周运动是圆周运动中最简单的一种,其动能和角动量的变化规律十分有趣,本文将重点分析并揭示这一规律。
一、匀速圆周运动的基本概念和公式匀速圆周运动是指保持恒定角速度的圆周运动,它的基本概念和公式如下:1.概念(1)圆周运动:一个物体沿着一个确定轨迹做圆周运动,称为圆周运动。
(2)角度:以圆心为顶点的两条射线所夹的角度称为圆心角,记为θ(单位为弧度)。
(3)圆周位移:一个物体在圆周上运动一周所经过的路程称为圆周位移,记为L(单位为米)。
(4)角速度:单位时间内圆心角的转动速度称为角速度,记为ω(单位为弧度/秒)。
2.公式(1)角速度的定义式:ω = Δθ / Δt(2)圆周位移的定义式:L = rθ(3)速度的公式:v = ωr(4)周期T的公式:T = 2π / ω(5)向心加速度a的公式:a = v² / r = ω²r二、匀速圆周运动的动能和角动量匀速圆周运动的动能和角动量是随时间而变化的,下面我们分别来分析它们的变化规律。
1.动能的变化规律圆周运动时,一个物体所具有的动能包括轨迹上的动能和转动动能两个部分,其中,轨迹上的动能与物体在圆周上匀速运动的速度有关,而转动动能则与物体沿圆周运动时顺时针方向自转的角速度相联系。
因此,动能的总量为:K = Kt + Kr = 1/2mv² + 1/2Iω²其中,Kt为轨迹上的动能,Kr为转动动能,m为物体的质量,v为其速度,I为物体的转动惯量,ω为其角速度。
由于匀速圆周运动中,物体的角速度和速度保持不变,在考虑一定的时间间隔内动能的变化时,可以得到以下结论:(1)轨迹上的动能Kt不变;(2)转动动能Kr随时间t而增加。
这一结论可以通过下面的分析予以证明。
(1)轨迹上的动能不变圆周运动时,一个物体的速度v为常量,因此,轨迹上的动能很容易计算,为Kt =1/2mv²。
匀速圆周运动公式

匀速圆周运动公式
匀速圆周运动是指物体以恒定的速度、恒定的方向在水平面上沿着圆周运动的运动,其运动规律可用牛顿第二定律及矢量运动定律来解释。
根据矢量运动定律可以得到匀速圆周运动的速度公式:
v=rω
其中,v为物体的速度,r为物体运动的圆周半径,ω为物体的角速度。
角速度的定义为:
ω=2π/T
其中,T为物体在1周(即360°)内所用的时间。
根据以上定义,可以得到匀速圆周运动的速度公式:
v=r(2π/T)
这个公式表明,圆周运动的速度与物体所在圆周的半径和物体在1周(即360°)内所用的时间有关。
若物体所在圆周的半径为r,在1周(即360°)内所用的时间为T,则物体的速度为v=r(2π/T)
例如:一个物体在半径为5m的圆周上运动,在1周(即360°)内所用的时间为2s,那么该物体的速度为:v=5(2π/2s)=15πm/s。
匀速圆周运动的速度公式简单明了,只要知道物体所在圆周的半径和物体在1周(即360°)内所用的时间,就可以求出物体的速度。
例如,在地球表面上,若一个物体的圆周半径为6378km,在1周内所用的时间为24小时,则该物体的速度为:v=6378km (2π/24h)=465.2km/h。
总之,匀速圆周运动的物理公式为:v=r(2π/T),其中,v为物体的速度,r为物体运动的圆周半径,T为物体在1周(即360°)内所用的时间。
知道了这个公式,我们就可以计算出物体在圆周上的速度。
高中物理公式匀速圆周运动

高中物理公式匀速圆周运动高中物理公式1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr角速度与转速的关系ω=2πn(此处频率与转速意义相同)主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
相关推荐加速度a=(Vt-V0)/t(以V0为正方向,a与V0同向(加速)a>0;a与V0反向(减速)则a<0)实验用推论Δs=aT2(Δs为连续相邻相等时间(T)内位移之差)主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t):秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
a=(Vt-V o)/t只是测量式,不是决定式;其它相关内容:质点、位移和路程、参考系、时间与时刻、s--t 图、v--t图/速度与速率、瞬时速度。
质点的运动----曲线运动、万有引力平抛运动竖直方向位移:y=gt2/2运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)合速度Vt=(Vx2+Vy2)1/2=[V02+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0合位移:s=(x2+y2)1/2位移方向与水平夹角α:tgα=y/x=gt/2V0水平方向加速度:ax=0;竖直方向加速度:ay=g注:平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;运动时间由下落高度h(y)决定与水平抛出速度无关;θ与β的关系为tgβ=2tgα;在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
圆周运动

圆周运动质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫“圆周运动”。
它是一种最常见的曲线运动。
例如电动机转子、车轮、皮带轮等都作圆周运动。
圆周运动分为,匀速圆周运动和变速圆周运动(如:竖直平面内绳/杆转动小球、竖直平面内的圆锥摆运动)。
在圆周运动中,最常见和最简单的是匀速圆周运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。
匀速相关公式1、v(线速度)=L/t=2πr/T=ωr=2πrf=2πnr(L代表弧长,t代表时间,r代表半径,n为频率,ω为角速度)2、ω(角速度)=θ/t=2π/T=2πf(θ表示角度或者弧度)3、T(周期)=2πr/v=2π/ω4、f(频率)=1/T6、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^27、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2一、水平面内的圆周运动的两种模型模型Ⅰ圆台转动类小物块放在旋转圆台上,与圆台保持相对静止,如图1所示.物块与圆台间的动摩擦因数为μ,离轴距离为R,圆台对小物块的静摩擦力(设最大静摩擦力等于摩擦力)提供小物块做圆周运动所需的向心力.水平面内,绳拉小球在圆形轨道上运动等问题均可归纳为“圆台转动类”.图1摩擦力提供向心力临界条件圆台转动的最大角速度ωmax=,当ω<ωmax时,小物块与圆台保持相对静止;当ω>ωmax时,小物块脱离圆台轨道.模型Ⅱ火车拐弯类如图2 所示,火车拐弯时,在水平面内做圆周运动,重力mg和轨道支持力N的合力F提供火车拐弯时所需的向心力.圆锥摆、汽车转弯等问题均可归纳为“火车拐弯类”.合力提供向心力图2临界条件若v=,火车拐弯时,既不挤压内轨也不挤压外轨;若v>,火车拐弯时,车轮挤压外轨,外轨反作用于车轮的力的水平分量与F之和提供火车拐弯时所需的向心力;若v>,火车拐弯时,车轮挤压内轨,内轨反作用于车轮的力的水平分量与F之差提供火车拐弯时所需的向心力.二、两种模型的应用例1 如图3所示,半径为R的洗衣筒,绕竖直中心轴00'转动,小橡皮块P靠在圆筒内壁上,它与圆筒间的动摩擦因数为μ.现要使小橡皮块P恰好不下落,则圆筒转动的角速度ω至少为多大?(设最大静摩擦力等于滑动摩擦力)图3 图4【解析】此题属于“圆台转动类”,当小橡皮块P绕轴00'做匀速圆周运动时,小橡皮块P受到重力G、静摩擦力f和支持力N的作用,如图4所示.其中“恰好”是隐含条件,即重力与最大静摩擦力平衡f max=G,μN=mg列出圆周运动方程N=mω2min R联立解得ωmin=例2 在半径为R的半球形碗的光滑内面,恰好有一质量为m的小球在距碗底高为H处与碗保持相对静止,如图5所示.则碗必以多大的角速度绕竖直轴在水平面内匀速转动?图5【解析】此题属于“火车拐弯类”,当小球做匀速圆周运动时,其受到重力G和支持力F的作用,如图5所示.隐含条件一是小球与碗具有相同的角速度ω,隐合条件二是小球做匀速圆周运动的半径r=Rcosθ.列出圆周运动方程Fcosθ=mω2Rcosθ竖直方向上由平衡条件有Fsinθ-mg=0其中 sinθ=联立解得ω=例3 长度为2l的细绳,两端分别固定在一根竖直棒上相距为l的A、B两点,一质量为m的光滑小圆环套在细绳上,如图6所示.则竖直棒以多大角速度匀速转动时,小圆环恰好与A点在同一水平面内?图6【解析】此题属于“火车拐弯类”,当小圆环做匀速圆周运动时,小圆环受到重力G、绳OB的拉力F和绳OA的拉力F的作用,如图7所示图7隐含条件一是小圆环与棒具有相同角速度ω,隐含条件二是小圆环光滑,两侧细绳拉力大小相等,隐含条件三是小圆环做匀速圆周运动的圆心为A点、半径为r(OA).列出圆周运动方程 F+Fcosθ=mω2r由平衡条件有 Fsinθ-mg=0其中 cosθ=,sinθ=联立解得ω=练习1,如图所示,半径为R半球形碗表面光滑,一质量为m小球以角速度ω在碗一做匀速,求小球所做轨道平面离碗底距离h.如图所示,用长为L细线拴一个质量为m小球,使小球在做匀速,细线与竖直方向间夹角为θ,求:(1)细线拉力F;(2)小球周期T3、如图8所示,质量均为m的A、B两物体用细绳悬着,跨过固定在圆盘中央光滑的定滑轮.物体A与圆盘问的动摩擦因数为μ,离圆盘中心距离R.为使物体A与圆盘保持相对静止,则圆盘角速度ω的取值范围为多少?(设最大静摩擦力等于滑动摩擦力)图84、如图9所示,长度分别为l1和l2两细绳OA、OB,一端系在竖直杆,另一端系上一质量为m的小球,两细绳OA和OB同时拉直时,与竖直杆的夹角分别为30°、45°.则杆以多大角速度转动时,两细绳同时且始终拉直?绳模型底部速度杆模型底部速度例题解析轻绳模型例题1、用细绳拴着质量为m的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是 [ ]A.小球过最高点时,绳子中张力可以为零B.小球过最高点时的最小速度为零C.小球刚好过最高点时的速度是D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反2、质量为m 的小球用一条绳子系着在竖直平面内做圆周运动,小球到达最低点和最高点时,绳子所受拉力之差是: [ ]A、6mgB、5mgC、2mgD、条件不充分,不能确定3、小球在竖直放置的光滑圆轨道内做圆周运动,圆环半径为r,且刚能通过最高点,则球在最低点时的速度和对圆轨道的压力分别为: [ ]A、4rg,16mgB、,5mgC、2gr,5mgD、,6mg4、图所示,在倾角α=30°的光滑斜面上,有一根长L=0.8m的细绳:一端固定在O点,另一端系一质量为m=0.2kg的小球,沿斜面作圆周运动,试计算:(1)小球通过最高点A的最小速度。
专题26圆周运动的运动学分析(解析版)—2023届高三物理一轮复习重难点突破

专题26圆周运动的运动学分析考点一描述圆周运动的物理量1.线速度定义式:v =Δs Δt(单位:m/s,Δs 为Δt 时间内通过的弧长如下图)2.角速度定义式:ω=ΔθΔt(单位:rad/s,Δθ为半径在Δt 时间内转过的角度如下图)3.周期(T ):匀速圆周运动的物体沿圆周运动一周所用的时间(单位:s)4.转速(n ):单位时间内物体转过的圈数(单位:r/s、r/min)5.向心加速度:a n =ω2r =v 2r =4π2T2r .6.相互关系:v =ωr v =2πr Tω=2πTT =n1ω=2πn1.下列说法正确的是()A.匀速圆周运动是一种匀速运动B.匀速圆周运动是一种匀变速运动C.匀速圆周运动是一种变加速运动D.物体做圆周运动时,线速度不变【答案】C 【解析】D.物体做圆周运动时,由于线速度的方向时刻改变,故线速度是变化的,D 错误;A.匀速圆周运动线速度大小不变,方向时刻改变,不是匀速运动,A 错误;BC.因为匀速圆周运动的向心加速度时刻改变,故匀速圆周运动不是匀变速运动,是变加速运动,B 错误,C 正确。
2.质点做匀速圆周运动时,下面说法正确的是()A.向心加速度一定与旋转半径成反比,因为=2B.向心加速度一定与角速度成反比,因为an =ω2r C.角速度一定与旋转半径成正比,因为=D.角速度一定与转速成正比,因为ω=2πn【解析】A.根据=2知,线速度相等时,向心加速度才与旋转半径成反比,故A 错误;B.根据=B 2知,半径相等时,向心加速度才与角速度的平方成正比,故B 错误;C.根据=知,当v 一定时,角速度与旋转半径成反比,故C 错误;D.根据=2B 可知,角速度一定与转速成正比,故D 正确。
3.(多选)如图为甲、乙两球做匀速圆周运动时向心加速度随半径变化的关系图线,甲图线为双曲线的一支,乙图线为直线。
由图像可以知道()A.甲球运动时,线速度的大小保持不变B.甲球运动时,角速度的大小保持不变C.乙球运动时,线速度的大小保持不变D.乙球运动时,角速度的大小保持不变【答案】AD 【解析】题图的图线甲中a 与r 成反比,由a =v 2r可知,甲球的线速度大小不变,由v =ωr 可知,随r 的增大,角速度逐渐减小,A 正确,B 错误;题图的图线乙中a 与r 成正比,由a =ω2r 可知,乙球运动的角速度大小不变,由v =ωr 可知,随r 的增大,线速度大小增大,C 错误,D 正确。
圆周运动公式总结

圆周运动公式总结
圆周运动公式总结如下:
1. 周长公式:C = 2πr,其中C表示圆的周长,r表示圆的半径。
2. 弧长公式:S = θr,其中S表示圆弧的长度,θ表示圆心角
的大小(以弧度为单位),r表示圆的半径。
3. 角度与弧度的转换公式:θ度= θ弧度× (180/π),θ弧度= θ
度× (π/180)。
4. 周角公式:θ = S/r,其中θ表示圆心角的大小(以弧度为单位),S表示圆弧的长度,r表示圆的半径。
5. 角速度公式:ω = Δθ/Δt,其中ω表示角速度,Δθ表示角度
的变化量,Δt表示时间的变化量。
6. 线速度公式:v = ωr,其中v表示线速度,ω表示角速度,r
表示圆的半径。
7. 加速度公式:a = ω²r,其中a表示加速度,ω表示角速度,r 表示圆的半径。
需要注意的是,以上公式适用于匀速圆周运动和加速圆周运动。
对于匀速圆周运动,角速度是常数;对于加速圆周运动,角速度会随时间变化。
匀速圆周运动加速度公式
匀速圆周运动加速度公式
匀速圆周运动:
1.线速度V=s/t=2πR/T
2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/R=ω2R=(2π/T)2R
4.向心力F心=mV2/R=mω2R=m(2π/T)2R
5.周期与频率T=1/f
6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:
弧长(S):米(m)
角度(Φ):弧度(rad)
频率(f):赫(Hz)
周期(T):秒(s)
转速(n):r/s
半径(R):米(m)
线速度(V):m/s
角速度(ω):rad/s
向心加速度:m/s2
注:
(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。
(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
匀速圆周运动的分析角速度角加速度与向心力的关系
匀速圆周运动的分析角速度角加速度与向心力的关系匀速圆周运动是指在一个半径不变、速度恒定的圆周上做运动。
在这种运动中,角速度、角加速度和向心力之间存在着紧密的关系。
一、角速度的定义和性质角速度是指物体在单位时间内所转过的角度。
在匀速圆周运动中,物体的角速度大小是保持不变的。
设物体在时间 t 内,所转过的角度是θ,则角速度ω 的定义为:ω = θ / t角速度的单位是弧度/秒(rad/s)。
角速度的方向由运动方向决定,符合右手定则:将右手的拇指指向圆心,四指弯曲的方向与角速度的方向一致。
在匀速圆周运动中,角速度大小恒定不变,即使物体在圆周上的位置不同,速度大小也不会改变。
这个特点使得角速度成为了描述匀速圆周运动的重要物理量。
二、角加速度的定义和性质角加速度是指角速度随时间变化的量。
在匀速圆周运动中,物体的角加速度大小为零。
匀速圆周运动中,物体的速度大小保持不变。
因此,角速度也是恒定的。
由于角加速度与角速度的关系可以通过以下公式描述:α = Δω / Δt其中,α 表示角加速度,Δω 表示角速度的改变量,Δt 表示时间的改变量。
在匀速圆周运动中,由于角速度不发生变化,所以角加速度等于零。
这意味着物体在匀速圆周运动中,不受到角加速度的作用。
三、向心力与角速度的关系向心力是指物体在做匀速圆周运动时所受到的中心指向力。
向心力的大小可以通过以下公式计算:F = m * ω² * r其中,F 表示向心力,m 表示物体的质量,ω 表示角速度,r 表示圆周的半径。
由上述公式可知,向心力与角速度的平方成正比。
当角速度增大时,向心力也会随之增大;当角速度减小时,向心力也会随之减小。
向心力的方向始终指向圆心,与物体运动方向呈垂直关系。
在匀速圆周运动中,向心力是保持恒定的。
因此,当速度大小不变时,圆周的半径越小,向心力越大;圆周的半径越大,向心力越小。
结论:匀速圆周运动中,角速度保持恒定,角加速度为零。
向心力与角速度的平方成正比。
高中物理公式匀速圆周运动
高中物理公式匀速圆周运动高中物理公式1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr角速度与转速的关系ω=2πn(此处频率与转速意义相同)主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
相关推荐加速度a=(Vt-V0)/t(以V0为正方向,a与V0同向(加速)a>0;a与V0反向(减速)则a<0)实验用推论Δs=aT2(Δs为连续相邻相等时间(T)内位移之差)主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t):秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
a=(Vt-V o)/t只是测量式,不是决定式;其它相关内容:质点、位移和路程、参考系、时间与时刻、s--t 图、v--t图/速度与速率、瞬时速度。
质点的运动----曲线运动、万有引力平抛运动竖直方向位移:y=gt2/2运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)合速度Vt=(Vx2+Vy2)1/2=[V02+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0合位移:s=(x2+y2)1/2位移方向与水平夹角α:tgα=y/x=gt/2V0水平方向加速度:ax=0;竖直方向加速度:ay=g注:平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;运动时间由下落高度h(y)决定与水平抛出速度无关;θ与β的关系为tgβ=2tgα;在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
考点2匀速圆周运动 线速度、角速度和周期 向心加速度和向心力(知识梳理)
考点2 匀速圆周运动、线速度、角速度和周期、向心加速度和向心力第一部分 考纲扫描1.了解线速度、角速度、周期、频率、转速等概念。
理解向心力及向心加速度。
2.能结合生活中的圆周运动实例熟练地应用向心力和向心加速度处理问题。
3.能正确处理竖直平面内的圆周运动。
4.了解离心现象。
第二部分 知识梳理一、描述圆周运动的物理量1.线速度①定义:质点做圆周运动通过的弧长l 与通过这段弧长所用的时间t 的比值叫做圆周运动的线速度。
②线速度的公式为:2l r v t Tπ==。
③方向为沿圆周的切线方向。
作匀速圆周运动的物体速度方向时刻在变化,因此匀速圆周运动是一种变速运动。
2.角速度①定义:用连接物体和圆心的半径转过的角度θ跟转过这个角度所用的时间t 的比值叫做角速度。
②公式为:2t Tθπω==,单位是:弧度/秒(rad/s)。
3.周期①定义:做匀速圆周运动的物体运动一周所用的时间,称为周期。
周期越大,运动越慢。
②公式:2r T vπ= 频率——质点在1秒内转动的圈数。
频率越大,物体运动越快。
转数——质点每秒钟(或每分钟)所转过的圈数。
常用的单位有:转/分(r/min)。
4.描述匀速圆周运动的各个物理量的关系①角速度ω与周期的关系是:ω=2π/T②角速度和线速度的关系是:v=ωr③周期与频率的关系是: 1T f=; ④向心加速度与以上各运动学物理量之间的关系:a=2v r=2r ω=224r T π 5.描述圆周运动的力学物理量是向心力(F 向):它的作用是改变速度的方向。
描述圆周运动的运动学物理量和力学物理量之间的关系是:F 向= m 2v r= m 2r ω =m 224r T π=ma 。
[规律总结]在分析传送带或边缘接触问题时,要抓住的关系是:同转轴的各点角速度相同,而同一皮带(不打滑时)或相吻合的两轮边缘的线速度相同。
当分析既不同轴又不同皮带的问题时,往往需要找一个联系轴与皮带的中介点作为桥梁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l v t
返回
知识学习
(2)角速度ω
——自主探究 合作学习
定义:对匀速圆周运动,角度与时间t的比值叫角速度. 注意:角速度是矢量. 单位:弧度/秒 rad/s
t
关于角度
①角度的单位有哪些?它们之间的换算关系是怎样的? 度和弧度(rad) 1800相当于π弧度 ②圆心角、弧长、半径之间的关系是怎样的?
1、线速度v
2、角速度ω
3、周期T
l v t
t
单位:m/s 单位:rad/s
描述匀速圆周运动各物理量间
的定量关系
2 r v T 2 T v r
返回
反馈训练
1、用细线拴着小球在光滑水平面上做半径为R的匀速圆周运 动,小球的向心加速度大小为a,则
A.小球运动的线速度 v a / R
B.小球运动的角速度 a / R C.小球运动的周期 T 2 a / R D.小球在时间t内通过的路程 S t aR
返回
反馈训练
2、如图所示,为一皮带传动装置,右轮的半径是r,a是它 边缘上的一点,左侧是一轮轴,大轮的半径是4r,小轮的 半径是2r,b点在小轮上,到小轮中心的距离为r,若在传 动过程中,皮带不打滑,则 (1)三轮边缘的线速度之比vA:vB:vC:vD (2)三轮角速度之比ωA:ωB:ωC:ωD
返回
典型例题
——自主探究 合作学习
例:一个大轮通过皮带拉着小轮转动,皮带和两轮之间无滑 动,大轮半径是小轮半径的3倍大轮上一点S离转轴O1的距 离是半径的1/3,大轮边缘上一点P,小轮边缘上一点Q,求 (1)vS:vP:vQ 的比值 (2)ωS:ωP:ωQ的比值
返回
归纳总结
描述匀速圆周运动各物理量以及各物理量间的定量关系
返 回
知识学习
圆周运动
返 回
知识学习
——自主探究 合作学习
1.圆周运动:运动质点的轨迹是圆周的运动。 2.在圆周运动中,常见的最简单的是匀速圆周运动。 质点沿圆周运动,如果在相等的时间里通过的圆弧 长度相等,这种运动就叫做匀速圆周运动。
返 回
知识学习
(1)线速度V
——自主探究 合作学习
3.描述匀速圆周运动的物理量
l r
返回
知识学习
(3)周期T
——自主探究 合作学习
定义:对匀速圆周运动,运动一周所用的时间叫周期. 注意:周期是标量 单位:秒
返回
知识学习
——自主探究 合作学习
4.描述匀速圆周运动各参量间的定量关系
2 r v T 2 T v r
返回
知识学习
——自主探究 合作学习
1、同一轮上的各点什么物理量相同?什么物理量不 同? 2、皮带相连的两轮或两轮接触处的什么物理量相 同?什么物理量不同?
返回
家庭作业
必做题:课本18页 第1题、第2题
选作题:第4题
补充选做题:A、B两轮通过皮带传动,C轮与A轮同轴,
它们的半径之比是RA:RB:RC=1:2:3,如图所示,求 (1)三轮边缘的线速度之比vA:vB:vC (2)三轮角速度之比ωA:ωB:ωC
返回
挑战自我
某种变速车有六个飞轮和三个链轮,链轮和飞轮的齿数如 下表所示,前后轮直径为660mm,人骑自行车行进速度为 4m/s,脚踏踏板作匀速圆周运动的角速度最小值约为
圆周运动
淄博一中 物理组
学习目标 家庭作业
知识学习 挑战自我
典型例题 疑难解答
归纳总结
5分钟检测 (复习篇)
反馈训练
5分钟检测 (巩固篇)
学习目标
1.知道什么是圆周运动和匀速圆周运动。 2.准确理解描述圆周运动快慢的三个物理量 v、ω、T。 3.知道表示角度的两种单位及其换算关系。 4.掌握理解v、T、ω之间的关系。
A、1.9rad/s C、6.5rad/s
B、3.8rad/s D、7.1rad/s
返回
疑难解答
学生没有提出需篇
1、一物体以10m/s的初速度水平抛出,落地时速度与水平方 向成45°,求: (1)落地速度 (2)开始抛出时距地面的高度 (3)水平射程 答案:14.1m/s;5m;10m 2、以20m/s的初速度将一物体有足够高的某处水平抛出, 当它的竖直速度跟水平速度相等时经历的时间为 物体的速度方向与水平方向的夹角θ为 的位移大小为 。
返回
;这时
;这段时间内物体
答案:2s,450,44.7m
5分钟检测——巩固篇
A、B两轮通过皮带传动,C轮与A轮同轴,它们的半径
之比是RARBRC=1:2:3,如图所示,求
(1)三轮边缘的线速度之比vA:vB:vC (2)三轮角速度之比ωA:ωB:ωC
答案:1:1:3;2:1:2
返 回