A 16-bit Carry Skip Adder Designed by Reversible Logic

合集下载

加法器设计介绍

加法器设计介绍

加法器设计介绍算术逻辑部件主要处理算术运算指令和逻辑运算指令,它的核心单元是加法器。

这个加法器是影响算术逻辑部件整体性能的关键部分,因为几乎所有的算术运算和逻辑运算,都要通过它来完成。

加法器结构包括串行进位加法器(Carry Ripple Adder,CRA)、进位跳跃加法器(cany skip Adder,CKA),以及较高速度的进位选择加法器(carry select Adder,CSA)、超前进位加法器(Can 了Look—a}lead Adder,CLA)和并行前缀加法器(Parallel Prcfix Adder)等。

串行进位加法器(CRA)串行进位加法器是最简单、最基本的加法器结构。

串行进位加法器的进位像水波一样依次通过每位,因此也称为“行波进位加法器”。

它每次只能进行一位运算,因此速度很慢。

如下图所示进位跳跃加法器(CKA)进位跳跃加法器是串行进位加法器的改进结构。

它将整个加法器分为几个组,如果某组的所有进位传播信号都为“1”,则将该组的进位输入直接传送到输出,而不需要进行进位运算。

这个过程好像进位做了一个跳过该组的动作,因此称为进位跳跃加法器。

为了实现跳跃进位,每组需要增加一个多路选择器和一个与门,这种结构可以提高加法器的运算速度,但是,速度的提高只有在某些特定的情况下才会出现。

如下图所示进位选择加法器(CSA)进位选择加法器采用资源复制的基本思想,用硬件来换取速度。

它将整个加法器分为几个组,每组有两条路径,进位输入为“O”和“1”的两种情况通过两条路径同时计算。

一旦该组进位输入信号到来,通过多路选择器选择正确的进位输出与和值。

如下图所示由于采用了前瞻的思想,因此进位选择加法器的速度有很大提高。

如果整个加法器分为M 组,则运算延时可由第一组进位延时、M 个多路选择器的延时及一个和产生延时相加得到。

进位选择加法器虽然具有较快的速度,但由于它采用了资源复制的方法,因此实现代价也成倍增加。

64位高性能冗余二进制-二进制数转换器的设计

64位高性能冗余二进制-二进制数转换器的设计

64位高性能冗余二进制-二进制数转换器的设计胡薇;崔晓平;陈鑫【摘要】冗余二进制(RB)加法的进位无关特性和规整的压缩结构,可以设计高速冗余二进制乘法器。

冗余二进制乘法器由RB部分积产生、RB部分积压缩树和RB⁃二进制数转换器三个关键模块构成。

在此基于基⁃16 RB Booth编码结构提出了一种由进位跳跃加法器和并行前缀/进位选择混合加法器构成的冗余二进制⁃二进制数转换器。

用Verilog HDL对该转换器进行描述,在Synopsys的VCS平台上进行仿真验证,在SMIC 45 nm的工艺下,通过Design Compiler 对转换器进行综合,比较普通的并行前缀/进位选择转换器,设计的64位转换器在延时、面积和功耗得到有效的改善。

%In this paper,a new RB⁃NB (redundantbinary⁃normal binary) converter is proposed based on radix⁃16 RB Booth encoding structure,in which a hybrid of carry⁃skip adder andparallel⁃prefix/carry⁃select adder is used. The converter is realized by Verilog HDL and simulated in the VCS platform. Synthesis results using Artisan SMIC 45 nm standard⁃cell show that the proposed RB⁃NB converter achieves significant improvement in delay,area and power consumption,compared with the nor⁃mal parallel⁃prefix/carry⁃select converter.【期刊名称】《现代电子技术》【年(卷),期】2015(000)010【总页数】5页(P103-106,110)【关键词】RB-NB转换器;并行前缀加法器;进位跳跃加法器;冗余二进制乘法器【作者】胡薇;崔晓平;陈鑫【作者单位】南京航空航天大学电子信息工程学院,江苏南京 210016;南京航空航天大学电子信息工程学院,江苏南京 210016;南京航空航天大学电子信息工程学院,江苏南京 210016【正文语种】中文【中图分类】TN710-34乘法器作为高速数字信号处理器(DSP)、微处理器、RISC和FIR数字滤波器等各类芯片中的必不可少的运算逻辑单元,其性能的好坏对整个芯片系统有着极其重大的影响。

浅析英汉科技文体翻译策略

浅析英汉科技文体翻译策略

浅析英汉科技文体翻译策略作者:张起铭段钨金来源:《北方文学》2019年第20期摘要:全球化背景下,科技发展迅猛,中外科技交流日益增多,因此,作为科技交流的桥梁,科技翻译备受人们关注,同时培养科技翻译人才也成為当今时代的任务。

但因科技文体的特点:专业性强,语言客观准确等,除了传统的翻译通用方法外,其翻译策略需要进行相应的调整,本文将通过论述科技文体本身的特点,探究科技词汇、句法等方面特点,探索科技文体的翻译原则及翻译方法,为科技翻译学习者提供借鉴。

关键词:科技文体;科技词汇;科技翻译策略一、科技文体特点科学技术的迅速发展使得科技文体翻译在国际交往中的作用日渐突出。

科技文体涉及的内容广,专业性强,文本形式规范,语言客观准确。

科技文体的范围广,可以泛指一切论及或谈及科学和技术的书面语和口语,例如:科技著作,科技论文和报告等等,科技文体不具有华丽的辞藻,并没有太多感情色彩,所以在翻译时,译者必须从整体上把握科技文体的特点,根据不同的语境、篇章,具体采取不同的翻译方法。

(一)科技词汇科技词汇是词汇构成的重要组成部分,科技词汇(科技术语)是科技信息的载体,与普通词汇相比,科技词汇在解释现象,得出结论中其词义更为专业。

随着科学技术迅猛发展,科技词汇数量也不断增加。

因此,我们要了解科技词汇的来源,从而掌握构词规律,正确理解科技英语词汇的词义。

1.科技词汇来源英语词汇起源于希腊语和拉丁语。

根据一项数据表明:以一万个普通英语词汇为例,约有46%的词汇起源于拉丁语,7.2%起源于希腊语。

尤其在专业性极强的科技英语词汇中,这种比例会更高。

之所以希腊语和拉丁文能成为科技词汇的基本来源,究其原因是这两种语言都是“死”语言,不会随科技发展而引起词义变化,也不因一词多义现象而引发歧义,这能体现科技英语中准确的特点。

与此同时,隐喻也是科技英语词汇构成中另一个重要来源。

因大量新生科技事物的出现,让人们难以迅速理解其专业性。

但通过认知隐喻来为新生事物命名,可以让人们借助熟悉的事物去认知新事物。

《数字信号处理的FPGA实现》读书笔记

《数字信号处理的FPGA实现》读书笔记

<数字信号处理的FPGA实现>Verilog写状态机大概有这样几点要求:1、组合逻辑完成状态转移的条件判断,时序逻辑完成状态机的状态转移。

2、组合逻辑和时序逻辑分别在两个不同的always块中完成,根据状态机状态通过译码逻辑产生的与状态机无关的逻辑部分不要放在专用的状态机always块中。

3、状态编码预先定义为parameter,状态较少的状态机推荐使用one-hot方式编码,以减小译码逻辑的复杂度,提高性能。

4、建议单独使用一个模块来描述状态机。

5、状态机应有一个default状态,在上电复位的时候作为初始状态。

6、注意状态机组合逻辑中的if...else语句,不要出现latch。

7、对于复杂状态机,最好采用状态机嵌套方式完成。

其实上面很多都是按照Synopsys LEDA的coding style的要求的,状态机的写法相对固定,因此很多Design entry的工具可以自动生成状态机代码,Xilinx也有工具支持直接由状态转移图输入完成状态机的编码。

所以关键还是画好状态转移图,其他就相对简单了。

visual hdl+ISE+synplify Pro+modelsim!1.设计输入1)设计的行为或结构描述。

2)典型文本输入工具有UltraEdit-32和Editplus.exe.。

3)典型图形化输入工具-Mentor的Renoir。

4)我认为UltraEdit-32最佳。

2.代码调试1)对设计输入的文件做代码调试,语法检查。

2)典型工具为Debussy。

3.前仿真1)功能仿真2)验证逻辑模型(没有使用时间延迟)。

3)典型工具有Mentor公司的ModelSim、Synopsys公司的VCS和VSS、Aldec公司的Active、Cadense公司的NC。

4)我认为做功能仿真Synopsys公司的VCS和VSS速度最快,并且调试器最好用,Mentor 公司的ModelSim对于读写文件速度最快,波形窗口比较好用。

音响技术常用英文及缩写

音响技术常用英文及缩写

.附录:音响技术常用术语英汉对照A:AAC(automatic amplitude control)自动幅度控制AB AB制立体声录音法ABC(auto base and chord)自动低音和弦Abeyance 暂停,潜态Abort 终止,停止A-B repeat A-B重复Absolute music 绝对音乐,纯音Absorption 声音被物体吸收,吸声ABSS(auto blank section scanning)自动磁带空白部分扫描ABTD(automatic bulk tape degausser)磁带自动整体去磁电路A-B test AB比较试听ABX(acoustic bass extension)低音扩展AC(alternating current)交流电,交流AC(audio center)音乐中心AC(audio coding)数码声,音频编码AC-3 杜比数码环绕声系统AC-3 RF 杜比数码环绕声数据流(接口)Accent 重音,音调Accompaniment 伴奏,合奏,伴随According 手风琴ACE(audio control erasing)音频控制消磁A-Channel A(左)声道Acoustical 声的,声音的Acoustic coloring 声染色Acoustic image 声像Across frequency 交叉频率,分频频率Active 主动的,有源的,有效的,运行的Active bias 有效偏磁Active crossover 有源分频,电子分频Active loudspeaker 有源音箱Activity (线圈)占空系数,动作Adagio 柔板(从容地)A/D(analog to digital)模拟/数字转换ADD(address)地址Adder 加法器,混频器A.DEF(audio defeat)音频降噪,噪声抑制,伴音静噪ADJ(adjust)调整,调节ADP(T)(adapter)适配器,转接器ADRES(automatic dynamic range expansion system)动态范围扩展系统A.DUB(audio dubbing)配音,音频复制,后期录音ADV(advance)送入,提升,前置量AE(audio erasing)音频(声音)擦除Aerial 天线AF(audio fidelity)音频保真度AF(audio frequency)音频频率AFC(acoustic field control)声场控制AFC(automatic frequency control)自动频率控制Affricate 塞擦音AFL(after fader listen)衰减后(推子后)监听A-fader 音频衰减器After glow 余辉,夕照时分音响效果AGC(automatic gain control)自动增益控制AHD(audio high density)音频高密度唱片系统AI(amplifier input)放大器输入A-IN 音频输入ALC(automatic level control)自动电平控制Align alignment 校正,补偿,微调,匹配Al-Si-Fe alloy head 铁硅铝合金磁头Allegretto 小快板,稍快地Allegro 快板,迅速地Allocation 配置,定位All rating 全音域ALM(audio level meter)音频电平表ALT-CH(alternate channel)转换通道,交替声道AM(amplitude modulation)调幅(广播)Ambience 临场感,环绕感Ambiophonic system 环绕声系统,立体混响系统Ambiophony 现场混响,环绕立体声AMLS(automatic music locate system)自动音乐定位系统Amorphous head 非晶态磁头AMP(amplifier)放大器AMS 跳曲播放.AMS(automatic music sensor)自动音乐传感器AMSS(automatic music select system)自动音乐选择系统Analog 模拟的,模型,类似Analog cueing track 模拟提示轨迹Analog audio master tape模拟原版录音带Analog cassette tape模拟盒带录音机ANC(automatic noise canceller)自动噪声消除器ANL(automatic noise limiter)自动噪声抑制器ANRS(automatic noise reduction system)自动降噪系统ANT(antenna)天线Anti-hum 哼声消除AOM(acoustic optical modulator)声光调制器AP(automatic pan)自动声像控制APC(automatic phase control)自动相位控制APCM(adaptive PCM)自适应脉冲编码调制Aperture distortion 孔径失真APLD(automatic program locate device)自动选曲,自动节目逻辑装置APN(allochthonous)声像漂移APPS(automatic program pause system)自动节目暂停系统APS(automatic program search)自动节目搜索APU(audio playback unit)音频重放装置AR(audio response)音频响应ARC(automatic record control)自动录音控制ARP(azimuth reference pulse)方位基准脉冲Arpeggio 琶音Arpeggio single 琶音和弦,分解和弦Articulation 声音清晰度,发音ASC(automatic sensitivity control)自动灵敏度控制ASK(amplitude shift keying)振幅键控ASP(audio signal processing)音频信号处理ASSEM(assemble)汇编,剪辑Assign 指定,转发,分配AST(active servo technology)有源伺服技术(一种超低频重放技术)A Temp 回到原速AT(attenuator)衰减器ATC(automatic timing correction)自动定时校准器ATC(automatic tone correction)自动音调调整ATD(automatic tape degausser)磁带自动去磁器ATF(automatic track finding)自动寻迹ATRAC(adaptive transform acoustic coding)自适应转换声学编码ATS(automatic tuning system)自动调谐系统Attack (压限器)启动时间Attack delay 预延时AU(adapter unit)适配器Audible sound 可闻声Audience area 听众区Audio 音频,音频的,音响Audition 试听发音,播音前试音Aural Exciter 听觉激励器Auricle effect 耳廓效应Auto match 自动匹配Auto punch 自动补录Auto reverse 自动翻转Auto select 自动选择Auto space 自动插入空白信号(乐曲间)Auto sweep 自动扫描,自动搜索Auto tune 自动调谐AUTP(auto punch)自动穿插录音AUX(auxiliary)辅助AV(audio/video)音视频,音像系统AVC(automatic volume control)自动音量控制Average value 平均值,平衡,抵消A-weighting A-计权AWM(audio wave form memory)音频波形记忆AWM(automatic writing machine)自动写入机Azimuth loss 方位损失(以上已校对)B:B(band)频带B(bit)比特,存储单元B(button)按钮Back 返回Back drop交流哼声,干扰声Back ground noise背景噪声,本底噪声Back off 倒扣,补偿Becktracking 补录Backup磁带备份,支持,预备Backwand快倒搜索. Balanced 已平衡的Balancing调零装置,补偿,中和Balun平衡一不平衡转换Bananaplug香蕉插头Band频段,频带,波段Bandpass带通滤波器Bandwidth频带宽,误差,范围BAR(barye)微巴Base低音,基础,底层Bass低音,倍司(低音提琴)Bassdrum低音鼓、大鼓Basstube低音号,大号Bassy 低音加重BATY(battery)电池BB(baseband)基带BBD(bucketbrigadedevice)斗链器件(效果器)BCD(binarycodeddecimal)二一十进制BCH(bandchorus)分频段合唱Beat拍,脉动信号Beatcancelswitch差拍干扰消除开关Bel 贝尔Bend 弯曲,滑音Bender 滑音器BP(backfeed)反馈Ⅲ(backfeedflanger)反馈镶边BGM(backgroundmusic)背景音乐Bias偏置,偏磁,偏压,既定程序Bi-directional 双向性的,8字型指向的Bigbottom低音扩展,加重低音Binauraleffect双耳效应,立体声Binauralsynthesis双耳合成法(三维立体声)binarydiSitd 字节,二进制数字B让位,比特B讧SYNC 位同步Bityield存储单元BK(bteak)停顿,间断Blamp两路电子分音Blaster爆裂效果器Blend融合(度),调和,混合Blockrepeat 分段重复Block叩阻塞Bloop (磁带的)接头噪声,消音贴片BNC(bayonetconnector)卡口电缆连接器Bodymike 小型话筒Bongo 双鼓Boom混响,轰鸣声Boomy 嗡嗡声(指低音过强)Boost 提升Booth控制室,录音棚Bottoming底部切除,末端切除Bounce 合并Beurdlon 单调低音Bowl碗状体育场效果BPC(basicpulsegenerator)基准脉冲发生器BPF(bandpassfilter)带通滤波器BPS(band江tchshift)分频段变调Break 中止(程序),减弱Breathing 喘息效应Bridge 桥接,电桥,桥,(乐曲的)变奏过渡Bright 明亮(感)Brightness 明亮度,指中高音听音感觉Brilliance 响度BTB(basstuba)低音大喇叭B'IL(balancedtransformer-less)无平衡变压器(功放),(功放)桥接输出BTM(bottom)最小,低音Bus 母线,总线BUT(button)按钮,旋钮BW(bandwidth)频带宽度,带宽BY(bypass)旁路BZ(buzzer)蜂鸣器B/CtypeDolbysystem杜比B/C型系统C:C(clear)清除CAC(coherentacousticcoding)相干声学编码CAL(calando)减小音量,渐弱CAL(calibrate)校准,分度Calibrate 校准,定标.Call 取回,复出,呼出,调出Can 监听耳机,带盒Cancel 取消,清除,删去Cannon卡侬插口,平衡连接Canon规则,测弦器Capacitancemic电容传声器Cardioid心形的Cam4dg e盒式存储器,盒式磁盘Cassette盒式的,卡式的CAV(constantan~arvelocity)恒角速度(LD唱机的速度类型)CC(contourcorrection)轮廓效应CCIRWeighting CClR(国际无线电通信咨询委员会)计权CCW(counterclockwise)反时针CD(compactdisc)激光唱片,激光唱盘CD-E(compactdiscerasable)可抹式激光唱片CDG(compact disc plus graphic)带有静止图像的CD唱盘CDH(constantdirectionalham)恒指向号筒CD-DA(compact discdigita1 audio)小型数字化音频唱片,镭射唱碟CD-I(compactdiscinteractive)可对话数字式激光唱片CD-R(compactdiscrecordable)可录音激光唱片CD-ROM(CD-readonlymemory) CD只读存储器CDS(CD-single)单曲激光唱片CDV(compact-discvideo)带有5min图像和声音内容及20min无图像的声音内容的激光唱片,静止图像激光唱片Cellarclub地下俱乐部效果Cello 大提琴Cent 音分CF(centerfrequency)中心频率Crossfade 软切换CH(channel)声道,通道Chainplay连续演奏Chamber密室音响效果,消声室Chapter章,章节,曲目Chapterskip跳节(节目定位方式)CHAR(character)字符,符号CharacteristicCHIVe 特性曲线Chase 跟踪,追踪Check校验,抑制,停顿Choke 合唱Choose 选择Chord和弦效果Chorus合唱效果、和声Chromatic色彩,半音阶Church教堂音响效果CI(cutin)切入CIC(crossinterleavecode)交叉隔行编码CIRC(circulate)循环CIRC(crossinterleaveReed-Solomoncode)交叉交织里德-索罗门码CKW(clockwise)顺时针,顺时针旋转,右旋的CL(cancel)取消,消除CL(controllogic)控制逻辑Clarinet 单簧管Clarity 清晰度Classic古典的(音乐风格)Clean净化,纯净Cleanstart 即可播出Clearness 清晰度Click滴哒声,节奏点,开关噪声Clip削波,限幅,接线柱CLK(clock)时钟,时钟信号,时值Clocking时钟脉冲,同步Close关闭,停止Close-talkingmicrophone近讲传声器CLR(clear)归零,清楚,清零CIS(controllisten)控制室监听Cluster音箱阵效果CLV(constant hnearvelocity)(LD机)恒线速度CMP(compact)压缩CMPT(compatibil时)兼容性CMRR(comlnonmode响ectionratio)共模抑制比CNT(count)计数,计数器CNTRL(central)中心,中央,中间CO(earlyout)定位输出CO(cut-off)切断,截止Coarse 粗调Code码,编码Coefficient 系数Coincident 多信号同步,同相信号集合.Cold冷的,冷端,单薄的Color颜色,色彩,染色效果Coloration 声染色COM(comb)梳状(滤波)COM(commutator)转换器,整流器COMB(combination)组合,组合音色Combining集合,结合Command指令,操作,信号COMP(comparator)比较器COMP(compensate)补偿COMP(component)元件,成分COMP(composition)混合,合成COMP(compressor)压缩器COMP(compound composition)复合的,复合信号,合成器Compact 压缩,组合Compander压缩扩展器,压扩器Compatibility 兼容Complextone 复音Composer作曲者,创意器Compressionsustainer压缩延音器(效果处理装置)COMP-EXP(compressor-expander)压缩—扩展器,压扩器Compromise (频率)平衡,折中Concert音乐厅效果Condensermicrophone电容传声器Conetype锥形(扬声器)CORR(correct)校准,补偿,抵消Console 调音台Consonant 辅音CONT(continuous)连续的(音色特征)CONT(control)控制,操纵Continuebutton (两录音卡)连续放音键Contra次八度,逆,对抗Contrast对比度,比较器Constantdireetivity恒指向性(号筒)CONV(converter)变换器CONV(convertible)可变换的CORR(correct)校准,调整,补偿,调校Copy 拷贝,复制Correlationmeter (相位)相关表COSM(compositeobjectsoundmodeling)组合目标声音模型Count-in 预备拍Couple 耦合Counteractingproximityeffect近讲传声器Counter-clockwise 逆时针Coverage覆盖范围,有效范围CP(clockpulse)时钟脉冲CP(controlprogram)控制程序CRC(cyclicredundancycheck)循环冗余校验Crescendo渐强或渐弱Crispness清脆感、脆声CRN(Chinch)嘎吱失真效果声Crossfade 软切换Crossfader交叉渐变器、交互推杆Cross-MOD 交叉调制Crossover分频器,换向,切断,跨线桥Crosstalk声道干扰,串音Crunch摩擦音,嘎吱失真效果声CST(casestyletape)盒式磁带Cue 提示,选听,衰减前监听,插入(某声部),快速检索Cueclock故障计时钟Cursor 显示窗口中的星标,指示器,光标Curve (特性)曲线CUT切去,硬切换,剪辑,终止键,复位开关,分割Cut-in 断—通(控制).Cut-off切去,取直、截止频率Cut-out 中断Cut-over 开通,转换CV(converters)变换器,变频器CW(continuouswave)连续波CW(clockwise)顺时针CX(cancel)删除,消除噪声CX(complex)综合的,复合的CyelePlaybutton双卡连续放音器Cyelelog程序调节器D:D(double)双重的,对偶的D(drum)鼓,磁鼓.DA(delayedaction)延迟作用DAC(digitaltoanalogconverter)数模转换器Damp 阻尼,衰减Damper 延音器,滞音器Damping衰减的,稳定的DASH(digitalaudiostationaryhead)数字固定磁头(录音机)DASH-F 快速DASHDASH-L 慢速DASHDASH-M 中速DASHDashpot缓冲器,减震器DAT(digitalaudiotape)数字音频磁带,数字录音机Data 数据Datacard音色扩展卡Datatransfer数据传输Datatron数据处理机Date 日期dBA(decibelabsolute)绝对分贝dBA(decibel,A-weight)加权值分贝,A计权dBA(decibel adjusted)调整分贝(等于82dBm)DBB(dynamicbassboost)动态低音提升DBD(doubledelay)双重延时dBm(decibe labove one milliwatt in 600ohms)毫瓦分贝DBX 压缩扩展式降噪系统DCC(digital compact cassette)数字卡式录音机、数字微型音频磁带DCF(digitalcombfilter)数字梳状滤波器DCH(decadechorus)十声部合唱DD(Dolbydigital)数字杜比DDRP(dynamics detection recording processor)动态检测录音处理器DDS(digitaldynamicsound)数字动态声DDSC(dynamic discrete surround circuit)动态分离环绕声电路Dead具有强吸声特性房间的静寂Deadroom 消声室DEC(decay)衰减,渐弱,余音效果Decipherer 解码器Decoder 解码器Deemphasis 去加重Deepreverb 纵深混响De-esser 去咝声器DEF(defeat)消隐,静噪DEF(definition)清晰度DEL(delay)延时,延迟,延时时间DEMO(demodulator)解调器Demo 自动演奏Density密度,声音密度效果Demne音高微调,去谐Deplqn 纵深微调Denoiser 降噪器Deuthchkeit 清晰度DEX(dynamicexciter)动态激励器DF(dampingfactor)阻尼系数DF(dynamicfiher)动态滤波器DFS(digital frequency synthesizer)数字频率合成器DI(datainput)数据输入(接口)Dial调节度盘Diaphragm 膜,振膜DIFF(differential)差动,差分Diffraction 衍射,绕射Diffusion扩散,声音在空间扩散效果Digitalpingpong数字乒乓DIM(diminished)衰减,减半音Directfromdiskplay随读随放DISC(discriminator)鉴相器Disc唱盘,唱片,碟Disco迪斯科,迪斯科音乐效果Discord 不谐和弦Disk 唱盘,碟Dispersion (音箱)频散特性,声音分布Displacement偏转,代换Distortion 失真,畸变Distributer分配器,导向装置Dim变弱,变暗,衰减Dither 颤抖DIV(divergence)发散Dividepickup分弦拾音器DJ(DiscJocker)唱片骑士,从事专业扩声调音工作的人DL(delay)延迟DLD(dynamiclineardrive)动态线性驱动DLT(digitallineartapetechnology)数字线性磁带技术.DMX(datamultiplex)数据多路(传输)DNL(dynamicnoiselimiter)动态噪声抑制器DNR(dynamicnoisereduction)动态降噪电路DO(dollyout)后移DO(dropout)信号失落DOL(dynamicoptimumloudness)动态最佳响度Dolby杜比,杜比功能Dolbylk(headroomexpansion)杜比动态余量扩展,峰值储备扩展DolbylhPro(DolbyHxprobeadroomextensionsystem)杜比HxPro动态余量扩展系统DolbyNR 杜比降噪Dolbvsurround 杜比环绕Domeloudspeaker球顶扬声器DOP(Doppler)多普勒(响应)Double加倍,双,次八度Doublespeed 倍速复制DPL(Dolbyprologic)杜比定向逻辑D. Pohereffect 德·波埃效应Drdisplacementcorrector 位移校准器,同步机Drama 剧场效果Dr. Rhythm 节奏同步校准器drop-frameTC 失落帧时间码Drum鼓Dry干,无效果声,直达声DS(distortion)失真DSL(dynamic superloudness)低音动态超响度,重低音恢复DSP(digitalsignalprocessor)数字信号处理器DSP(digitalsoundprocessor)数字声音处理器DSP(diftalsoundfieldprocessor)数字声场处理器DSP(dynamicspeaker)电动式扬声器DTS(digitaltheatersystem)数字影剧院系统Dabbingmixer混录调音台Duck按入,进入,潜入DUP(duplicate)复制(品)Dutycycle 占空系数,频宽比DVC(digitalvideocassette)数字录像带DVD(digitalvideodisc)数字激光视盘Dyilamicfilter动态滤波(特殊效果处理)器Dynamicrange动态范围EFM(eighttofourteenmodulation) 8—14调制Envelope 波封、包络EX(exciter)激励器EXB(expandedbass)低音增强EXP(expender)扩展器,动态扩展器Expressionpedal 表情踏板(用于控制乐器或效果器的脚踏装置)EXTN(extension)扩展,延伸(程控装置功能单元)F:F(fast)快(速)Fadein-out 淡入淡出,慢转换Fader 衰减器Fade up 平滑上升Failure 故障Fall 衰落,斜度FAS(fullautomaticsearch)全自动搜索Fat浑厚(音色调整钮)Fattensont 平直输出(指频响特性曲线为一条直线时的信号输出)Fault 故障,损坏Fadingin 渐显Fadingin-out淡入淡出,慢转换Fadingout 渐隐False 错误Fat Er 丰满的早期反射FBO(feedback outrigger)反馈延伸FD(fade depth)衰减深度FeCr 铁铬磁带Feed/rewind spool供带盘/倒带盘Ferrite head铁氧体磁头FF(fast forward)快进Field pickup 实况拾音Filter 滤波器Final 韵母Fine 微调Fingered 多指和弦Finger手指,单指和弦Fire 启动Fix 确定,固定. Fizz 嘶嘶声FL(fluorescein)荧光效果Flange 法兰音响效果,镶边效果Flash 闪光信号Flat 平坦,平直Flatnoise 白噪声Hattuning 粗调Flute 长笛Flutter一种放音失真,脉冲干扰,颤动FM(fademargin)衰落储备FM(frequencymodulation)调频广播FO(fadeout)渐隐Focus焦点,中心点Foldback返送,监听Foot(board)脚踏板(开关控制)Fomant 共振峰FR(frequencyresponse)频率响应Frame 画面,(电视的)帧Frames 帧数Free 剩余,自由Freeechoes 无限回声(延时效果处理的一种)FREQ(frequency)频率F. Rew(fastrewind)快倒Freeze凝固,声音骤停,静止Frequency shifter移频器,变频器Frequency synthesizer频率合成器Fricative 擦音FS(frequency shift)频移,变调FS(full short)全景FSK(frequencyshiftkeynS)移频键控FIS(favemtetrackselection)最佳声迹选择Full丰满,饱和Fullauto 全自动Fulleffectrecording全效果录音Fullrange全音域,全频Fullness声音的丰满度Function 功能,作用fundamentaltone 基音Fuzz 杂乱声FX(effect)效果Gain增益,提衰量Gamut 音域GatedRew 选通混响(开门的时间内有混响效果)Gear 风格,格调General 综合效果Girth激励器的低音强度调节Glidestrip滑奏条(演奏装置)GLLS-sando滑降(演奏的效果)GM(generalMIDl)通用乐器数字接口Graphicequalizer 图示均衡器,图表均衡器Group(调音台)编组,组GTR(gatereverb)门混响Guitar 吉他Gymnasium体育馆效果H:Hall厅堂效果Hardknee (压限器)硬拐点Harmonicdistortion谐波失真Harmonize (使)和谐,校音Harmony 和谐Harp 竖琴Hasseffect 哈斯效应HDR(harddiskrecorder)硬盘录音机Head 录音机磁头,前置的,唱头Headazimuth磁头方位角Headgap磁头缝隙Headroom 动态余量,动态范围上限,电平储备Headphone头戴式耳机Heavymetel 重金属(声)Hearing听到,听觉HF(highfrequency)高频,高音Highcut高切,低通Highpass高通Hi-Fi(highfidelity)高保真,高保真音响Hiss 咝声Hi-Z 高阻抗HLR(hallreverb)大厅混响.Hoisting提升Hold保持,无限延续,保持时间Howling啸叫声Howlround 啸叫HPA(Hass pan allochthonous)哈斯声像漂移HPF(high pass filter)高通滤波器Hum交流哼声,交流低频(50Hz)噪声Hum and noise 哼杂声,交流噪声,哼声和噪声HX(headroom extension)动态余量扩展(系统)(一种杜比降噪系统),净空延伸Hyper condenser超心形的I:IF(intemidiate frequency)中频的I/F(intefface)接口I/O(input/output)输入/输出IMD(intermodulation distortion)互调失真IMP(impedance)阻抗Improper错误的IN(inverter)反演器,倒相器Inactive暂停,失效的Indicator显示器,指示器Increase 增加Initialdelay早期延时,初次延时Instrument 乐器INT(intensity)强度,烈度Intelligentarranger智能型自动伴奏器Intelligibility可懂度Interactivesongfdes互动式歌曲档案Intercut 插播Interface接口,对话装置Interference干扰,干涉,串扰Intermodulationdistortion 互调失真Interval 音高差别Intimacy 亲切感Intonation 声调INTRO Scan 曲头检索(节目搜索)INTRO sensor 曲头读出器(节目查询)Inverse 倒相Inversevefew颠倒式混响效果,反混响效果IV(interval)间隔搜索IWC(intermptedwave)断续波Jaff 复干扰Jaggclub 爵士乐俱乐部效果Jam 抑制,干扰Jamproof 抗干扰的Jazz 爵士Karaoke 卡拉OK,无人伴奏乐队Kerr 克耳效应,(可读写光盘)磁光效应Key 键,按键,声调Keycontrol 键控,变调控制Kickdram 底鼓、底通鼓Kill 清除,消去,抑制,衰减,断开,杀毒Knob 按钮,旋钮,调节器KX(key)键控Labial 唇音L(left)左(立体声系统的左声道)L(line)线路L(link)链路L(long)长(时间)Lacth 踩下开启再次踩下关闭型脚踏开关Lag 延迟,滞后Lapdissolve 慢转换Lapseswitching 通断切换Largehall 大厅混响Iarigot 六倍音Latch 脚踏开关的一种Layer 层叠控制,多音色同步控制LCR(1encenterright)左中右LD(1agervisiondisc)激光视盘,影碟机Legato 连奏Lento 慢板Lesion 故障,损害Leslie 列斯利(一种调相效果处理方式)Level 电平,水平,级LF(low frequency)低频,低音LH(low noise high output)低噪声高输出磁带.L hall(large hall)大厅效果Lift up 升起Light down 降下Limiter 限制器Linear 线性Linedriver 线路激励器Link 连接,链路,耦合线,网络线Listen 监听Live 现场、活跃Liveness 临场感Livestudio 现场录音室IAI(10wnoise)低噪声磁带LO(10ck-on)上镜LOC(10cation)位置Local 地方的,区域local on/off决定MIDI键盘本身是否发音,对输出无影响Locate 找出,确定位置,位置,定位Lock 锁定,同步Loop 回路,环接,循环录音,环线开线,循环乐段Loudness 声音响度Low 低,低频,低音Lowcnt 低切Lowpass 低通LPF(low pass filter)低通滤波器LTO(linear tape-open technology)线性开放式磁带技术L/R left/right 左/右MADI(musical audio digital interface)音频数字接口Main 主要的,主线,主通道,电源Magnetictyperecorder 磁带录音机Major chord 大三和弦Manual 手动的,人工的,手册,说明书March 进行曲Margin (电平)余量Masking 掩蔽Master 总音量控制,标准的,主的,总路,MATmatrix 矩阵,调音台矩阵(M),编组Match 匹配,适配,配对Matrixquadsystem 矩阵四声道立体声系统MAX(maximnlll)最大,最大值—MC(manualcontrol)手控,手动控制MCH(multiple chorus)多路合唱MCR(multiple channel amplification reverberation)多路混响增强MD(MiniDisc,MicroDisc)光磁盘唱机,小型录放唱盘MDL(modulationdelay)调制延时Measure 乐曲的,小节Measedit 小结编辑MED(medium)适中,中间(挡位)Medley 混合Megabass 超重低音MEM(memory)存储器,存储,记忆Menu菜单,目录,表格MEQ(monoecp]alizer)单声道均衡器Mel 美(音调单位)Metal 金属(效果声)Metaltape 金属磁带Metronome 节拍器MF(middlefiequency)中频,中音MFL(multiPleflange)多层法兰(镶边)效果MFX 多重效果器MIC(microphone)话筒,麦克风,传声器MID(middle)中间的,中部的,中音,中频MIDI(music instrument digital interface)电子乐器数字接口MIN(minimum)最小,最小值MIN(minute)分钟Minitrim 微调Minorchord 小三和弦Mismatch 失配MIX 混合,音量比例调节Mixer 调音台,混音器MO(magneto optical)可抹可录型光盘MOD(mode)状态,方式,模式,(乐曲的)调式MOD(modulation)调制Modeling 模拟Moderato 中速Modulator 调制器Momentory 暂时型脚踏开关Monkeychatter 串音,邻频干扰,交叉失真Mono 单声道,单一.Movietheater 影剧院MPEG(motion picture coding experts group)行动图像编码专家组,数字声像信息压缩标准MPO(music power output)音乐输出功率MPR(muster pre return)主控前返回MPS(manual phase shifter)手控相移器MPX(multiplex)多路传输,多次重复使用,多路转换,复合MQSS(music quick select system)快速音乐选择系统MR(magneto-resist element,magnetoresistor)磁敏电阻MR(magneto-resist head)磁阻型磁头MS(manual search)手动检索MS(middle side)一种叠合录音技术MSSS(multi space sound system)多维空间声系统MT(multi track)多轨MTC(MIDI time code) MIDI时间编码MTD(multiple delay)多次延时MTR(magnetic tape recorder)磁带记录器MTV(music TV)音乐电视(节目)Multiband 多频段Multimbral 多重音色Multi-echo 多重回声Multiple channel 多通道Multiple effects 综合效果处理装置Multisound 原始音色Mush 噪声干扰,分谐波Music 音乐,乐曲Music center 音乐中心,组合音响MUT(mute)静音,哑音,噪声抑制Mutual biasing 互偏磁MV(mean value)平均值MXE(mono exciter)单声道激励器N(negative)阴极,负极Name 名称,命名Natural 自然的,天然的,固有的NC(needle chatter)唱针噪声Nazard 三倍音Near field 近场NEP(noise equivalent power)噪声等效功率News 人声广播音响效果,新闻Noise 噪声Noise gate 噪声门,选通器Noise suppressor 噪声抑制器NOM nominal 标称的,额定的None(non-direction)全向的,五指向性的Nonieme 九倍音Normal frequency 简正(共振)频率Note 符号,注释,音调,音律,记录、音符NR(noise reduction)降噪,噪声消除Null 空位,无效的Oboe 双簧管OCK(operation control key)操作控制键OCL(output capacitorless)无输出电容功率放大器OCT(octave)倍频程,八度音OD(over drive)过激励Off 关闭,断开Omni MIDI 器材工作状态,on时接受所有信号,off时只接受某一频道信号Omnidirectional 无方向性的On 开,接通One-way relay play 单向替换放音OP(over pressure)过压Open 打开,开启Opem 歌剧ORC(opbmulnrecordingcurrent)磁头最佳记录电流Orchestra 管弦乐器Organ风琴,元件OSS(optimal stereo signal)最佳立体声信号OTL 无输出变压器功率放大器Outage 中断Out of phase 相位抵消Out phase 反相OVDB 重叠录音Overcut 过调制Over drive 过激励Overdubs 叠录Overeasy 半生熟,软拐点Overflow 信号过强Overhang (激励器)低音延伸调节Overhearing 串音.Over sampling 过取样Overtone 泛音OVWR(overwrite)覆盖式录音P(positive)正极,阳极PA(power amphfier)功率放大器PA(preamplifier)前置放大器PA(pubhc address)扩声PAD 定值衰减,衰减器,(打击乐大按键的)鼓垫Panning 声像Panotrope 电唱机Parallel 并联,平衡PAR(PARAM)(parameter)参数,参量,系数Part 声部数,部分Partialtone 分音,泛音Pass 通过Passive 被动,被动分频,功率分频Patch 临时,插接线,用连接电缆插入、音色Patchfinder 音色搜寻Pause 暂停,间歇,停顿PB(playback)播放,重放PCC(phase correlation cardiod microphone)相位相关心形传声器PCM(precision capacitor microphone)精密电容传声器PCM(pulse code modulation)脉冲编码调制PDP(plasmadisplaypanel)等离子显示板Peak 峰值,削波(灯)Pentatonic 五声调式PEQ(pammeter equalizer)参量均衡器PERC(percussion)打击乐器Permalloy head 坡莫合金磁头Perspective 立体感PFL(per fader louder speaker)衰减前监听,预监听PGM(program)节目,程序Pamno/Step 节目号码/步骤Pgmtime 节目时间Phantom 幻像电源,幻像供电Phase 相位,状态Phase REV 倒相(电路)Phaser 移相器、相位效果器(类似Flanger)Phon 方(响度单位)Phone 耳机,耳机插口Phoneme 音素Phono(phonograph)唱机Phono connector 莲花插座Phrase preview 乐句预听Physidopcal acoustics 生理声学Pianotron 电子钢琴Hano 钢琴Hanowhine 钢琴鸣声Piccolo 短笛Pick-up 拾音器,唱头,传感器Pilot 指示器,调节器Pilotjack 监听插孔PIN(position indicator)位置指示器Ping 爆鸣声,声响Pinknoise 粉红噪声Pipe 管,笛Pitch 音高,音调Pitch shifter 变调器,移频器Place 置入,起作用Plate 金属板效果,板混响器Play 播放,重放,弹奏Hayback 播放PLL(phase locked loop)锁相回路,锁相环PLR(plate reverb)金属板混响Plug 插头Plunge 切入PMPO(peak music power output)音乐峰值功率输出Point 接点,位置,交汇点Point source 点声源Pointer 指示器,指针Polarity 极性Polyphony 复音Pop 突然,爆破音,(传声器近讲时的)气息噗噗声Popfilter 噗声滤除器Pops 流行音乐,流行音乐音响效果Portamento 滑音. Position 位置;状态POSITVE(positive)阳极,正极POST(posterior)后,后面,之后POT(potentiometer)电位器,电位计P.P.(panoramic potentiometer)全景电位器P-P(peak-peak)峰一峰值PPD(pingpong delay)乒乓延时PPI(peak program indicator)峰值显示器PPL(peak program level)峰值音量电平PPM(peak program meter)峰值节目表,峰值音量表Pre 前置,预备,之前Pre-delay 预延迟Pre echoes 预回声Pre emphasis 预加重Preselecfion 预选Presence 临场效果,现场感Preset 预置,预调Press 按,压Preview 预演Prime 同度音PRM(parameter)参量Program change 音色切换Program set indicator 电脑选曲节目选定指示Prosody 韵律Proximity effect 近距离效果Prwsnt 突出感PSK(phase shiftkeying)移相键控PSM(pitchshift modulation)交频调制Psychological acoustics 心理声学PU(pickup)拾音Pull 拉,趋向Pull-in 接通,引入Pumping 抽气效应、泵效应Punch 补录Punch in/off 切入/切出录音Puretone 纯音Purging 净化Push 推,按钮,压PZM(pressure zone microphone)压力区传声器Q(quality factor)品质因数,Q值,频带宽度QIC(quarter inchc caridge) 1/4英寸盒式带Quack 嘈杂声Quadmphony 四声道立体声Quality 音质,声音Quantize 拍子校正、拍点调整Quantizing 量化Quaver 八分音符Quench 断开,抑制Quint 五度,次三倍音Quiver 颤动声RAN(random)随机的,任意的,无规则的Range 范围,最大提衰量,幅度·Rate 比率,速率,变化率,频率Ratio 压缩比,扩展比,比,系统RCA jack 莲花接口R-DAT(rotary head-DAT)旋转磁头式数字录音机RE(reset)复位Ready 预备,准备完毕Rear 背面,后部,后置Recall 招回,调出,重显Record 记录,录制,唱片Recorder 录音机Recovery 恢复,复原Reduce 减少,降低,缩小Reduction 压缩,衰减,形成Reecho 回声REF(Reflection)反射REGEN(regeneration)再生(混响声阵形成方式),正反馈Rehearsal 排练,预演Rejection 抑制Release 恢复时间,释放,断路器Remain 保持,剩余,余量,状态保持Remote 遥控的,遥远的,远距离的Repeat 重复Repeat mode 双面反复放音(录音机)Replacing 替换,置换,复位Reset 复位,恢复,归零,重复,重新安装Resolution 分辨度,分析.Resonance 共振,回声,共鸣,共鸣度,谐振Rest 休止符,静止,停止RET(return)返回,回送REV(reverse)混响,残响Reverb depth control 混响深度控制Revcolor 混响染色声Reversal 反相,相反,反转,改变极性Reverse 回复,翻转,反混响REW(rewind)快速倒带RFI(RF intefferece)射频干扰RIAA(Recording lndustry Association Of America)美国录音工业协会Ribbon microphone 铝带传声器,压力带传声器Rechness 丰满度Rhythm 节奏Right 右声道,垂直的,适当的Ring 环,大三芯环端,冷端接点,振铃Ring mode 声反馈临界振铃振荡现象Rit 渐慢RMS (rootmeansquare)有效值RND(random)随机的Rock 摇滚乐,摇滚乐音响效果Rolloff 高低频规律性衰减,滚降Rotary head 旋转磁头RT60(Reverberation time)混响时间Rough 粗的,粗糙的,近似的RPS(real-time phrase sequencer)即时乐段编曲器RSS(Roland sound space processing system)罗兰声音空间处理系统RTA(real time analyzer)实时分析(仪),频谱分析(仪)Ruby stylus 红宝石唱针Rumba 伦巴Rumble (低频)隆隆声RV(rendezvous)会聚点RVS(reverse shift)反向移动Samba 桑巴Sampling 抽样,脉冲调制SAT(saturate)饱和效果处理Save 存储,保存Saxophone 萨克司管Scale 音阶,刻度尺标Scale unit 标度单位,分频器Scan 搜索,记录,扫描Scattering 散射Scene 实况,场面、场景记忆、SCH(stereo chrous)立体声合唱SCMS(successive copy manage system)连续复制管理系统(DAT设备中防止多次转录节目的系统)Scoring 音乐录音Scraper 刮声器SD(space division)空间分布S-DAT(stationary headDAT)固定磁头DAT机SDDS(sony dynamic digital sound)索尼动态数字环绕声系统SDF(standard delay format)标准延时格式SE(sound effect)音响效果Search 搜索,扫描Seek 搜索Select 选择Self biasing 自偏磁Semibreve 全音符Semioctave 半个八度音Semit 半音Send 送出,发送,发射Sense 分辨率Sepheme 七倍音Sequence 排序,序列、编曲器Sequencor 音序器SES(spatial effect system)立体声空间效果系统Session 跟随自动伴奏Set 调整,设定,装置,定位,接收机Setup 设定,构成,菜单,组合,调整,安装SFL(stereo flange)立体声镶边SFS(sound field synthesis)声场合成S-hall(small hall)小型厅堂效果Shake 震动Sharednan 小军鼓Sharpness 清晰度,鲜明度,锐度Shelving 滤除,滤波处理,波形(均衡),搁架式均衡曲线Shift 转换,变调,移频,漂移Shock 冲击. Short 短的Short gate 短时选通门(混响效果)SHUF(shuffle)随机顺序节目播放SHUTY(shuttle)变速搜索,往复SI(sneak in)淡入Sibilance 齿音,咝音Sibilant 咝音Sibilation 咝音,高频声畸变Side 边,面,侧面,方面Side chain 旁链,边链Signature 特征,音乐的调号Simple tone 纯音Simulate 模拟的Single 单,单次,单独的,单碟Siren 旋笛Skip 跳跃,省略Slap 拍打效果Slap back 山谷回声Slap reverb 山谷混响效果Slave 从属的,从机,从动的Sleep 睡眠定时开关,静止SLE(Sleeve)接地点,袖端,套Slew rate 瞬态率Sliding tone 滑音Slow 慢速S/M(speech/music)语言/音乐S/N(signal-to-moise ratio)信噪比Small club 小俱乐部效果Smear 曳尾,拖尾,浑浊不清Smear correction 拖尾校正SMF(standard MIDI file)标准MIDI格式文件Snare drum 响弦小鼓、军鼓、小军鼓、小鼓SO(sneak out)淡出Soft 软的,柔和的Soft click 柔性钳位Soft knee 软拐点(压限器),缓变Solo 独唱,独奏Sone 宋(响度单位)Song 乐曲,歌曲Sound image 声像Sound palette音色调色盘SOS(sound on sound)叠加录音SP(speed)速度SP(standard-play)标准走带速度录放(23.39mm/s)Space 间隙,空间效果Spaciousness 空间感Spatial capabiliity 空间解析力Spatializer 声场定位技术SPDIF(sony/philips digital interface)索尼/飞利浦数字接口Spectrum 音域,频谱Speech 语言,语音SPL(sound pressure level)声压级Spot effects 现场效果Spring 弹簧效果,弹簧混响器SPS(stereo pitch shift)立体声变调Sport 运动场效果Square 广场音响效果Squeal 啸叫Squib drivers 电爆激励器SR-D(Dolby SR-Digital)杜比数字频谱记录SRL(standard recording level)标准录音电平Sr($tart)启动,开始Sr(stereo)立体声Stadium 露天体育场效果,大型露天场所Stage 舞台效果,级,阶段Stand-by 等待,准备,备用,待机Standing wave 驻波Start 启动,开始,始端Static doubhng 静态双声Steel drum 钢鼓STD(stereo delay)立体声延时STP(shielded twisted pair)屏蔽双绞线Strike note 击弦音,撞击声String instrument 弦乐器Strong 有力的STU(studio)演播室效果Subgroup 副,(调音台的通道集中控制网络)编组Suboctave 次八度。

数字信号处理器中加法器设计

数字信号处理器中加法器设计
G0 •G1 + G0 • P1 •G2 + (G0 •G1 + G0 • P1)• P2 •G3 + ( G0 •G1 +G0 • P1 •G2 +(G0 •G1 +G0 • P1)• P2)• P3 ≡ C3(if Cin = 0) 总之,在上述 16 位进位选择加法器中,每个进位块产生 4 个进位输出信号。在第 1 个进位块中,进位控制信号是 Cin, 输出信号是 C0, C1, C2 和 C3;第 2 个进位块中,进位控制信 号是 C3,输出信号是 C4, C5, C6 和 C7;第 3 个进位块中,进 位控制信号是 C7,输出信号是 C8, C9, C10 和 C11;第 4 个进 位块中,进位控制信号是 C11,输出信号是 C12, C13, C14 和 C15。
High Performance Re-configurable Adder Design for Digital Signal Processor
MA Hong, LI Zhen-wei, PENG Si-long
(National ASIC Design Engineering Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100080)
3 改进型支持可重构CCS
在当前高性能处理器中,时钟频率不断升高,同时开始 支持子字并行,加法器的性能很重要。本文描述的该款支持 可重构 16 位进位选择加法器可轻松扩展为 32 位或者 64 位快 速加法器。16 位加法器分成 2 个进位块,每个进位块采用对 数级联的形式,下面以第 1 个进位块为例,描述 Ci (if Cj=0) 和 Ci (if Cj=1)是如何产生的。第 1 个进位块的进位输出信号 分别是 C0, C1, C2, C3, C4, C5, C6, C7,最低位进位信号为 Cin。

数字集成电路中的基本模块演示文稿


VDD C3
C0
C1
C2
C3
在预充电阶段(Ø=0),传输管进位链中的所有中间节点都被预充电到
VDD,在求值阶段,当有输入进位且传播信号为PK为高电平,或进位产
设计生运算信功能号块(. 28GK)为高电平,节点CK放电
第28页,共83页。
• 棍棒图
数据通道版图由三排组织成位片式的单元组成:
Propagate/Generate Row
• 数据通路常常组织成位片式结构 • 每一个对一位进行操作——位片式
设计运算功能块. 7
第7页,共83页。
设计运算功能块. 8
第8页,共83页。
(二) 数据通路的特点:(它在很大程度上决定了整个系统的性 能) •规整性:(Bit-slice)优化版图
•局域性:(时间、空间,算子相邻布置)版图紧凑
设计运算功能块. 14
第14页,共83页。
加法器的反向特性
设计运算功能块. 15
第15页,共83页。
逐位(行波、串行)进位加法器
(1)结构:一个N位加法器可以通过把N个一位的全加器电路串联起来构成,第i 级的 Carry−out用来产生第i+1 级的 SUM和Carr y (2 )特点:结构直观简单,运行速度慢,最坏情形下关键路径的
FA
FA
FA
FA
P0 G1
P0 G1
P2 G2
P3 G3
BP=P oP1P2P3
Ci,0
C o,0
Co,1
C o,2
FA
FA
FA
FA
C o,3
Multiplexe页,共83页。
例11.3 曼彻斯特进位链加法器中的进位旁路
P0

xilinx 乘法器 实现原理

xilinx 乘法器实现原理英文回答:Introduction.Multiplication is a fundamental arithmetic operationthat has been used for centuries. In the digital world, multiplication is essential for a wide range of applications, including signal processing, image processing, and computer graphics.Multiplier Implementation.There are several different ways to implement amultiplier in hardware. One common approach is to use a combinational multiplier. A combinational multiplier is a circuit that performs multiplication without the need for any sequential logic.The basic principle of a combinational multiplier is todecompose the multiplication problem into a series of smaller multiplications. For example, to multiply two 8-bit numbers, the multiplier can be decomposed into eight 1-bit multiplications.Each 1-bit multiplication is performed by a simple AND gate. The output of the AND gate is 1 if both inputs are 1, and 0 otherwise.The outputs of the eight 1-bit multipliers are then combined to form the final 16-bit product.Carry-Save Multiplier.Another common approach to multiplier implementation is to use a carry-save multiplier. A carry-save multiplier is a circuit that performs multiplication using a series of adders and shifters.The basic principle of a carry-save multiplier is to decompose the multiplication problem into a series of smaller additions. For example, to multiply two 8-bitnumbers, the multiplier can be decomposed into eight 1-bit additions.Each 1-bit addition is performed by a simple adder. The output of the adder is the sum of the two inputs, and the carry-out is 1 if the sum is greater than or equal to 2.The outputs of the eight 1-bit adders are then combined to form the final 16-bit product.Booth's Algorithm.Booth's algorithm is a technique for multiplying two signed binary numbers. Booth's algorithm uses a series of shifts and additions to perform the multiplication.The basic principle of Booth's algorithm is to decompose the multiplication problem into a series of smaller additions and subtractions. For example, tomultiply two 8-bit numbers, the multiplier can be decomposed into four 2-bit additions and two 2-bit subtractions.Each 2-bit addition or subtraction is performed by a simple adder or subtractor. The output of the adder or subtractor is the sum or difference of the two inputs, and the carry-out is 1 if the sum is greater than or equal to 2 or if the difference is less than 0.The outputs of the four 2-bit additions and two 2-bit subtractions are then combined to form the final 16-bit product.Applications.Multipliers are used in a wide range of applications, including:Signal processing.Image processing.Computer graphics.Digital filters.Error correction codes.Conclusion.Multiplication is a fundamental arithmetic operation that is essential for a wide range of applications. There are several different ways to implement a multiplier in hardware, each with its own advantages and disadvantages.中文回答:乘法器实现原理。

16位全加器

16位全加器华东交通⼤学理⼯学院课程设计报告书所属课程名称计算机组成原理题⽬16位全加器的设计分院电信分院专业班级12计算机科学与技术2班学号学⽣姓名指导教师占⾃才20 14年06⽉13⽇课程设计(论⽂)评阅意见评阅⼈职称20 年⽉⽇⽬录第1章课程设计内容及要求 (3)第2章设计过程 (4)2.1硬件⽅案 (4)2.1.1⼀位全加器的原理及设计 (4)2.1.2四位全加器的原理及设计 (5)2.1.3⼗六位全加器的原理及设计 (8)2.2软件⽅案 (9)第3章测试 (14)第4章课程设计⼼得 (15)参考⽂献 (16)第1章课程设计内容及要求了解计算机的硬件系统,了解⼀位全加器的组成原理,深⼊讨论计算机的组成原理,在熟悉常⽤的门电路的组成和⼯作过程的基础上,要求设计出⼀个16位的全加器。

其中要求设计并写出产⽣求和结果的逻辑表达式,需要写出利⽤快速进位链产⽣进位的逻辑表达式,同时还要实现时需要⽤⼀个时钟信号控制运算的执⾏,如第⼀拍给出输⼊数据,第⼆拍给出运算控制信号,第三拍送输出数据,然后⼜回到第⼀拍,循环往复,直到运算全部结束。

根据要求设计出针对具体指令所对应的流程图;根据流程及门电路设计出相应的全加器。

编写出VHDL程序,在仿真软件上运⾏并检验所设计的微程序的正确性。

第2章设计过程2.1硬件⽅案2.1.1⼀位全加器的原理及设计2.1.1.1⼀位全加器的⼯作原理全加器是实现两个⼀位⼆进制数及低位来的进位数相加即将三个⼀位⼆进制数相加,求得和数及向⾼位进位的逻辑电路。

全加器是组合逻辑电路中最常见也最实⽤的⼀种,考虑低位进位的加法运算就是全加运算,实现全加运算的电路称为全加器。

它主要实现加法的运算,其中分为并⾏全加器和串⾏全加器,所谓并⾏就是指向⾼位进位时是并⾏执⾏的,⽽串⾏就是从低位到⾼位按顺序执⾏,为了提⾼运算,必须设法减⼩或消除由于进位信号逐级传递所消耗的时间,为了提⾼运算速度,制成了超前进位加法器,这是对全加器的⼀种创新。

基于组间进位预测的快速进位加法器

基于组间进位预测的快速进位加法器丁宜栋;刘昌明;方湘艳【摘要】为加快密码系统中大数加法的运算速度,提出并实现一种基于组间进位预测的快速进位加法器.将参与加法运算的大数进行分组,每个分组采用改进的超前进位技术以减少组内进位延时,组间通过进位预测完成不同进位状态下的加法运算,通过每个组产生的进位状态判断最终结果.性能分析表明,该进位加法器实现1024位大数加法运算的速度较快.%This paper presents and realizes a rapid carry adder based on carry forecast between groups to improve the speed of the large numbers adder in some cryptography systems. The large numbers is divided into many groups, the delay of carry-chain is reduced by carry lookahead in group. The group addition operation of different carry state is finished by carry forecast between groups. The addition sun of different carry forecast state is selected as the final result based on the carry state. Performance analysis shows that the computing speed of the carry adder is faster when realizing the 1 024 bit large numbers add operation.【期刊名称】《计算机工程》【年(卷),期】2011(037)023【总页数】3页(P288-290)【关键词】进位预测;大数加法器;超前进位;分组;进位加法器【作者】丁宜栋;刘昌明;方湘艳【作者单位】海军计算技术研究所,北京100841;海军计算技术研究所,北京100841;中国船舶重工集团公司第709研究所,武汉430074【正文语种】中文【中图分类】TP3091 概述在二进制加法的实现方法中,行波进位加法器(Carry Ripple Adder, CRA)[1]的结构简单,但运算时间较长;超前进位加法器(Carry Lookahead Adder, CLA)[2]速度较快,但会导致资源增加;进位跳跃加法器(Carry Skip Adder, CSA)[3]是CRA 和CLA加法器的折中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 16-bit Carry Skip Adder Designed byReversible LogicYu Pang Chongqing University ofPosts and Telecommunications,Chongqing, China pangyu@Junchao WangChongqing University ofPosts andTelecommunications,Chongqing, Chinawangjunchao1990@hotmaiShaoquan WangChongqing University ofPosts andTelecommunications,Chongqing, Chinawsqdy@Abstract-In digital integrated circuit designing, energy dissipation has become a crucial factor which engineers would consider before they begin the design. However, irreversible computing is one of the most significant factors of energy dissipation. Therefore, designing digital circuits by reversible logic way is an efficient way to decline the energy dissipation of the circuit. In this paper, we proposed a 16-bit carry skip adder which is an optimization of traditional ripple carry adder designed by reversible logic.Keywords: Reversible logic, Carry skip adder, TOFFOLI gate, CNOT gate, Quantum costI.I NTRODUCTIONWith the development of integrated circuits,researchers concern more and more about the energy dissipation of the circuits. However, irreversible logiccomputing is one of the most crucial factors of energydissipation, which can be illustrated by the Landauer’s principle [1] - each bit of information lost will generate kT ln2 joules of heat energy, where T stands for absolute temperature at which computation is performed and k is Boltzmann’s constant. Therefore, designing integrated circuits by reversible logic way can preserve certain amount of energy dissipation. The reversible logic is based on the concept of bijective Boolean functions, where the output vector is a permutation of all the input combinations [2]. Therefore, input vector states can be always uniquely reconstructed from the outputs. A non-reversible specification has typically a different number of inputs and outputs, that is, f:B n B m. In order to guarantee a bijective mapping, the input size must be equal to the output count, the additional inputs or outputs must be often used to generate a reversible embedding of an irreversible function f r. Such additional inputs are called ancilla bits, while extra outputs are referred to as garbage bits (g).The synthesis of reversible logic relies on basicreversible gates such as TOFFOLI family illustrated in Fig. 1. The gates with 1 or 2 inputs are called NOT, andCNOT, and correspond to TOF1(A) and TOF2 (A, B). Agate with three inputs is referred to as a TOFFOLI gate, and is represented by TOF3(A, B, C). Note, that in Fig. 1, all added output bits P and Q are garbage bits while R is the information bit [3].(a) (b) (c)Fig. 1. Basic reversible gatesAdders are one of the most common elements indigital circuit design since addition is a fundamentaloperation for any kind of digital systems. However, traditional ripple carry adders have some defects such as low computing efficiency and long delay. In order to overcome the disadvantages above, a new kind of adder called Carry Skip Adder (CSA) which has shorter delay has been proposed. In this paper, we present a new design of 16 bit CSA which can both enhance the computing efficiency and decline the amount of energy dissipation based on reversible logic theory. Since wireless sensor networks need very low power devices, the computational units consisting of the proposed adder can satisfy the requirement.Fig. 2. Circuit scheme of the 16-bit CSAII.B ACKGROUND OF CSATraditional CSA is an optimization of ripple carryadder (RCA) which decreases the computing time [4].As is shown in Fig. 2, a 16-bit CSA which can beconstructed by four parts of 4-bit CSA has 32-bit inputs(A0 – A15 and B0 –B15) and 17-bit outputs (S0 – S15and Co16). Each 4-bit CSA contains a 4-bit RCA, acomparison block and a MUX. If the two inputs in one4-bit CSA, for instance, A4 – A7 and B4 – B7 in thesecond 4-bit CSA, are completely reverse, then thecarry entering the CSA will simply be propagated tothe next 4-bit CSA so there is no need for the next CSAto wait for the carry-in created by this current 4-bitCSA. Therefore, the delay mainly generated by thecarry bit can be shortened.In each comparison block both input bits arecompared for un-equivalence [5][6][7].This is done byExclusive ORing each individual cell (paralleloperation) which produces a comparison string. Nextthe comparison string is ANDed within itself in adomino fashion. This process ensures that thecomparison of each and all cells is indeed unequal andwe can, therefore, proceed to propagate the carry to thenext block. For example, the comparison blockperforms the calculation for the second 4-bit CSA as(A4⊕B4)●(A5⊕B5)●(A6⊕B6)●(A7⊕B7). A MUX isresponsible for selecting a generated carry or apropagated(previous) carry with its selection linebeing the output of the comparison circuit justdescribed. If each 4-bit CSA block A i≠B i then we saythat a carry can skip over the block. Otherwise, if A i =B i we shall say that the carry must be generated in theblock.For example, we get two random strings that areshown in Fig. 3.As mentioned above, two groups of 16 bit binarynumber strings are divided into 4 parts, then they enterto 4 comparison blocks(block 0 to 3) respectively.Since in block 0 those 2 pairs of 4 bit numbers are notcompletely reverse, the carry skip mechanism would beunable to skip the block which means the carry wouldbe generated as traditional RCA. The situations inblock 2 and block3 are the same as block 0. However,Fig.3 .Two random stringsthe two pairs of 4-bit binary numbers are completelyreverse in block 1, so the carry-in of this block wouldsimply be propagated to the next block withoutcomputing. This carry skip mechanism shortens thelength of delay of computing the carry of this block.III.P ROPOSED R EVERSIBLE L OGIC 16-BIT C SAUsing reversible logic to re-design a 16-bit CSAneeds to transform each block in Fig. 2 into areversible block [8][9][10][11]. In this section wedescribe the reversible structures for the 4-bit RCA,comparison block and MUX [12][13]. Since the basicelement of a 4-bit RCA is the full adder, we firstre-design it by reversible logic shown in Fig. 4 (a). Thecircuit consists of three CNOT gates and twoTOFFOLI gates with two ancilla bits in five inputs.However, observing the first full adder in each 4-bitRCA in Fig. 2 finds that the carry-in should be given tothe full adder and MUX concurrently which violatesthe rule of prohibited fan-in, so the Fig. 4 (a) isamended to the Fig. 4 (b) which adds a CNOT gaterepresenting the first full adder in each 4-bit RCA.Then we design the comparison block illustratedin Fig. 5 with 11 inputs comprising three ancilla bits.This reversible circuit consists of four CNOT gates andthree TOFFOLI gates. The output “D” performs thefunction D=(A3⊕B3)●(A2⊕B2)●(A1⊕B1)●(A0⊕B0).If all A i≠B i, D will generate the value “1”. Theq u a n t u m c o s t i scalculated as 4*1 + 5*3=19.(a)(b)Fig.4. The reversible logic full addersFig.5. The reversible circuit of the comparison blockFig. 7. Scheme of the reversible 4-bit CSAThe MUX block carries out the function as where D comes from the comparison block and C o[3+4(n-1)] comes from the last reversible full adder in the 4-bit RCA. Its reversible design is illustrated in Fig. 6 which has a C N O T g a t e a n d t w o T O F F O L I g a t e s. After connecting all the reversible blocks described in Fig. 4 – 6, we can obtain the reversible circuit of 4-bit CSA which utilizes 18 CNOT gates and 13 TOFOLLI gates totally with quantum cost 83. Fig. 7 describes the scheme of reversible 4-bit CSA. As long as cascading four 4-bit reversible CSA, the 16-bit reversible logic CSA is obtained. Therefore, the 16-bit reversible CSA has 72 NOT gates and 52 TOFFOLI gates with total quantum cost 332.Fig. 6. The reversible logic circuit of MUX4[34(1)]n in n Co C D Co D+−=•⊕•IV.E XPERIMENTAL R ESULTSTo verify the correctness of the proposed adder, we use VHDL to program the reversible logic 16-bit CSA.All experiments are performed in Xilinx ISE 10 in a 2048MB, 2.4GHz Intel Core2 machine under Windows7. The experimental results are summarized in Fig. 8.Fig. 8. Experimental result for reversible 16-bit CSA We get five couples of 16 binary digits randomly first. Each of them is a group of experimental data, one is for A inputs, the other is for B inputs. The column of “A” denotes the data of nodes A inputs illustrated by decimal numeral, while the column of “B” stands for B. The column of “S” indicates the results of various inputs data respectively, and the column of “Co15” is the carry out of the adder. Therefore, the functions of reversible 16-bit CSA are regular and the proposed design is successful.On the other hand, in order to justify the length of the delay of the proposed 16-bit reversible CSA can be shortened compared with traditional RCA, we also perform an experiment to observe the delay of both adders. The results of this experiment are illustrated in Table 1.Area (slice) Delay (ns) Ripple carry adder 8 110.5Carry skip adder 13 90.3Carry select adder 17 67.1Table 1. Area and delay comparisonbetween three 16-bit addersTable 1 shows the comparison of area and delay between the ripple carry adder, carry skip adder and carry select adder which all perform 16-bit addition. Obviously, ripple carry adder has the smallest area but the largest delay, while the carry select adder has the smallest delay but the largest area. The carry skip adder balances the two important indicators of area and delay in circuits, so this type adder is used widely in digital circuit design.V.C ONCLUSIONCarry-skip adder has the advantage of short delay and high computing efficiency so causes wide attention. In this paper, we propose a new design of 16-bit CSA based on reversible logic which consists of 72 CNOT and 52 TOFFOLI gates with totalquantum cost of 332. This adder designed by reversible logic has obvious advantages of shortdelay and low power dissipation, so it can be appliedto wireless sensors very well.AcknowledgmentsThe research reported herein was sponsoredlargely by the National Natural Science Foundation of China under the grant No. 61102075, and by the Natural Science Foundation of Chongqing under the grant No. CSTC 2011BB2142 and No. KJ120507.Reference[1] R. Landauer. Irreversibility and heat generation in thecomputing process. IBM J. of R&D, 5:183–191, 1961.[2] Bruce J W, Thronton M A, Shivakumaraiah L, KokatePS, Li X (2002), "Efficient adder circuit based on a reversible conservative logic gate", IEEE Computer So ci et y Annu al S ympo sium o n V LS I.pp.2.[3] Y u Pang, Shaoquan Wang, Zhilong He, Jinzhao Lin,Sayeeda Sultana, Katarzyna Radecka, "Positive Davio-based Synthesis Algorithm for Reversible Logic". 2011 IEEE 29th International Conference on Computer Design (ICCD).pp. 212.[4] Alain Guyot, Bertrand Hocheft, Jean-Michel Muller."AWay to Build Efficient Carry-Skip Adders". IEEE Transactions on Computers, Oct. 1987. pp. 1144-1145.[5] Chirca, K. , "A static low-power, high-performance32-bit carry skip adder", Euromicro Symposium on Digital System Design, 2004. DSD 2004. pp.1-4.[6]Yu Shen Lin, "Delay Efficient 32-bit Carry-Skip Adder",IEEE International Conference on Electronics, Circuits and Systems, 2006. ICECS '06. 13th. pp. 506-507.[7] Burgess, N. ,"Accelerated carry-skip adders with lowhardware cost". Conference on Signals, Systems andComputers, 2001. pp. 852-853.[8] Yu Pang; Jinzhao Lin; Sultana, S.; Radecka, K., "Anovel method of synthesizing reversible logic", 2011 IEEE International Symposium on Circuits and Systems (ISCAS).pp. 2857-2858.[9] Sayeeda Sultana and Katarzyna Radecka “ReversibleAdder/Subtractor with Overflow Detector”. 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS). pp. 1-2.[10] L. Ni, Z. Guan and W. Zhu, "A General method ofConstructing the Reversible Full Adder", 3rd Inti.Symp. on Intelligent Inf. Technology and Security Informatics, pp. 109-113,2010.[11] Bruce, J.W. ,"Efficient adder circuits based on aconservative reversible logic gate ", Symposium on Proceedings. IEEE Computer Society Annual. VLSI, 2002. pp. 3-5.[12] Thapliyal, H. Ranganathan, N. “A new reversibledesign of BCD adder”, Design, Automation & Test in Europe Conference & Exhibition, 2011. pp. 1-3.[13] Marek Perkowski, Martin Lukac, Dipal Shah,Michitaka Kameyama, “Synthesis of quantum circuits in Linear Nearest Neighbor model using Positive Davio Lattices”, Facta Univ. Ser.: Elec. Energ., vol. 24, No. 1, April 2011, pp. 73-89。

相关文档
最新文档