初中数学建模思想意义分析论文
建模思想在初中数学教学中的运用

建模思想在初中数学教学中的运用随着信息技术的普及和数学建模竞赛的推广,数学建模作为一种重要的数学方法和思想逐渐受到了广大教育工作者的重视。
初中阶段是学生数学基础知识和学科兴趣形成的关键时期,因此在初中数学教学中运用建模思想,开展相关的数学建模活动具有重要的现实意义。
一、初中数学教学中建模思想的意义1.培养学生的实际问题解决能力数学建模是一种能够培养学生实际问题解决能力的有效方式。
通过引导学生提取和抽象现实中的问题,进行数学模型的建立与求解,培养学生的问题解决思维能力和创新意识,提高他们解决实际问题的能力。
2.培养学生的数学思维和方法数学建模要求学生从问题出发,运用所学的数学知识和方法,探索解决问题的途径和手段。
这种过程能够激发学生的数学思维,培养他们运用数学知识解决实际问题的方法。
3.增强学生的数学学习兴趣数学建模的活动形式丰富多样,内容与学生生活和实际问题密切相关。
这不仅能够增加学生的数学学习动力,还能够使他们更加深入地理解数学知识的应用,从而提高对数学的兴趣和学习积极性。
二、初中数学教学中建模思想的运用方法1.教师角色的转变传统的教学模式中,教师主要扮演着知识的传授者和学习内容的规划者。
而在数学建模中,教师需要更多地担任引导者和组织者的角色,引导学生从问题中引发思考,并设置合适的学习环境和学习任务,促进他们主动学习和自主思考。
2.开展实际问题的引入教师可以通过生活中或教材外的实际问题引入数学学习,让学生通过解决实际问题的方式感受到数学的实用性和魅力。
例如,可以通过讨论家居装修费用、交通拥堵等问题,引出数学中的线性方程、比例关系等内容。
3.进行数学模型的构建与求解在引入实际问题后,教师可以指导学生根据问题的需求,提取重要的信息,并进行数学模型的构建。
通过引导学生分析问题、建立模型,选择合适的解法,解决问题,提高学生解决实际问题的能力。
4.引导学生进行数学建模竞赛数学建模竞赛是培养学生实际问题解决能力和数学思维的重要途径。
浅析数学建模思想在初中数学教学中应用

浅析数学建模思想在初中数学教学中应用摘要:一提起数学,人们会想到它的抽象和复杂,感觉数学比较枯燥无味。
但人们的日常生活离不开数学,人们每天的收入、支出和工作都需要用到数学,数学具有广泛的应用性。
数学的产生就是为了解决现实世界中的问题,当然有大量的问题由于当时社会的局限性,用数学一时难以进行解决,但随着科学技术的发展,特别是计算机技术的进步,新的数学方法能够对这些现实问题进行解答,数学的应用越来越广泛。
比如数学建模的产生,对日常生活中的一些问题能够进行方便有效的解决,它建立起了数学与现实世界的桥梁。
关键词:初中数学;数学建模;教学策略数学家波利亚认为中学数学教育的根本宗旨是“教会年轻人思考”,教师要努力启发学生自己发现解法,从而在根本上提高学生的解题能力。
在初中数学教学阶段逐步渗透数学思想方法,培养良好的思维习惯,有助于提高学生学习数学的能力,笔者在教学中注重渗透数学思想方法,引领学生寻找解题的途径。
而数学建模思想已经广泛的体现在初中数学知识体系中,针对一类问题,给学生一个模式,让学生有据可依,以不变应万变,触类旁通,这样较为符合学生的心理特征,也有利于提高学生解决问题的能力。
一、数学建模在初中数学教学中的重要性1.数学建模员解决实际问题的重要方式目前,科学技术不断更新,对数学教育提出了挑战,要求学生不断地探索学习数学的目的。
实质上,数学能够辅助人们对实际的问题进行合理解决。
而在数学教学中,将数学建模应用其中,正好构建了数学理论与实际问题之间的桥梁。
数学建模是应用数学知识对实际问题进行解决的重要途径和方式。
近十几年里,很多中学逐渐开设了数学建模的课程,锻炼了学生的实践能力,使学生的数学学习实现了由学到用的转变,同时促进了数学教学的改革。
这对学生和今后数学的教学都起到了积极作用。
2.提升了学生对数学学习的兴趣数学的知识较多,涉及范围较广,这就使得学生没有学习的积极性。
而计算机技术不断地更新以及数学软件包的研发,使数学建模被广泛地应用。
初中建模教学实践(3篇)

第1篇摘要:随着科技的飞速发展,数学建模已经成为现代教育中不可或缺的一部分。
本文以初中数学建模教学实践为背景,探讨如何将数学建模理念融入初中数学教学中,提高学生的数学素养和解决问题的能力。
一、引言数学建模是数学与实际问题的结合,通过数学模型来描述现实世界中的现象和规律。
初中阶段是培养学生数学建模能力的关键时期。
本文旨在探讨初中建模教学实践,分析建模教学的方法和策略,以期为提高学生的数学素养和解决问题的能力提供参考。
二、建模教学的意义1. 提高学生的数学素养数学建模教学可以帮助学生理解数学知识的应用价值,提高学生的数学素养。
通过建模,学生可以学会运用数学知识解决实际问题,从而加深对数学概念、方法和原理的理解。
2. 培养学生的创新思维数学建模过程需要学生进行观察、分析、抽象和概括,这有助于培养学生的创新思维。
在建模过程中,学生需要不断尝试新的方法,寻找最优解,从而提高解决问题的能力。
3. 增强学生的团队协作能力数学建模通常需要多人合作完成,这有助于培养学生的团队协作能力。
在建模过程中,学生需要学会倾听他人意见,尊重他人观点,共同完成任务。
三、建模教学实践1. 选择合适的建模案例选择合适的建模案例是建模教学的关键。
案例应具有代表性、趣味性和实用性,能够激发学生的学习兴趣。
例如,可以选择与学生生活息息相关的案例,如购物优惠、交通出行等。
2. 引导学生观察和发现问题在建模教学过程中,教师应引导学生观察现实生活中的现象,发现数学问题。
例如,在讲解“购物优惠”模型时,教师可以引导学生观察商品打折、满减等优惠方式,分析其数学原理。
3. 教授建模方法建模方法主要包括观察法、实验法、归纳法、类比法等。
教师应根据具体案例,教授相应的建模方法。
例如,在讲解“购物优惠”模型时,可以采用归纳法,引导学生分析不同优惠方式的数学关系。
4. 鼓励学生自主探究建模教学过程中,教师应鼓励学生自主探究,发挥学生的主观能动性。
教师可以提出问题,引导学生思考,让学生在解决问题的过程中,逐步掌握建模方法。
数学建模优秀论文范文-建模思想在初中数学学习中的重要性

数学建模优秀论文范文-建模思想在初中数学学习中的重要性————————————————————————————————作者:————————————————————————————————日期:数学建模论文范文:建模思想在初中数学学习中的重要性-中学数学论文数学建模论文范文:建模思想在初中数学学习中的重要性摘要:数学建模就是运用数学思想、方法和知识解决实际问题的过程。
在平时的数学课堂学习中,教师通过联系课本已学过的知识,将复杂抽象的实际问题带到课堂上,使学生通过多方面分析问题、总结结论,调动学生的积极性,把问题中复杂的非数学信息转换成简单易懂的数学信息,建立合适的数学模型。
学生通过数学模型的建立和求解来解决实际问题。
本文论述了数学建模的概念、列举了几种基本的数学模型。
通过数学建模案例分析,说明数学建模对初中数学学习得重要作用。
关键词:数学建模;数学模型;初中数学一、数学建模对学生的思维发展和能力培养具有重要的作用1.建立模型的过程是培养学生发散思维的过程对于初中数学练习题中出现的一些复杂的数学现象与数据,建模思想主要就在于从复杂的实际问题中提取关键条件、抓住要点,将抽象问题简单化,用一个合理的数学模型将已知的变量关系表式出来。
与传统的数学思想模式不同,建模思想旨在让学生主动思考、探索、解决问题。
这对于学生活跃思维的培养起到非常重要的作用。
2.建模思想有助于提高学生解决问题的能力应用传统的数学思想解题难免会枯燥乏味,而建模思想的应用仿佛给干涸的沙漠注入了一汪清泉。
建模思想充满了想象空间,它是多变的。
而初中的学生本身就有着活泼的个性。
因此,相比于死板的解题思路,学生们更倾向于这种灵活多变的思维模式。
这使得学生对于问题的思考变得更全面、更多样化,从而对于解题的能力也会有很大提高[1]。
二、几种基本的数学模型由于数学模型这一思想方法几乎贯穿于整个中学数学学习过程之中,在解决实际问题时,通过建立函数模型、建立方程模型等都蕴含着数学模型的思想方法。
建模思想在初中数学教学中的应用分析

(作者单位 :新疆乌鲁木齐兵团第一中学)
128 教育前沿 Cutting Edge Education
初中数学课堂是学生学习数学知识的主要途径,而教材是教师开展 教学活动的主要依据,只有依靠教材才能使学生掌握一定的建模方法。所 以,在实际教学中教师必须要以教材为基础,通过一题多变的教学模式来 引导学生举一反三,在这一过程中教师要做好充足的课前准备,根据课后 习题的类型对相关知识进行适当的改编和拓展,这样不仅可以拓展学生的 知识储备,同时对提高学生建模能力也有积极作用。其次在教学中教师要 根据学生的实际情况,指导其掌握一定的建模方法,将学生学习的积极性 充分激发出来,这对培养和发散学生的思维能力都有很大的帮助。例如, 在讲解“函数与方程”相关知识点时,学生要能够独立构建函数模型。在 数学教学中,教师可以从课文中的习题着手,鼓励学生对一元二次方程的 根与二次函数之间的关系进行探究,以此帮助学生去了解和记忆二分法的 概念。之后在从真实的应用题出发,画出真实的二次函数图像,构建出函 数模型。接着再对相应的模型进行深入分析,这样可以帮助学生快速的掌 握数学函数的应用,从而使其能够正确判定连续函数在某个区间上存在零 点的方法。最后,当学生已经初步掌握构建函数模型的方法后,教师可以 为学生布置一些经典的数学题型,帮助其对所学知识进行巩固和记忆。 2.2 联系生活实际,创设建模情境,积极渗透建模思想
初中论文-专业文档!

初中论文初中论文范文大全初中论文篇1【摘要】随着素质教育的推行,初中数学教育在教育方法和教育理念上发生了很大变化,数学建模思想的培养成为初中数学教育的重要内容。
数学建模思想的培养不仅能提高课堂教学的效果,还能增强学生的数学思维能力和分析解决问题的能力。
本文主要从数学建模思想的内涵着手,探讨初中数学建模思想的运用及成效,为当前的初中数学教学水平的提高提供相关借鉴。
【关键词】初中数学;建模思想一、数学建模思想的内涵分析数学建模思想产生于上个世纪的六七十年代,在“新数运动”和“回到基础”的数学教学研究之后,数学教育的问题意识逐渐增强,数学建模作为问题素养培养的重要方法也逐渐被人们所认识到。
在我国,以华罗庚为代表的数学家通过中学数学竞赛与数学讲座等方式向中学生介绍数学建模思想,虽然此时并没有明确采用数学建模的名称,但数学建模在解决数学问题中的应用已受到重视。
在几十年的发展过程中,数学建模思想取得了很大发展。
目前,我国初中数学建模思想在初中数学教育中广泛应用,新课程改革和素质教育的实施,推动了学生数学应用意识的加强,促进数学建模的教学方法的应用。
但由于教师教育理念的陈旧和教学方法的不科学,导致数学建模思想的应用受到限制。
数学建模思想的重要性在于以下几点:首先,数学建模思想作为一种学习方法,可以将初中数学知识结合起来,在知识的相互渗透中挖掘出数学学习的规律。
数学建模是一种综合性较强的数学解题方法,初中数学建模教学中,不仅包括实际的生活内容,还包括了多种学科,数学建模的范围比较广阔。
其次,数学建模可以简化信息。
数学建模的目的是将繁杂的数学信息通过科学的模型直观反映出来,将问题的主要方面表现出来,以所学知识对问题进行解读。
数学建模能够让学生体验建模的过程,教师将建模思想传授给学生,让学生在小组讨论中找出最佳的建模方法,将学生的独立思考和团队合作结合起来,为学生的建模活动提供良好的空间。
再次,数学建模将简化后的信息抽象为数学问题,利用已知条件,对数学问题进行分析,以数学思维将文字语言数学化,以解决问题,通过模型的建立,以简化、抽象的方法将数学学习中的问题进行有效解决。
数学建模思想在中学数学教学运用论文

数学建模思想在中学数学教学中的运用【摘要】实践证明,数学建模思想融入到数学教学中能够培养学生整体处理和创造性处理问题的能力以及能够对学生进行一个正确的评价,最终有助于素质教育的开展.将数学建模思想运用到中学数学教学中是必要的,同时也是以后数学教学的重点.本文主要对数学建模思想的相关理论知识以及运用一个实例来分析数学建模思想在中学数学教学中的运用.【关键词】数学建模思想;中学数学;教学一、数学建模思想及其在中学数学教学中的运用1数学建模思想数学建模就是对实际问题的一种抽象,用数学语言描述实际现象的过程.其中实际现象既包括客观存在的现象,又包括抽象的现象.数学建模还可以很直观地理解为:数学建模就是让一个纯粹的数学家往多元化学家方向发展.数学建模现在被广泛应用,例如工业、农业、经济、社会、政治、军事、医学、信息技术等领域.数学模型其实质就是对实际问题的一种数学简化,它的存在形式一般都是某种意义上接近实际事物的抽象,它并不是与实际的问题相同,二者在本质上还存在一些差异.在实际生活中,对一种实际事物的描述可以通过很多方法来进行,例如语言、录像等.而数学语言以其科学性、逻辑性、客观性及可重复性的特点,在描述各种现象时体现出其别具一格的严密与贴合实际.如图1为现实对象与数学模型的关系.正因如此,越来越多的人愿意用严格而又严密的数学语言来对实际事物进行描述.有时是需要做一些实验,而这些实验就是用数学模型来替代实际物体.运用数学来解决各类实际问题时,数学模型是非常重要的,数学模型也是一个难点,数学建模过程是一个复杂的系统工程,使抽象事物变得直观化.数学建模的过程如图2所示.模型准备:了解问题的实际背景,明确建模目的,掌握对象的各种信息,弄清实际对象的特征.模型假设:根据实际对象的特征和建模目的,对问题进行必要的合理的简化.假设不同模型也就不同.过于简单的假设很有可能导致模型的失败,因此,必须进行补充假设;过于详细的假设,想要把实际现象中所有的因素都要考虑进去,这样会使得问题更加复杂化,无法进行下一步工作.总而言之,在进行模型假设时,要把主次分清楚,尽可能使问题均匀化.模型建立:在把变量类型分清的基础上,还要恰当地使用数学工具.只要把问题的本质抓好,就能够使得变量之间的关系更加简单化,一定要保证模型本身的准确性.模型求解:运用数学方法和计算机技术来进行运算.模型分析:对变量之间的依赖关系进行分析,得出最优的决策控制.模型检验:模型分析结果与实际对象相结合,对结果进行评价.模型应用:模型在实际应用中可能会有新的问题出现,对其进行进一步的完善.数据的收集是建立模型的首要工作,这些数据是要通过实际调查得到的;然后对实际对象的固有特征和内在规律进行观察和研究,抓住问题的本质;最后把反映实际问题的数量关系建立起来,运用数学的方法对问题进行分析和解决.其实数学建模就是理论联系实际的桥梁.数学建模在科学技术发展中的重要作用已被各类学科重视起来.数学建模已经在各大高校的教育中广泛地应用起来,为培养高层次科技人才提供了良好的保证.2数学建模思想在中学数学教学中的运用现实生活中的一切问题都来源于相应的数学模型,如果遇到问题只是单纯地考虑问题,而不用具体的数学工具来解决,虽然能够解决这问题,但是可能会花费很多时间和精力,而运用数学工具来解决实际问题会达到事半功倍的效果.我国中学数学教材中的内容也都是来源于实际问题,如果教师在讲述数学知识时首先从实际问题出发,利用相关的数学知识点来解决引入的实际问题,那么这个知识点就是数据模型.从中学数学教材中我们可以看出教材中的应用实例越来越多,这样不仅提高了学生学习数学的兴趣,同时也让学生明白学习数学的作用.在中学数学教材中,基本上每章都有数学应用,虽然这些都是些简单的问题,但是它确实将实际问题转化为数学模型,通过解决这些实际问题,让学生真正感受到数学所用之处,让学生能够将数学知识、方法和思想融合在一起,能够存储一些基本的数学模式,这是向学生渗透数学建模思想的基础.二、实例分析现实世界中,最优化问题普遍存在,我们知道解决最优问题有很多方法,针对高校学生而言,可以通过运筹学来解决,但是针对中学生而言,是不能用运筹学的,只能用函数的最值来解决,通过目标函数,确定变量的限制条件,运用函数的方法来解决.例某工程队共有400人,要建造一段3000米长的高速公路,需要将这些人分成两组,分别完成一段1000米的软土地带以及一段2000米的硬土地带,据测算软、硬土地每米的工程量分别为50工和20工,那么要想使全队筑路的时间最省应如何安排两组人数呢?建模分析两组人员分配完之后,由完成工程较慢的一组决定全队的筑路时间.解设在软土地带工作的一组人数为x,则软土地带筑路时间为f(x)=50×1000x,硬土地带筑路时间为g(x)=20×2000400-x,其中,x∈n,且0<x<400.当f(x)≥g(x)时,全队筑路时间为h(x)=f(x);当f(x)<g(x)时,全队筑路时间h(x)=g(x).设f(x)=g(x)的解为x0,易知h(x)在(0,x0)上为减函数,在[x0,400]上为增函数,因此当x=x0时,即x=222时,h(x)有最小值.又h(222)=f(222)=225.2,h(223)=g(223)=225.9,∴当x=222,软硬地带分别安排222人和178人时,全队筑路时间最省.三、结语现代的教学要求教师不要死教,学生不要死学,因此,在中学数学教学中将数学建模思想融入其中正是现代教学所要求的,由此可见,数学建模思想在中学数学教学中的运用是非常必要的.中学数学教学中引入数学建模思想不仅让学生学到数学建模的思想和方法,而且能够让学生明白数学的伟大作用,以及让学生能够灵活运用所学的知识去解决实际问题,这样也在一定程度上培养了学生的创新能力、分析能力以及解决问题的能力.【参考文献】[1]梁世日.新课程背景下中学数学建模教学的几点思考[j].考试周刊,2007(31).[2]马鹏翼.中学数学建模中的常见模型举例[j].成才之路,2008(6).[3]龚雪.中学数学教学中数学建模思想的融入[d].长春师范学院,2011.[4]刘长华.数学建模与中学数学教学结合两例[j].大连教育学院学报,2003(3).。
数学建模论文(7篇)

数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。
如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。
数学建模所解决的问题不止现实的,还包括对未来的一种预见。
数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。
数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。
教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。
以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。
因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。
1.2数学建模在大学数学教学中的运用。
大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。
再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。
不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学建模思想的意义分析
【摘要】在老师的指导下,让学生投入解决问题的实践活动,自己去研究、探索,经历数学建模的全过程,从而体会方程、不等式、函数等是现实世界的数学模型,初步领会数学建模的思想和方法,提高数学的应用意识和应用数学知识解决实际问题的能力。
【关键词】初中数学建模提高能力
新的数学课程把初中数学分成成数与代数、空间与图形、统计与概率三部分,这三部分内容交叉进行着。
而数与代数的内容在义务教育阶段的数学课程中占有重要地位,数学课程标准中指出数与代数这部分内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界,对于发展新课程来说,最重要的是使学生真正理解数学。
一、数学建模的地位和含义
数学有着广泛的应用.这是数学的基本特征之一。
随着生产和科学技术的不断发展,特别是计算机的产生与飞速发展,为数学的应用提供了广阔的前景。
应用数学的地位日益上升,数学建模成了数学工作者面临的重大课题。
从“注重应用”口号的提出。
到“问题解决”倡导,都说明了在这样的背景下,在学校教育中,相对于大量的数学计算和推理,相对于数学知识和技能的积累。
那么,什么是数学模型呢?数学家徐利治在《数学方法论选讲》说道:所谓数学模型,是指针对或参照某种事物的特征或数量相依
关系,采用形式化的数学语言,概括地或近似地表述出来的一种数学结构。
简单地说,数学建模是利用数学语言(符号、式子与图象)模拟现实的模型。
把现实模型抽象、简化为某种数学结构是数学模型的基本特征。
数学建模的一般有这几个过程:模型准备、模型假设、模型建立、模型求解、模型分析、模型检验和模型应用。
模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模建建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
(尽量用简单的数学工具) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
模型分析:对所得的结果进行数学上的分析。
模型检验:将模型分析结杲与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
模型应用:应用方式因问题的性质和建模的目的而异。
一般要达到同类问题的圆满求解。
二、初中新课改落实了数学建模思想
众所周知,在数与代数中,例如方程、不等式、函数等,它们都是刻画现实世界的数学模型,方程(或不等式)是刻画现实世界数量
关系(相等或大小)的数学模型,函数是刻画现实世界数量变化规律的数学模型,一次函数反映了均匀(等速、线性)变化的规律,二次函数则反映等加速的变化规律。
1.方程生动反映数学建模过程。
正是利用方程解决实际问题从一个侧面体现了数学与现实世界的联系,体现了数学的建模思想。
教材通过第10页例6、例7两道例题介绍了利用方程解决实际问题的思想方法后,为了体现如何找一个主要的等量关系列方程,教材通过练习l、学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒。
问小刚在冲刺阶段花了多少时间?练习3、在练习l中,若问“小刚在离终点多远时开始冲刺”,你该如何求解?这样来让学生意会,理解。
教材进入主题时,先介绍直接设元法。
但对于间接设元方法,教材从一开始就不急于展开。
例如上文提到的练习1、3,解答练习3时,若利用练习l的结论进行解答,则这种求解方式对于练习3而言,就是间接设元。
教材这样处理,需要教师及时领悟,并让学生思考练习3的两种不同解法,解法一:间接设元解答,即利用练习1的结论进行解答:解法二:直接设元解答。
教师在比较它们的不同点之后,向学生一语道破。
这样,就为后面《实践与探索》的问题3:小张和父亲预定拾乘家门口的公共汽车赶往火车站,去家乡看望爷爷。
在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站。
随即下车改乘出租车,车速提高了
一倍,结果赶在火车开车前15分钟到达火车站。
已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?选择适当的设元方法解决问题作铺垫。
2、建模思想在函数教学中的应用。
比如:小强购买了一部手机想入网,朋友小王介绍他加入中国联通130网,收费标准是:月租费30元。
每月来电显示费6元,本地电话费每分钟0.4元,朋友小李向他推荐中国电信的“神州行”储值卡,收费标准是:本地电话每分钟0.6元,月租费和来电显示费全免了,小周的亲戚朋友都在本地,他也想拥有来电显示服务,请问该选择哪一家更为省钱?这是一道具有实际生活背景意义的问题,根据数学建模过程,在掌握问题信息时,可作适当假设:设小周每月通话时间x分钟,每月话费为y元。
建立数学结构:y1=0.4x+36;y2=0.6x,从中求解当x=180分钟时,y1= y2;当x>180时,y1> y2:当x y2。
即若小周每月通话时间为180分钟时,可选择任何一家,若小周每月通话时间超过180分钟,应该选择中国联通130网,若小周的每月通话时间不到180分钟,应选择中国电信的“神州行”储值卡。
此外,除了教材和老师提出合适的实际问题外,还应组织学生深入社会调查,收集并提出生活或生产中的实际问题。
这样在老师的指导下,让学生投入解决问题的实践活动,自己去研究、探索,经历数学建模的全过程,从而体会方程、不等式、函数等是现实世界的数学模型,初步领会数学建模的思想和方法,提高数学的应用意识和应用数学知识解决实际问题的能力。
选择紧贴社会实际的典型
问题,深入分析,逐渐进行这方面的训练,使学生养成自觉地把数学作为工具运用的意识,在这一过程中,即培养了学生应用意识和应用能力的目的,又活跃了课堂教学活动,容易引导学生的学习兴趣。