四川省达州市中考数学真题试题(带解析)
达州市重点中学2024届中考联考数学试卷含解析

达州市重点中学2024届中考联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km /h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km /h ;②m =160;③点H 的坐标是(7,80);④n =7.1.其中说法正确的有( )A .4个B .3个C .2个D .1个2.下列各点中,在二次函数2y x =-的图象上的是( ) A .()1,1B .()2,2-C .()2,4D .()2,4--3.如图,在平面直角坐标系xOy 中,点A 从(3,4)出发,绕点O 顺时针旋转一周,则点A 不经过( )A .点MB .点NC .点PD .点Q4.若A(﹣4,y 1),B(﹣3,y 2),C(1,y 3)为二次函数y =x 2﹣4x+m 的图象上的三点,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 1<y 3<y 25.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数6.﹣18的相反数是()A.8 B.﹣8 C.18D.﹣187.如果,则a的取值范围是( )A.a>0 B.a≥0C.a≤0D.a<08.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=()A.6 B.1364π+C.12﹣94πD.12﹣134π9.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数k yx =(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )A.92B.74C.245D.1210.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()A.m<﹣1 B.m>1 C.m>﹣1 D.m<111.13-的绝对值是()A.3B.3-C.13D.13-12.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是()A.2402008x x=-B.2402008x x=+C.2402008x x=+D.2402008x x=-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,反比例函数y=kx(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是()A.1+5B.4+2C.42-D.-1+514.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)15.如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD交直线OA于点E,若∠B=30°,则线段AE的长为.16.如图,把一个面积为1的正方形分成两个面积为12的长方形,再把其中一个面积为12的长方形分成两个面积为14的正方形,再把其中一个面积为14的正方形分成两个面积为18的长方形,如此进行下去……,试用图形揭示的规律计算:111111248163264+++++11128256++=__________.17.如图,矩形ABCD中,BC=6,CD=3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为____(结果保留π)18.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D 为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M 所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.20.(6分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.21.(6分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.22.(8分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.23.(8分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,23),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.(1)求抛物线的解析式,并直接写出点D的坐标;(2)当△AMN的周长最小时,求t的值;(3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.24.(10分)(1)解方程组31021 x yx y+=⎧⎨-=⎩(2)若点A是平面直角坐标系中坐标轴上的点,( 1 )中的解 ,x y分别为点B的横、纵坐标,求AB的最小值及AB取得最小值时点A的坐标.25.(10分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tan A=,求的值.26.(12分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究.下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为________;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:x 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5y 17 10 8.3 8.2 8.7 9.3 10.8 11.6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x=________时,y有最小值.由此,小强确定篱笆长至少为________米.27.(12分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【解题分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量. 【题目详解】由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误. 故选B . 【题目点拨】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态. 2、D 【解题分析】将各选项的点逐一代入即可判断. 【题目详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象; 当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象; 故答案为:D . 【题目点拨】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式. 3、C 【解题分析】根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可. 【题目详解】解:连接OA 、OM 、ON 、OP ,根据旋转的性质,点A 的对应点到旋转中心的距离与OA 的长度应相等根据网格线和勾股定理可得:22345+=,22345+=,22345+=,222425+=OQ=5∵OA=OM=ON=OQ≠OP ∴则点A 不经过点P 故选C. 【题目点拨】此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键. 4、B 【解题分析】根据函数解析式的特点,其对称轴为x=2,A (﹣4,y 1),B (﹣3,y 2),C (1,y 3)在对称轴左侧,图象开口向上,利用y 随x 的增大而减小,可判断y 3<y 2<y 1. 【题目详解】抛物线y=x 2﹣4x+m 的对称轴为x=2, 当x<2时,y 随着x 的增大而减小,因为-4<-3<1<2,所以y3<y2<y1,故选B.【题目点拨】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键.5、D【解题分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【题目详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故本题选:D.【题目点拨】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.6、C【解题分析】互为相反数的两个数是指只有符号不同的两个数,所以18的相反数是18,故选C.7、C【解题分析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.若|-a|=-a,则可求得a的取值范围.注意1的相反数是1.【题目详解】因为|-a|≥1,所以-a≥1,那么a的取值范围是a≤1.故选C.【题目点拨】绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.8、D【解题分析】根据题意可得到CE=2,然后根据S 1﹣S 2 =S 矩形ABCD-S 扇形ABF-S 扇形GCE ,即可得到答案 【题目详解】解:∵BC =4,E 为BC 的中点, ∴CE =2,∴S 1﹣S 2=3×4﹣2290390213123603604πππ⨯⨯-=-, 故选D . 【题目点拨】此题考查扇形面积的计算,矩形的性质及面积的计算. 9、C 【解题分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【题目详解】∵四边形OCBA 是矩形, ∴AB=OC ,OA=BC , 设B 点的坐标为(a ,b ), ∵BD=3AD , ∴D (4a,b ), ∵点D ,E 在反比例函数的图象上,∴4ab=k , ∴E (a , ka),∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a)=9, ∴k=245, 故选:C 【题目点拨】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键. 10、C 【解题分析】将关于x 的一元二次方程化成标准形式,然后利用Δ>0,即得m 的取值范围. 【题目详解】因为方程是关于x 的一元二次方程方程,所以可得220x x m +-=,Δ=4+4m > 0,解得m>﹣1,故选D. 【题目点拨】本题熟练掌握一元二次方程的基本概念是本题的解题关键. 11、C 【解题分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决. 【题目详解】在数轴上,点13-到原点的距离是13, 所以,13-的绝对值是13,故选C . 【题目点拨】错因分析 容易题,失分原因:未掌握绝对值的概念. 12、B 【解题分析】根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可. 【题目详解】设乙每天完成x 个零件,则甲每天完成(x+8)个. 即得,2402008x x+= ,故选B. 【题目点拨】找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、A 【解题分析】根据反比例函数图象上点的坐标特征由A 点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-4x,且OB=AB=2,则可判断△OAB 为等腰直角三角形,所以∠AOB=45°,再利用PQ ⊥OA 可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ ,所以∠BPQ=∠B′PQ=45°,于是得到B′P ⊥y 轴,则点B 的坐标可表示为(-4t,t ),于是利用PB=PB′得t-2=|-4t|=4t,然后解方程可得到满足条件的t的值.【题目详解】如图,∵点A坐标为(-2,2),∴k=-2×2=-4,∴反比例函数解析式为y=-4x,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(-4t,t),∵PB=PB′,∴t-2=|-4t|=4t,整理得t2-2t-4=0,解得t1=15,5(不符合题意,舍去),∴t的值为15.故选A.【题目点拨】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程. 14、(3a ﹣b )【解题分析】解:由题意可得,剩余金额为:(3a -b )元,故答案为:(3a -b ). 点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式. 15、【解题分析】要求AE 的长,只要求出OA 和OE 的长即可,要求OA 的长可以根据∠B=30°和OB 的长求得,OE 可以根据∠OCE 和OC 的长求得. 【题目详解】解:连接OD ,如图所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°, ∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3, ∴OE=OCtan60°=3×=3, ∴AE=OE ﹣OA=3-2=,【点晴】 切线的性质 16、8112-【解题分析】结合图形发现计算方法:11111=1-+=1-22244; ,即计算其面积和的时候,只需让总面积减去剩下的面积. 【题目详解】 解:原式=12551-=256256=8112-故答案为:8112- 【题目点拨】此题注意结合图形的面积找到计算的方法:其中的面积和等于总面积减去剩下的面积. 17、94π. 【解题分析】如图,连接OE ,利用切线的性质得OD=3,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD-S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积. 【题目详解】 连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E , ∴OD =CD =3,OE ⊥BC , ∴四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =32﹣2903360π⋅⋅994π=-, ∴阴影部分的面积199369244ππ⎛⎫=⨯⨯--= ⎪⎝⎭, 故答案为94π. 【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式. 183【解题分析】利用特殊三角形的三边关系,求出AM,AE 长,求比值. 【题目详解】解:如图所示,设BC=x ,∵在Rt △ABC 中,∠B =90°,∠A =30°, ∴AC =2BC=2x ,AB =3BC=3x ,根据题意得:AD=BC=x ,AE=DE=AB =3x , 如图,作EM ⊥AD 于M ,则AM =12AD =12x , 在Rt △AEM 中,cos ∠EAD =3263XAM AE x==, 故答案为:36.【题目点拨】特殊三角形: 30°-60°-90°特殊三角形,三边比例是1:3:2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19、(1);(2)列表见解析,. 【解题分析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M 落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P (摸出的球为标有数字2的小球)=;(2)列表如下: 小华 小丽-12-1 (-1,-1)(-1,0)(-1,2)0 (0,-1)(0,0)(0,2)2 (2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,∴P(点M落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.20、(1)证明见解析;(2)证明见解析.【解题分析】(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.【题目详解】证明:(1)∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB.∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB.∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.21、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解题分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE ≌△ADF ;(2)由于四边形ABCD 是正方形,易得∠ECO=∠FCO=45°,BC=CD ;联立(1)的结论,可证得EC=CF ,根据等腰三角形三线合一的性质可证得OC (即AM )垂直平分EF ;已知OA=OM ,则EF 、AM 互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF 是菱形. 【题目详解】(1)证明:∵四边形ABCD 是正方形, ∴AB=AD ,∠B=∠D=90°, 在Rt △ABE 和Rt △ADF 中,∵AD AB AF AE ⎧⎨⎩==,∴Rt △ADF ≌Rt △ABE (HL ) ∴BE=DF ;(2)四边形AEMF 是菱形,理由为: 证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角), BC=DC (正方形四条边相等), ∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质), 即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===, ∴△COE ≌△COF (SAS ), ∴OE=OF , 又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形), ∵AE=AF ,∴平行四边形AEMF 是菱形.22、(1)证明见解析;(2)AC的长为1655.【解题分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.【题目详解】(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=12 AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD ∽△DCE ,∴BC CDCD CE =, ∴82CD CD =, ∴CD=1.在Rt △BCD 中, 同理:△CFD ∽△BCD , ∴CF CDBC BD=, ∴8CF =,∴,∴. 【题目点拨】考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC =8是解本题的关键.23、(1)x 2,点D 的坐标为(2;(2)t=2;(3)M 点的坐标为(2,0)或(6,0).【解题分析】(1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D 的坐标;(2)连接AC ,如图①,先计算出AB=4,则判断平行四边形OCBA 为菱形,再证明△AOC 和△ACB 都是等边三角形,接着证明△OCM ≌△ACN 得到CM=CN ,∠OCM=∠ACN ,则判断△CMN 为等边三角形得到MN=CM ,于是△AMN 的周长=OA+CM ,由于CM ⊥OA 时,CM 的值最小,△AMN 的周长最小,从而得到t 的值;(3)先利用勾股定理的逆定理证明△OCD 为直角三角形,∠COD=90°,设M (t ,0),则E (t ,62-3t ),根据相似三角形的判定方法,当AM ME OC OD =时,△AME ∽△COD ,即|t-4|:2当AM ME OD OC =时,△AME ∽△DOC ,即|t-4|2:4,然后分别解绝对值方程可得到对应的M 点的坐标. 【题目详解】解:(1)把A (4,0)和B (6,23)代入y=ax 2+bx 得164036623a b a b +⎧⎪⎨+⎪⎩==,解得36233a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线解析式为y=36x 2-233x ;∵y=36x 2-233x =3(x 6-2) 2-233; ∴点D 的坐标为(2,-233); (2)连接AC ,如图①,()2246(23)-+,而OA=4,∴平行四边形OCBA 为菱形, ∴OC=BC=4, ∴C (2,3, ∴()2224(23)-+,∴OC=OA=AC=AB=BC ,∴△AOC 和△ACB 都是等边三角形, ∴∠AOC=∠COB=∠OCA=60°, 而OC=AC ,OM=AN , ∴△OCM ≌△ACN ,∴CM=CN ,∠OCM=∠ACN ,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN 为等边三角形,∴MN=CM ,∴△AMN 的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM ,当CM ⊥OA 时,CM 的值最小,△AMN 的周长最小,此时OM=2,∴t=2;(3)∵C (2,,D (2,,∴CD=3,∵=,OC=4, ∴OD 2+OC 2=CD 2,∴△OCD 为直角三角形,∠COD=90°,设M (t ,0),则E (t 2), ∵∠AME=∠COD ,∴当AM ME OC OD =时,△AME ∽△COD ,即|t-4|:2t |, 整理得|16t 2-23t|=13|t-4|, 解方程16t 2-23t =13(t-4)得t 1=4(舍去),t 2=2,此时M 点坐标为(2,0); 解方程16t 2-23t =-13(t-4)得t 1=4(舍去),t 2=-2(舍去);当AM ME OD OC =时,△AME ∽△DOC ,即|t-4|2t |:4,整理得|16t 2-23t |=|t-4|, 解方程16t 2-23t =t-4得t 1=4(舍去),t 2=6,此时M 点坐标为(6,0); 解方程16t 2-23t =-(t-4)得t 1=4(舍去),t 2=-6(舍去); 综上所述,M 点的坐标为(2,0)或(6,0).【题目点拨】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题.24、(1)31x y =⎧⎨=⎩;(2)当A 坐标为()3 , 0时,AB 取得最小值为1. 【解题分析】(1)用加减消元法解二元一次方程组;(2)利用(1)确定出B 的坐标,进而得到AB 取得最小值时A 的坐标,以及AB 的最小值.【题目详解】解:(1)31021x y x y +=⎧⎨-=⎩①② ①2⨯+②得:721x =解得:3x =把3x =代入②得1y =,则方程组的解为31x y =⎧⎨=⎩(2 )由题意得:()3, 1B ,当A 坐标为()3 , 0时,AB 取得最小值为1.【题目点拨】此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.25、(1)见解析;(2);(3).【解题分析】(1)连结OD ;由AB 是⊙O 的直径,得到∠ADB =90°,根据等腰三角形的性质得到∠ADO =∠A ,∠BDO =∠ABD ;得到∠PDO =90°,且D 在圆上,于是得到结论;(2)设∠A =x ,则∠A =∠P =x ,∠DBA =2x ,在△ABD 中,根据∠A +∠ABD =90o 列方程求出x 的值,进而可得到∠DOB =60o ,然后根据弧长公式计算即可;(3)连结OM ,过D 作DF ⊥AB 于点F ,然后证明△OMN ∽△FDN ,根据相似三角形的性质求解即可.【题目详解】(1)连结OD ,∵AB 是⊙O 的直径,∴∠ADB =90o ,∠A +∠ABD =90o ,又∵OA =OB =OD ,∴∠BDO =∠ABD ,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圆上,∴PD是⊙O的切线.(2)设∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD长.(3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,∴OM⊥AB,设BD=x,则AD=2x,AB==2O M,即OM=,在Rt△BDF中,DF=,由△OMN∽△FDN得.【题目点拨】本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o 是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.26、见解析【解题分析】根据题意:一边为x米,面积为4,则另一边为4x米,篱笆长为y=2(x4x+)=2x8x+,由x4x+═xx)2+4可得当x=2,y有最小值,则可求篱笆长.【题目详解】根据题意:一边为x米,面积为4,则另一边为4x米,篱笆长为y=2(x4x+)=2x8x+∵x4x+=(x)2+(2x)2=(2xx-)2+4,∴x4x+≥4,∴2x8x+≥1,∴当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米.故答案为:y=2x8x+,2,1.【题目点拨】本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式.27、(1)12;(2)34【解题分析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率. 【题目详解】解:(1)(1)第二个孩子是女孩的概率=12;故答案为12;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=3 4 .【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。
【中考真题】2022年四川省达州市中考数学试卷(附答案)

2022年四川省达州市中考数学真题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列四个数中,最小的数是( ) A.0B .-2C .1D2.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是( )A .B .C .D .3.2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为( ) A .82.66210⨯元B .90.266210⨯元C .92.66210⨯元D .1026.6210⨯元4.如图,AB CD ∥,直线EF 分别交AB ,CD 于点M ,N ,将一个含有45°角的直角三角尺按如图所示的方式摆放,若80EMB ∠=︒,则PNM ∠等于( )A .15°B .25°C .35°D .45°5.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位);马二匹、牛五头,共价三十八两,阀马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .46382548x y x y +=⎧⎨+=⎩B .46482538x y x y +=⎧⎨+=⎩C .46485238x y x y +=⎧⎨+=⎩D .46482538y x y x +=⎧⎨+=⎩6.下列命题是真命题的是( ) A .相等的两个角是对顶角 B .相等的圆周角所对的弧相等 C .若a b <,则22ac bc <D .在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是137.如图,在ABC 中,点D ,E 分别是AB ,BC 边的中点,点F 在DE 的延长线上.添加一个条件,使得四边形ADFC 为平行四边形,则这个条件可以是( )A .B F ∠=∠ B .DE EF =C .AC CF =D .AD CF =8.如图,点E 在矩形ABCD 的AB 边上,将ADE 沿DE 翻折,点A 恰好落在BC 边上的点F 处,若3CD BF =,4BE =,则AD 的长为( )A .9B .12C .15D .189.如图所示的曲边三角形可按下述方法作出:作等边ABC ,分别以点A ,B ,C 为圆心,以AB 长为半径作BC ,AC ,AB ,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为( )A.2π-B .2πC .2π D .π10.二次函数2y ax bx c =++的部分图象如图所示,与y 轴交于(0,1)-,对称轴为直线1x =.以下结论:①0abc >;①13a >;①对于任意实数m ,都有()m amb a b +>+成立;①若()12,y -,21,2y ⎛⎫⎪⎝⎭,()32,y 在该函数图象上,则321y y y <<;①方程2ax bx c k ++=(0k ,k 为常数)的所有根的和为4.其中正确结论有( )A .2B .3C .4D .5二、填空题11.计算:23a a +=______.12.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数为_____.13.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,24AC =,10BD =,则菱形ABCD 的周长是________.14.关于x 的不等式组23112x a x x -+<⎧⎪⎨-+⎪⎩恰有3个整数解,则a 的取值范围是_______.150.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=_______.16.如图,在边长为2的正方形ABCD 中,点E ,F 分别为AD ,CD 边上的动点(不与端点重合),连接BE ,BF ,分别交对角线AC 于点P ,Q .点E ,F 在运动过程中,始终保持45EBF ∠=︒,连接EF ,PF ,PD .以下结论:①PB PD =;①2EFD FBC ∠=∠;①PQ PA CQ =+;①BPF △为等腰直角三角形;①若过点B 作BH EF ⊥,垂足为H ,连接DH ,则DH的最小值为2.其中所有正确结论的序号是____.三、解答题 17.计算:020221(1)|2|2tan 452︒⎛⎫-+--- ⎪⎝⎭.18.化简求值:222112111a a a a a a a ⎛⎫-+÷+ ⎪-+--⎝⎭,其中31a.19.“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100x ),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96. 八年级10名学生的竞赛成绩在C 组中的数据是:92,92,94,94. 七、八年级抽取的学生竞赛成绩统计表八年级抽取的学生竞赛成绩扇形统计图根据以上信息,解答下列问题:(1)上述图表中=a __________,b =__________,m =__________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(95x )的学生人数是多少?20.某老年活动中心欲在一房前3m 高的前墙(AB )上安装一遮阳篷BC ,使正午时刻房前能有2m 宽的阴影处(AD )以供纳凉,假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC 与水平面的夹角为10°,如图为侧面示意图,请你求出此遮阳篷BC 的长度(结果精确到0.1m ).(参考数据:sin100.17︒≈,cos100.98︒≈,tan100.18︒≈;sin63.40.89︒≈,cos63.40.45︒≈,tan63.4 2.00︒≈)21.某商场进货员预测一种应季T 恤衫能畅销市场,就用4000元购进一批这种T 恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T 恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T 恤衫每件的进价分别是多少元?(2)如果两批T 恤衫按相同的标价销售,最后缺码的40件T 恤衫按七折优惠售出,要使两批T 恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T 恤衫的标价至少是多少元?22.如图,一次函数1y x =+与反比例函数ky x=的图象相交于(,2)A m ,B 两点,分别连接OA ,OB .(1)求这个反比例函数的表达式; (2)求AOB 的面积;(3)在平面内是否存在一点P ,使以点O ,B ,A ,P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.23.如图,在Rt ABC 中,90C ∠=︒,点O 为AB 边上一点,以OA 为半径的①O 与BC 相切于点D ,分别交AB ,AC 边于点E ,F .(1)求证:AD 平分BAC ∠;(2)若3BD =,1tan 2CAD ∠=,求①O 的半径.24.某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC 和等腰直角三角形CDE ,按如图1的方式摆放,90ACB ECD ∠=∠=︒,随后保持ABC 不动,将CDE △绕点C 按逆时针方向旋转α(090α︒<<︒),连接AE ,BD ,延长BD 交AE 于点F ,连接CF .该数学兴趣小组进行如下探究,请你帮忙解答:(1)【初步探究】如图2,当ED BC ∥时,则α=_____;(2)【初步探究】如图3,当点E ,F 重合时,请直接写出AF ,BF ,CF 之间的数量关系:_________;(3)【深入探究】如图4,当点E ,F 不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.(4)【拓展延伸】如图5,在ABC 与CDE △中,90ACB DCE ∠=∠=︒,若BC mAC =,CD mCE =(m 为常数).保持ABC 不动,将CDE △绕点C 按逆时针方向旋转α(090α︒<<︒),连接AE ,BD ,延长BD 交AE 于点F ,连接CF ,如图6.试探究AF ,BF ,CF 之间的数量关系,并说明理由.25.如图1,在平面直角坐标系中,已知二次函数22y ax bx =++的图象经过点(1,0)A -,(3,0)B ,与y 轴交于点C .(1)求该二次函数的表达式;(2)连接BC ,在该二次函数图象上是否存在点P ,使PCB ABC ∠=∠?若存在,请求出点P 的坐标:若不存在,请说明理由;(3)如图2,直线l 为该二次函数图象的对称轴,交x 轴于点E .若点Q 为x 轴上方二次函数图象上一动点,过点Q 作直线AQ ,BQ 分别交直线l 于点M ,N ,在点Q 的运动过程中,EM EN +的值是否为定值?若是,请求出该定值;若不是,请说明理由.参考答案:1.B 【解析】 【分析】根据实数的大小比较即可求解. 【详解】解:①201-<<< ①最小的数是2-, 故选B . 【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键. 2.A 【解析】 【分析】根据轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,逐个分析即可求解. 【详解】解:A.是轴对称图形,故该选项符合题意; B.不是轴对称图形,故该选项不符合题意; C.不是轴对称图形,故该选项不符合题意; D.不是轴对称图形,故该选项不符合题意; 故选A 【点睛】本题主要考查了轴对称图形的识别,解题的关键在于能够熟练掌握轴对称图形的定义. 3.C 【解析】 【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中11|0|a ≤<,n 为整数. 【详解】解:26.62亿92662000000 2.66210==⨯.故选C . 【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键. 4.C 【解析】 【分析】根据平行线的性质得到①DNM =①BME =80°,由等腰直角三角形的性质得到①PND =45°,即可得到结论. 【详解】 解:①AB ①CD , ①①DNM =①BME =80°, ①①PND =45°,①①PNM =①DNM -①DNP =35°, 故选:C . 【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 5.B 【解析】 【分析】设马每匹x 两,牛每头y 两,由“马四匹、牛六头,共价四十八两”可得4648x y +=,根据“马二匹、牛五头,共价三十八两,”可得2538x y +=,即可求解. 【详解】解:设马每匹x 两,牛每头y 两,根据题意可得46482538x y x y +=⎧⎨+=⎩故选B 【点睛】本题考查了列二元一次方程组,理解题意列出方程组是解题的关键.6.D【解析】【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A 选项错误,不符合题意; 在同圆或等圆中,相等的圆周角所对的弧相等,故B 选项错误,不符合题意;若a b <,则22ac bc ≤,故C 选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D 选项正确,符合题意; 故选:D .【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.7.B【解析】【分析】利用三角形中位线定理得到DE ①AC 且DE =12AC ,结合平行四边形的判定定理进行选择.【详解】解:①在①ABC 中,D ,E 分别是AB ,BC 的中点,①DE 是①ABC 的中位线,①DE ①AC 且DE =12AC ,A 、根据①B =①F 不能判定CF ①AD ,即不能判定四边形ADFC 为平行四边形,故本选项错误.B 、根据DE =EF 可以判定DF =AC ,由“一组对边平行且相等的四边形是平行四边形”得到四边形ADFC 为平行四边形,故本选项正确.C 、根据AC =CF 不能判定AC ①DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.D 、根据AD =CF ,FD ①AC 不能判定四边形ADFC 为平行四边形,故本选项错误. 故选:B .【点睛】本题主要考查了三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.8.C【解析】【分析】根据折叠的性质可得,AE EF AD FD ==,设BE x =,则3CD x =,则34AE AB BE CD BE x =-=-=-,在Rt BEF △中勾股定理建列方程,求得x ,进而求得CD ,根据BEF DFC ∠=∠,可得tan tan BEF DFC ∠=∠,即BF CD BE FC=,求得12FC =,在Rt FCD △中,勾股定理即可求解.【详解】解:①四边形ABCD 是矩形,①AB CD =,90B C ∠=∠=︒,将ADE 沿DE 翻折,点A 恰好落在BC 边上的点F 处,,FD AD EF AE ∴==,90EFD A ∠=∠=︒,3CD BF =,4BE =,设BF x =,则3CD x =,34AE AB BE CD BE x =-=-=-,在Rt BEF △中222BE BF EF +=,即()222434x x +=-,解得3x =,∴3,9BF CD ==, 90EFD A ∠=∠=︒,90B C ∠=∠=︒,∴90BEF BFE DFC ∠=︒-∠=∠,∴tan tan BEF DFC ∠=∠, ∴BF CD BE FC=,39=4FC∴, 12FC ∴=,在Rt FCD △中,15FD =,15AD FD ∴==.故选C .【点睛】本题考查了矩形与折叠的性质,正切的定义,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.9.A【解析】【分析】根据此三角形是由三段弧组成,所以根据弧长公式可得半径,即正三角形的边长,根据曲边三角形的面积等于三角形的面积与三个弓形的面积和,边长为a 的等边三角形的面积为【详解】解:设等边三角形ABC 的边长为r ,6012,1803r ππ∴⋅⋅=⨯ 解得2r =,即正三角形的边长为2,∴2226022322360ππ⎛⎫⨯+⨯=- ⎪ ⎪⎝⎭故选A【点睛】本题考查了扇形面积的计算.此题的关键是明确曲边三角形的面积等于三角形的面积与三个弓形的面积和,然后再根据所给的曲线三角形的周长求出三角形的边长.10.A【解析】【分析】根据图象可判断0,1,0a c b >=-<,即可判断①正确;令2210y ax ax =--=,解得1x ==110-<-<,再由顶点坐标的纵坐标的范围即可求出a 的范围,即可判断①错误;由2b a =-代入变形计算即可判断①错误;由抛物线的增减性和对称性即可判断①错误;分类讨论当20ax bx c ++>时,当20ax bx c ++<时,再根据一元二次方程根与系数的关系进行求解即可判断①正确.【详解】二次函数2y ax bx c =++的部分图象与y 轴交于(0,1)-,对称轴为直线1x =,抛物线开头向上,0,1,12b a c a∴>=--=, 20b a ∴=-<, 0abc ∴>,故①正确;令2210y ax ax =--=,解得1x ==±由图得,110-<<, 解得13a >, 抛物线的顶点坐标为(1,1)a --,由图得,211a -<--<-,解得01a <<, 113a ∴<<,故①错误; 2b a =-,()m am b a b +>+∴可化为(2)2m am a a a ->-,即(2)1m m ->-,2(1)0m ∴->,若()m am b a b +>+成立,则1m ≠,故①错误; 当1x <时,y 随x 的增大而减小,122-<, 12y y ∴>,对称轴为直线1x =,2x ∴=时与0x =时所对应的y 值相等,231y y y ∴<<,故①错误;2ax bx c k ++=,当20ax bx c ++>时,20ax bx c k ++-=,1222b a x x a a-∴+=-=-=, 当20ax bx c ++<时,20ax bx c k +++=,3422b a x x a a-∴+=-=-=, 12344x x x x ∴+++=,故①正确;综上,正确的个数为2,故选:A .【点睛】本题考查了二次函数图象和性质,一元二次方程求根公式,根与系数的关系等,熟练掌握知识点,能够运用数形结合的思想是解题的关键.11.5a【解析】【分析】直接运用合并同类项法则进行计算即可得到答案.【详解】解: 23a a +(23)a =+5a =.故答案为:5a .【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.12.50︒##50度【解析】【分析】根据作图可知DA DB =,20DAB B ∠=∠=︒,根据直角三角形两个锐角互余,可得70CAB ∠=︒,根据CAD CAB DAB ∠=∠-∠即可求解.【详解】解:①在Rt ABC 中,90C ∠=︒,20B ∠=︒,①70CAB ∠=︒,由作图可知MN 是AB 的垂直平分线,DA DB ∴=,∴20DAB B ∠=∠=︒,∴CAD CAB DAB ∠=∠-∠702050︒-︒=︒,故答案为:50︒.【点睛】本题考查了基本作图,垂直平分线的性质,等边对等角,直角三角形的两锐角互余,根据题意分析得出MN 是AB 的垂直平分线,是解题的关键.13.52【解析】【分析】根据菱形对角线互相垂直平分的性质,可以求得BO =OD ,AO =OC ,在Rt ①AOD 中,根据勾股定理可以求得AB 的长,即可求菱形ABCD 的周长.【详解】解:①四边形ABCD 是菱形,①AC ①BD ,OA =12AC =12,OB =12BD =5,①AB 13,①菱形ABCD 的周长为:4×13=52.故答案为:52【点睛】本题考查了菱形周长的计算,考查了勾股定理在直角三角形中的运用,考查了菱形的性质,本题中根据勾股定理计算AB 的长是解题的关键.14.23a ≤<【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围【详解】 解:23112x a x x -+<⎧⎪⎨-+⎪⎩①② 解不等式①得:2x a >-,解不等式①得:3x ≤,不等式组有解,①不等式组的解集为: 23a x -<≤, 不等式组23112x a x x -+<⎧⎪⎨-+⎪⎩恰有3个整数解,则整数解为1,2,3 021a ∴≤-<,解得23a ≤<.故答案为:23a ≤<.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情况分情况讨论结果,取出合理的答案.15.5050【解析】【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解:a =b =1ab ==∴, 1112211112a b a b a b b b a bS a a ++++=+===+++++++, 222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++, …,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++ ∴12100S S S +++=121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.16.①①①①【解析】【分析】连接BD ,延长DA 到M ,使AM =CF ,连接BM ,根据正方形的性质及线段垂直平分线的性质定理即可判断①正确;通过证明()BCF BAM SAS ≅,()EBF EBM SAS ≅,可证明①正确;作CBN ABP ∠=∠,交AC 的延长线于K ,在BK 上截取BN =BP ,连接CN ,通过证明ABP CBN ≅△△,可判断①错误;通过证明BQP CQF ,BCQ PFQ ,利用相似三角形的性质即可证明①正确;当点B 、H 、D 三点共线时,DH 的值最小,分别求解即可判断①正确.【详解】如图1,连接BD ,延长DA 到M ,使AM =CF ,连接BM ,四边形ABCD 是正方形,AC ∴垂直平分BD ,,90BA BC BCF BAD ABC =∠=︒=∠=∠,PB PD =∴,BCF BAM ∠=∠,90FBC BFC ∠=︒-∠,故①正确;()BCF BAM SAS ∴≅,,,CBF ABM BF BM M BFC ∴∠=∠=∠=∠,45EBF ∠=︒,45ABE CBF ︒∴∠+∠=,45ABE ABM ∴∠+∠=︒,即EBM EBF ∠=∠,BE BE =,()EBF EBM SAS ∴≅,,M EFB MEB FEB ∴∠=∠∠=∠,EFB CFB ∴∠=∠,180()1802EFD EFB CFB BFC ∴∠=︒-∠+∠=︒-∠,∴2EFD FBC ∠=∠,故①正确;如图2,作CBN ABP ∠=∠,交AC 的延长线于K ,在BK 上截取BN =BP ,连接CN , ABP CBN ∴≅,45BAP BCN ∴∠=∠=︒,45ACB =︒∠,90NCK ∴∠=︒,CNK K ∴∠≠∠,即CN CK ≠,PQ PA CQ ≠+∴,故①错误;如图1,四边形ABCD 是正方形,45EBF BCP FCP ∴∠=∠=∠=︒,BQP CQF ∠=∠,BQP CQF ∴,BQ PQ∴=,CQ FQ∠=∠,BQC PQF∴,BCQ PFQ∴∠=∠=︒,BCQ PFQ45∴∠=∠=︒,PBF PFB45∴∠=︒,BPF90∴BPF△为等腰直角三角形,故①正确;如图1,当点B、H、D三点共线时,DH的值最小,BD∴==BAE BHE BE BE∠=∠=︒=,90,∴≅,BAE BHE AAS()BA BH∴==,2∴=-=,故①正确;DH BD BH2故答案为:①①①①.【点睛】本题考查了正方形的性质,线段垂直平分线的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握知识点并准确作出辅助线是解题的关键.17.0【解析】【分析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.18.11a +【解析】【分析】先将分子因式分解,再进行通分,然后根据分式减法法则进行计算,最后再根据分式除法法则计算即可化简,再把a 的值代入计算即可求值.【详解】解:原式=()()()2211111a a a a a a a -+++÷+-- ()()()()2211111a a a a a +--=⋅-+ 1=1a +;当31a=. 【点睛】本题考查了分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.19.(1)30,96,93(2)七年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但七年级的中位数高于八年级(3)估计参加此次竞赛活动成绩优秀(x ≥95)的学生人数是540人【解析】【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据七年级的中位数高于八年级,于是得到七年级学生掌握防溺水安全知识较好; (3)利用样本估计总体思想求解可得. (1)解:120%10%10030104a ⎛⎫---⨯= ⎪⎝⎭=, ①在七年级10名学生的竞赛成绩中96出现的次数最多,①96b = ;①八年级10名学生的竞赛成绩在A 组中有2个,在B 组有1个,①八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,①()9294293m ÷==+,故答案为:30,96,93;(2)七年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但七年级的中位数高于八年级.(3)七年级在95x ≥的人数有6人,八年级在95x ≥的人数有3人,估计参加此次竞赛活动成绩优秀(x ≥95)的学生人数为:63120054020+⨯=(人), 答:估计参加此次竞赛活动成绩优秀(x ≥95)的学生人数是540人.【点睛】本题考查读扇形统计图的能力和利用统计图获取信息的能力以及中位数,众数和平均数,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.遮阳篷BC 的长度约为3.4米【解析】【分析】过点C 作CF AD ⊥于点F ,则四边形AFCE 是矩形,则,AE CF EC AF ==,设2CF x =,则2AE CF x ==,32BE x =-,解直角三角形求得DF ,进而求得,EC BE ,解Rt BEC △,求得x ,进而求得BE 的长,根据sin BE BEC BC∠=即可求解. 【详解】如图,过点C 作CF AD ⊥于点F ,则四边形AFCE 是矩形,设2CF x =,则2AE CF x ==,32BE x =-,在Rt CDF △中tan =tan 63.42CF CDF DF∠=︒≈, DF x ∴=,2EC AF AD DF x ∴==+=+,在Rt BEC △中,tan =tan100.18BE BEC EC∠=︒≈, 320.182x x-∴≈+, 解得: 1.21x =,经检验,x 是方程的解,且符合题意,320.58BE x ∴=-=,sin 0.17BE BEC BC∠=≈, 0.58 3.40.170.17BE BC ∴==≈. 答:遮阳篷BC 的长度约为3.4米.【点睛】本题考查了解直角三角形的应用,掌握三角形的三边关系是解题的关键.21.(1)该商场购进第一批每件的进价为40元,第二批T 恤衫每件的进价为44元(2)每件T 恤衫的标价至少是80元【解析】【分析】(1)设该商场购进第一批每件的进价为x 元,第二批T 恤衫每件的进价为(4)x +元,根据“所购数量是第一批购进量的2倍”列分式方程求解检验即可;(2)设每件T 恤衫的标价是y 元,根据“两批T 恤衫全部售完后利润率不低于80%”列不等式,求解即可.(1)设该商场购进第一批每件的进价为x 元,第二批T 恤衫每件的进价为(4)x +元,由题意得,4000880024x x ⨯=+, 解得40x =,经检验,40x =是原方程的解且符合题意,444x +=,所以,该商场购进第一批每件的进价为40元,第二批T 恤衫每件的进价为44元;(2)两批T 恤衫的数量为4000330040⨯=(件), 设每件T 恤衫的标价是y 元,由题意得:(30040)400.7(40008800)(180%)y y -+⨯≥+⨯+,解得80y ≥所以,每件T 恤衫的标价至少是80元.【点睛】本题考查了列分式方程解决实际问题,列不等式解决实际问题,准确理解题意,找准数量关系是解题的关键.22.(1)2y x=(2)32 (3)(1,1)P -或(3,3)P --或(3,3)P【解析】【分析】(1)先利用一次函数求出A 点的坐标,再将A 点坐标代入反比例函数解析式即可; (2)先求出B 、C 点坐标,再利用三角形的面积公式求解即可;(3)分三种情况,利用坐标平移的特点,即可得出答案.(1)解:把(,2)A m 代入一次函数1y x =+,得21m =+,解得1m =,(1,2)A ∴,把(1,2)A 代入反比例函数k y x =,得21k =, 2k ∴=,∴反比例函数的表达式为2y x=; (2) 解:令21x x=+,解得1x =或2x =-, 当2x =-时,1y =-,即(2,1)B --,当0x =时,1y =,1OC ∴=, ∴11113()1(21)22222AOB OCA OCB B A B A S S S OC x OC x OC x x =+=⋅⋅+⋅⋅=⋅⋅+=⨯⨯+=; (3)解:存在,理由如下:当OA 与OB 为邻边时,点(0,0)O 先向左平移2个单位再向下平移1个单位到点(2,1)B --,则点(1,2)A 也先向左平移2个单位再向下平移1个单位到点P ,即(1,1)P -;当AB 与AO 为邻边时,点(1,2)A 先向左平移3个单位再向下平移3个单位到点(2,1)B --,则点(0,0)O 也先向左平移3个单位再向下平移3个单位到点P ,即(3,3)P --;当BA 与BO 为邻边时,点(2,1)B --先向右平移3个单位再向上平移3个单位到点(1,2)A ,则点(0,0)O 也先向右平移3个单位再向上平移3个单位到点P ,即(3,3)P ;综上,P 点坐标为(1,1)P -或(3,3)P --或(3,3)P .【点睛】本题考查了反比例函数与特殊四边形的综合题目,涉及求反比例函数解析式,三角形的面积公式,反比例函数与一次函数的交点问题,平移的性质,熟练掌握知识点并运用分类讨论的思想是解题的关键.23.(1)见解析(2)94【解析】【分析】(1)连接OD ,根据切线的性质得到90C ODB ∠=∠=︒,继而证明AC OD ∥,再根据等腰三角形的性质,进而得出CAD OAD ∠=∠,即可得出结论;(2)连接DE ,根据直径所对的圆周角是直角可得90ADE ∠=︒,继而证明BED BDA ,根据相似三角形的性质及锐角三角函数即可求解.连接OD,∠=︒,以OA为半径的①O与BC相切于点D,90C90∴∠=∠=︒,C ODB∴∥,AC OD∴∠=∠,CAD ODAOA OD=,∴∠=∠,ODA OAD∴∠=∠,CAD OAD∴AD平分BAC∠;(2)连接DE ,AE 是直径,90ADE ∴∠=︒,1,,,tan 2BED ADE OAD BDA C CAD CAD OAD CAD ∠=∠+∠∠=∠+∠∠=∠∠=, 1,tan tan 2DE BED BDA CAD OAD AD ∴∠=∠∠===, BEDBDA ∴, 12BD BE DE AB BD AD ∴===, 3BD =,6AB ∴=,6132BE AB AE AE BD BD --∴===, 解得92AE =, 94OA ∴=, ∴①O 的半径为94. 【点睛】本题考查了切线的性质,等腰三角形的性质,角平分线的判定,圆周角定理,相似三角形的判定和性质及锐角三角函数,熟练掌握知识点并准确作出辅助线是解题的关键. 24.(1)45︒ (2)BF AF = (3)BF AF =仍然成立,理由见解析(4)BF mAF =+【解析】【分析】(1)根据等腰直角三角形的性质,可得AC BC ⊥,根据题意可得AC ED ⊥,根据等原三角形的性质可得AC 平分ECD ∠,即可得45ACE ∠=︒,根据旋转的性质可知ECA α∠=;(2)证明ACE ≌BCD △,可得AE DB =,根据等腰直角三角形可得ED =,由BE BD ED =+,即可即可得出BF AF =+;(3)同(2)可得ACE ≌BCD △,过点C ,作CH FC ⊥,交BF 于点H ,证明FEC HDC ≌,AFC △≌BHC △,可得BH AF =,即可得出BF AF =+; (4)过点C 作CG CF ⊥,交BF 于点G ,证明ACE BCD △∽△,可得BG mAF =,GC mFC =,在Rt FCG中,勾股定理可得FG,即可得出BF mAF +.(1)等腰直角三角形ABC 和等腰直角三角形CDE ,90ECD ∴∠=︒,AC BC ⊥ED BC ∥ED AC ∴⊥45ACE α∴∠==︒故答案为:45︒(2)90∠=∠=︒ACB ECDACE ACD ACD BCD ∴∠+∠=∠+∠ACE BCD ∴∠=∠在ACE 与BCD △中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩ACE ≌BCD △∴AE DB =BE BD ED ∴=+又ED =BE AE ∴=,E F 重合,BF AF ∴=+故答案为:BF AF =(3)同(2)可得ACE ≌BCD △AE DB ∴=,EAC DBC ∠=∠过点C ,作CH FC ⊥,交BF 于点H ,则90ECF FCD FCD DCH ∠+∠=∠+∠=︒,∴ECF DCH ∠=∠,在FEC 与HDC △中,FEC HDC EC CDECF DCH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴FEC HDC ≌,FC CH ∴=,CFH ∴是等腰直角三角形,FH ∴=,CH FC =,90,90FCH ACF ACH ACB BCH ACH ∴∠=∠+∠=︒∠=∠+∠=︒, ACF BCH ∴∠=∠,在AFC △与BHC △中,FC HC ACF BCH AC BC =⎧⎪∠=∠⎨⎪=⎩,∴AFC △≌BHC △,BH AF ∴=,BF FH BH AF ∴=++,即BF AF =,(4)过点C 作CG CF ⊥,交BF 于点G ,BC mAC =,CD mCE =,BC CD AC CE∴=,AC BC EC DC∴=, ACE BCD α∠=∠=,ACE BCD ∴△△∽,CBG CAF ∴∠=∠,FCA ACG GCB ACG ∠+∠=∠+∠,∴FCA GCB ∠=∠,AFC BGC ∴∽,BG GC BC AF FC AC∴==m =, BG mAF ∴=,GC mFC =,Rt FCG 中,FG ,∴BF FG GB mAF =++,即BF mAF +.【点睛】本题考查了等腰直角三角形的性质,旋转的性质,全等三角形的性质与判定,相似三角形的性质与判定,掌握全等三角形的性质与判定,相似三角形的性质与判定是解题的关键.25.(1)224233y x x =-++ (2)()2,2P 或28286,525⎛⎫- ⎪⎝⎭ (3)163【解析】【分析】(1)待定系数法求解析式即可求解;(2)根据题意,分情况讨论,①过点C 作关于1x =的对称点P ,即可求P 的坐标,①x 轴上取一点D ,使得DC DB =,则DCB ABC ∠=∠,设(),0D d ,根据勾股定理求得,CD BD ,建列方程,解方程求解即可;(3)设224,233Q t t t ⎛⎫-++ ⎪⎝⎭,13t -<<,过点Q 作QF x ⊥轴于点F ,则(),0F t ,证明,AME AQF BNE BQF ∽∽,根据相似三角形的性质列出比例式求得EM EN +,即可求解.(1)解:①由二次函数22y ax bx =++,令0x =,则2y =,()0,2C ∴,过点(1,0)A -,(3,0)B ,设二次函数的表达式为()()13y a x x =+-()2=23a x x --,将点()0,2C 代入得,23a , 解得23a =-, 224233y x x ∴=-++, (2)二次函数22y ax bx =++的图象经过点(1,0)A -,(3,0)B ,∴抛物线的对称轴为1x =,①如图,过点C 作关于1x =的对称点P ,CP AB ∴∥,PCB ABC ∴∠=∠,()0,2C ,()2,2P ∴,①x 轴上取一点D ,使得DC DB =,则DCB ABC ∠=∠,设(),0D d ,则3CD BD d ==-,()22223d d ∴+=-, 解得56d =, 即5,06D ⎛⎫ ⎪⎝⎭, 设直线CD 的解析式为y kx b =+,5062k b b ⎧+=⎪⎨⎪=⎩, 解得1252k b ⎧=-⎪⎨⎪=⎩, ∴直线CD 的解析式为1225y x =-+, 联立2122524233y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩, 解得02x y =⎧⎨=⎩或28528625x y ⎧=⎪⎪⎨⎪=-⎪⎩, 28286,525P ⎛⎫∴- ⎪⎝⎭, 综上所述,()2,2P 或28286,525⎛⎫- ⎪⎝⎭,(3)EM EN +的值是定值163, 设224,233Q t t t ⎛⎫-++ ⎪⎝⎭,13t -<<, 过点Q 作QF x ⊥轴于点F ,则(),0F t ,()()()()1,0,3,0,1,0,,0A B E F t -,2,1,3AE BE AF t BF t ∴===+=-,,ME QF NE QF ∴∥∥,,AME AQF BNE BQF ∴∽∽,,ME AE NE BE QF AF QF BF∴==, 即22=,13ME NE QF t QF t =+-, 21ME QF t ∴=+,23NE QF t=-, 2213ME NE QF t t ⎛⎫∴+=+ ⎪+-⎝⎭, ()()22422=13333QF t t t t ⎛⎫=-++-⨯+- ⎪⎝⎭, ()()22213133ME NE t t t t ⎛⎫⎛⎫∴+=+⨯-⨯+- ⎪ ⎪+-⎝⎭⎝⎭ ()()43+13t t =---⎡⎤⎣⎦ 163=. 即EM EN +的值是定值163【点睛】 本题考查了二次函数综合,待定系数法求解析式,角度问题,相似三角形的性质与判定,掌握二次函数的性质是解题的关键.。
2023年四川省达州市中考数学试卷(含答案)080433

2023年四川省达州市中考数学试卷试卷考试总分:150 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 4 分 ,共计40分 )1. 的倒数是 A.B.C. D.2. 一个几何体的表面展开图如图所示,则该几何体的形状是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱3. 为纪念中华人民共和国成立周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有名中小学生参加,其中数据用科学记数法表示为( )A.B.C.D.4. 一组数据,,,,,的中位数、众数分别是 ( )A.,B.,C.,D.,5. 如图所示,直线、被直线、所截,且,与相交于点,则( )−15()5−515−15705500005500005.5×1065.5×10555×1040.55×106123543335343510a b c d a//b c d O α=A.B.C.D.6. 下列运算正确的是( )A.B.C.D.7. 某校八年级学生乘车前往某景点旅游,现有两条路线可供选择:线路一全程,线路二全程;若走线路一平均车速是走线路二的倍,所花时间比走线路二少用,求走线路二的平均车速?设走线路二的平均车速为,则依题意所列方程正确的是( )A.B.C.D.8. 已知在四边形中,,对角线、交于点,且=,下列四个命题中真命题是( )A.若=,则四边形一定是等腰梯形B.若=,则四边形一定是等腰梯形C.若,则四边形一定是矩形D.若且=,则四边形一定是正方形9. 如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )11∘33∘43∘68∘(ab =)2a 2b 2+=a 2a 2a 4(=a 2)3a 5⋅=a 2a 3a 630km 25km 1.510min xkm/h −=1025x 301.5x −=25x 301.5x 16−=1030x 251.5x−=30x 251.5x 16ABCD AD//BC AC BD O AC BD AB CD ABCD ∠DBC ∠ACB ABCD =AO OB CO ODABCD AC ⊥BD AO OD ABCDA. B. C. D.10. 已知函数,其中,,此函数的图象可以是( ) A. B. C. D.二、 填空题 (本题共计 5 小题 ,每题 4 分 ,共计20分 )11. 函数的自变量的取值范围是________.y=−+bx+c x 2b >0c <0y =x−23−x −−−−−√x11. 函数的自变量的取值范围是________.12. 已知关于的一元二次方程的两个根为和,则________.13. 线段 ,点是的黄金分割点(如图),即较长线段与的比会等于较短线段 与的比,那么线段的长为________.14. 如图,在平面直角坐标系中,一次函数与反比例函数相交于点,与轴相交于点,点的横坐标为,设点是直线上的一点,过点作轴,交反比例函数的图象于点.若以,,,为顶点的四边形为平行四边形,则点的坐标为________.15. 如图,点,在上,直线是的切线,,连接交于点.若=,,则=________.三、 解答题 (本题共计 10 小题 ,每题 9 分 ,共计90分 )16. 计算:. 17. 某校数学实践小组就近期人们比较关注的五个话题:“.通讯;.民法典;.北斗导航;.数字经济;.小康社会”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如下统计图.请结合图中的信息解决下列问题:在这次活动中,调查的居民共有________人;将条形统计图补充完整;扇形统计图中的________,所在扇形的圆心角是________度;该小组讨论中,甲、乙两个小组从三个话题:“.通讯;.民法典;.北斗导航”中抽签(不放回)选一项进行发言,利用树状图或表格,求出两个小组选择,话题发言的概率. 18. 如图,在边长为个单位长度的小正方形组成的网格中,点,,都是格点.3−x √x −5x+1=0x 2αβ+=α2β2AB =6cm C AB AC AB BC AC AC xOy y =−x+2y =(x <0)k x B x A B −2M AB M MN//x y =(x <0)k x N A O M N M A B ⊙O AC ⊙O OC ⊥OB AB OC D AC 2AO =5–√OD 2sin −−|−1|+60∘(π+2021)03–√(−)12−2A 5GBCDE (1)(2)(3)a =D (4)A 5G B C A B 1A B C将三角形向左平移个单位长度得到三角形,请画出三角形;将三角形绕点按逆时针方向旋转得到三角形,请画出三角形.19. 如图是某款手机支架摆放手机时的侧面示意图,现测得支撑板,,,,求手机底端到底座的距离.(精确到,参考数据:,,,,,,)20. 如图,已知中,.请按如下要求完成尺规作图(不写作法,保留作图痕迹)①作的角平分线,交于点;②作线段的垂直平分线与相交于点;③以点为圆心,以长为半径画圆,交边于点.在()的条件下,求证:是的切线:若,求的半径.21. 已知正方形及其外一点,为正方形的中心,在正方形的边上确定点,使得.(保留作图痕迹,不写作法)22. 在六一儿童节到来之际,某校特举行书画大赛活动,准备购买甲、乙两种文具作为奖 阔品,奖励在活动中获得优秀的同学.已知购买个甲种文具、个乙种文具共需花费元,购买个甲种文具、个乙种文具共需花费元.问:购买一个甲种文具、一个乙种文具各需多少元?若学校计划购买这两种文具共个,投人资金不少于元又不多于元,设购买甲种文具一个,则有多少种购买方案?设学校投入资金元,在的条件下,哪种购买方案需要的资金最少?最少是多少元?23. 新冠疫情暴发后,口罩的需求量增大.某口罩加工厂承揽生产万个口罩的任务,计划用天完成.写出每天生产口罩(万个)与生产时间(天)之间的函数表达式;(1)ABC 6A 1B 1C 1A 1B 1C 1(2)ABC O 180∘A 2B 2C 2A 2B 2C 2AC =10cm CE =7cm ∠ACE =65∘∠CAB =60∘E AB 0.1sin ≈0.9165∘cos ≈0.4265∘tan ≈2.1465∘sin ≈0.5735∘cos ≈0.8235∘tan ≈0.7035∘≈1.733–√Rt △ABC ∠C =90∘(1)∠BAC AD BC D AD EF AB O O OD AB M (2)1BC ⊙O (3)AM =4BM,AC =10⊙O ABCD P O ABCD M OM ⊥PM 23453150(1)(2)1009951050(3)W (2)1600t (1)w t (t >4)由于国外的疫情形势严峻,卫生管理部门要求厂家提前天交货,那么加工厂每天要多做多少万个口罩才能完成任务?(用含的代数式表示). 24. 已知抛物线,若在平面直角坐标系中的点的坐标为b ),则称点为抛物线的“派生点”.例如:抛物线的“派生点”为即①抛物线的“派生点”的坐标为________②若抛物线的“派生点”位于抛物线的对称轴上,则的值为________.若抛物线的“派生点”的坐标为,求与之间的数量关系;若点是抛物线的“派生点”,且点在直线上,试判断抛物线与直线是否相交,若相交,请求出它们的交点坐标,若不相交,请说明理由. )25. 如图,是边长为的正三角形,,,分别在边,,上,,交于点,,交于点,,交于点,若.(1)求的度数;(2)求证:;(3)求与的面积之比(用含的代数式表示)(2)4t y =a +bx+c(a ≠0,c ≠0)x 2xOy P (a +,ac+v c P y =+4x+2x 2P (1+,2×1+4)42P (3,6)(1)y =−−2x+2x 2P y =+bx+2x 2P b (2)y =a +bx+c(a ≠0,c ≠0)x 2P (3,3)αb (3)P (,)x 0y 0y =a +bx+a(a ≠0)x 2P y =ax+b y =a +bx+a(a ≠0)x 2y =ax+b △ABC m D E F AB BC CA AE BF P BF CD Q CD AE R ===k(0<k <)AD AB BEBC CFCA 12∠PQR △ARD ∽△ABE △PQR △ABC k参考答案与试题解析2023年四川省达州市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 4 分 ,共计40分 )1.【答案】B【考点】倒数【解析】根据乘积为的两个数互为倒数,可得答案.【解答】解:∵,的倒数是.故选.2.【答案】B【考点】几何体的展开图【解析】根据三棱柱的侧面展开图得出答案.【解答】由几何体的表面展开图可知,该几何体的形状是三棱柱.3.【答案】B【考点】科学记数法--表示较大的数【解析】根据有效数字表示方法,以及科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】解:科学记数法的表示较大的数时,形式为的形式,其中,1−×(−5)=115∴−15−5B a ×10n 1≤|a |<10n n a n >1n <1n a ×10n 1≤|a |<105.5×5将用科学记数法表示为:.故选.4.【答案】A【考点】众数中位数【解析】此题暂无解析【解答】此题暂无解答5.【答案】B【考点】平行线的性质三角形内角和定理【解析】由平行线的性质可得,又由外角的性质可得,可求得.【解答】解:如图,,,又,.故选.6.【答案】A550000 5.5×105B ∠1=79∘∠1+α=112∘α∵a//b ∴∠1=79∘∵∠1+α=112∘∴α=−=112∘79∘33∘B【考点】同底数幂的乘法积的乘方及其应用幂的乘方及其应用合并同类项【解析】根据积的乘方,等于各个因式乘方后的积;合并同类项法则;同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;对各选项分析判断即可得出结论.【解答】解:选项,积的乘方:,故正确;选项,合并同类项:,故错误;选项,幂的乘方:,故错误;选项,同底数幂相乘:,故错误.故选.7.【答案】B【考点】由实际问题抽象出分式方程【解析】走线路二的平均车速为千米/小时,则走线路二的平均车速为千米/时;路程都是千米;由时间,时间差为分钟,再建立等量关系,列方程.【解答】解:设走线路二的平均车速为/,则走线路一的平均车速为是/,根据题意得出:,即:.故选.8.【答案】C【考点】命题与定理【解析】根据等腰梯形、矩形、正方形的判定判断即可.【解答】、在四边形中,,对角线、交于点,且=,若=,则四边形可能是矩形,错误;、在四边形中,,对角线、交于点,且=,若=,则四边形可能是正方形,错误;A (ab =)2a 2b 2B +=a 2a 22a 2C (=a 2)3a 6D ⋅=a 2a 3a 5A x 1.5x 30=路程速度10xkm h 1.5xkm h =−301.5x 25x 1060−=25x 301.5x 16B A ABCD AD//BC AC BD O AC BD AB CD ABCD B ABCD AD//BC AC BD O AC BD ∠DBC ∠ACB ABCD AO CO、在四边形中,,对角线、交于点,且=,若,则四边形一定是矩形,正确;、在四边形中,,对角线、交于点,且=,若且=,则四边形可能是等腰梯形,错误;9.【答案】D【考点】规律型:图形的变化类规律型:数字的变化类【解析】根据题意知原图形中各行、各列中点数之和为,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为,符合此要求的只有故选.10.【答案】D【考点】二次函数图象与几何变换二次函数图象与系数的关系【解析】根据已知条件“、、”判断出该函数图象的开口方向、与和轴的交点、对称轴所在的位置,然后据此来判断它的图象.【解答】解:∵,,∴该函数图象的开口向下,对称轴是.,图象与轴的交点在轴的负半轴上.故选.二、 填空题 (本题共计 5 小题 ,每题 4 分 ,共计20分 )11.【答案】【考点】C ABCD AD//BC AC BD O AC BD =AO OB CO ODABCD D ABCD AD//BC AC BD O AC BD AC ⊥BD AO OD ABCD 1010D a <0b >0c <0x y a=−1<0b >0x =−>0b 2a∵c <0∴y y D x <3函数自变量的取值范围【解析】让分子中的被开方数为非负数,分母中的被开方数为正数列式求解即可.【解答】解:由题意,得,解得.故答案为:.12.【答案】【考点】根与系数的关系【解析】根据一元二次方程根与系数的关系可得,,由可得解.【解答】解:一元二次方程的两个根为和,,,.故答案为:.13.【答案】【考点】黄金分割【解析】根据黄金分割点的定义,知为较长线段;则,代入数据即可得出的值,然后计算即可得到.【解答】解:∵为线段的黄金分割点,∴,故答案为:.14.【答案】或【考点】反比例函数与一次函数的综合【解析】3−x >0x <3x <323α+β=5αβ=1+=(α+β−2αβα2β2)2∵−5x+1=0x 2αβ∴α+β=5αβ=1∴+=(α+β−2αβα2β2)2=−2×1=2352233−35–√AC AC =AB −15–√2AC AB−AC BC C AB (AC >BC)AC =AB =×6=3−3(cm)−15–√2−15–√25–√3−35–√(−2+2,2)2–√2–√(−2,2+2)3–√3–√【解答】解:,点的横坐标为,∴,.将代入中得,∴反比例函数的解析式为.设点的坐标为,则点的坐标为,∴解得或,故点的坐标为或.故答案为:或.15.【答案】【考点】圆周角定理切线的性质相似三角形的性质与判定【解析】由为圆的切线,利用切线的性质得到为直角,再由,得到为直角,由=,利用等边对等角得到一对角相等,再利用对顶角相等及等角的余角相等得到一对角相等,利用等角对等边可得=,由=,表示出,在直角三角形中,利用勾股定理即可求出的长.【解答】∵=,∴=,∵直线为圆的切线,∴==,∵,∴=,∴=,∵=,∴=,∴=,∴=,在中,==,,==,根据勾股定理得:=,即=,解得:=.三、 解答题 (本题共计 10 小题 ,每题 9 分 ,共计90分 )16.【答案】解:原式.【考点】绝对值∵y =−x+2B −2B(−2,4)A(2,0)B(−2,4)y =k x k =−8y =−8x M (−m+2,m)N (−,m)8m MN =|−m+2+|=OA =2,8m m=22–√2+23–√M (−2+2,2)2–√2–√(−2,2+2)3–√3–√(−2+2,2)2–√2–√(−2,2+2)3–√3–√1AC ∠OAC OC ⊥OB ∠BOC OA OB DC AC OC OD+DC OC OAC OD OA OB ∠OAB ∠B AC O ∠OAC ∠OAB+∠DAC 90∘OB ⊥OC ∠BOC 90∘∠ODB+∠B 90∘∠ODB ∠CDA ∠CDA+∠B 90∘∠DAC ∠CDA AC CD Rt △OAC AC CD 2AO =5–√OC OD+DC OD+2OC 2A +A C 2O 2(OD+2)2+(225–√)2OD 1=2×−1−+1+43–√23–√=4零指数幂、负整数指数幂特殊角的三角函数值【解析】无【解答】解:原式.17.【答案】选择的居民有: (人),选择的有: (人),补全的条形统计图如图所示:,树状图如图,共有个等可能的结果,甲,乙两个小组选择,话题发言的结果有个,所以两个小组选择,话题发言的概率为 . 【考点】扇形统计图条形统计图列表法与树状图法【解析】此题暂无解析【解答】解:调查的居民共有:(人).故答案为:.选择的居民有: (人),选择的有: (人),补全的条形统计图如图所示:=2×−1−+1+43–√23–√=4200(2)C 200×15%=30A 200−60−30−20−40=502536(4)6A B 2A B =2613(1)60÷30%=200200(2)C 200×15%=30A 200−60−30−20−40=50,话题所在扇形的圆心角是:.故答案为:; .树状图如图,共有个等可能的结果,甲,乙两个小组选择,话题发言的结果有个,所以两个小组选择,话题发言的概率为 . 18.【答案】解:所作三角形,如图所示,所作三角形,如图所示.【考点】作图-平移变换作图-旋转变换【解析】(1)把、、三点分别向左平移个单位长度,即可得到三个顶点的对应点,然后顺次连接三点即可;(2)连接并延长,然后截取=,则就是的对应点,同样可以作出、的对应点,然后顺次连接即可.【解答】解:所作三角形,如图所示,所作三角形,如图所示.19.【答案】解:过点作于点,过点作于点,过点作于,(3)a%=50÷200×100%=25%D ×=360∘2020036∘2536(4)6A B 2A B =2613(1)A 1B 1C 1(2)A 2B 2C 2A B C 6AO OA 2OA A 2A B C (1)A 1B 1C 1(2)A 2B 2C 2C CF ⊥AB F E EG ⊥CF G E EH ⊥AB H则在中,,,,∵,∴,在中,,,∵,∴ ,∴,答:手机底端到底座的距离大约为.【考点】解直角三角形的应用【解析】无【解答】解:过点作于点,过点作于点,过点作于,则在中,,,,∵,∴,在中,,,∵,∴ ,∴,答:手机底端到底座的距离大约为.20.【答案】解:()如图所示,Rt △ACF ∠A =60∘AC =10cm ∠ACF =30∘sin ∠CAF =CF ACCF =AC ⋅sin =10×=5≈8.6560∘3–√23–√Rt △CGE ∠GCE =−=65∘30∘35∘CE =7cm cos ∠GCE =CG CECG =7×cos ∠GCE =7×cos35∘≈7×0.82=5.74EB =GF =CF −CG =8.65−5.74≈2.9(cm)E AB 2.9cm C CF ⊥AB F E EG ⊥CF G E EH ⊥AB H Rt △ACF ∠A =60∘AC =10cm ∠ACF =30∘sin ∠CAF =CF ACCF =AC ⋅sin =10×=5≈8.6560∘3–√23–√Rt △CGE ∠GCE =−=65∘30∘35∘CE =7cm cos ∠GCE =CG CECG =7×cos ∠GCE =7×cos35∘≈7×0.82=5.74EB =GF =CF −CG =8.65−5.74≈2.9(cm)E AB 2.9cm 1①以为圆心,以任意长度为半径画弧,与、相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于内部一点,将点与它连接并延长,与交于点,则为的平分线;②分别以点、点为圆心,以大于长度为半径画圆,将两圆交点连接,则为的垂直平分线,与交于点;③如图,与交于点;(2)证明:∵是的垂直平分线,且点在上,∴,∴,∵是的平分线,∴,∴,∴,∵,∴,故是的切线.(3)根据题意可知,∴∴,由()可知与有公共角,∴,∴,即,解得,故的半径为.【考点】作图—基本作图勾股定理角平分线的性质【解析】此题暂无解析【解答】解:()如图所示,①以为圆心,以任意长度为半径画弧,与、相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于内部一点,将点与它连接并延长,与交于点,则为的平分线;②分别以点、点为圆心,以大于长度为半径画圆,将两圆交点连接,则为的垂直平分线,与交于点;③如图,与交于点;A AC AB ∠BAC A BC D AD ∠BAC A D AD 12EF AD EF AB O ⊙O AB M EF AD O AD OA =OD ∠OAD =∠ODA AD ∠BAC ∠OAD =∠CAD ∠ODA =∠CAD OD//AC AC ⊥BC OD ⊥BC BC ⊙O OM =OA =OD =AM,M =4BM =4BM12OM =2BM,BO =3MM,AB =5BM,==BO AB 3BM 5BM 352Rt △BOD Rt △BAC ∠B Rt △BOD ∼Rt △BAC =DO CA BO BA =DO 1035DO =6⊙O 61A AC AB ∠BAC A BC D AD ∠BAC A D AD 12EF AD EF AB O ⊙O AB M(2)证明:∵是的垂直平分线,且点在上,∴,∴,∵是的平分线,∴,∴,∴,∵,∴,故是的切线.(3)根据题意可知,∴∴,由()可知与有公共角,∴,∴,即,解得,故的半径为.21.【答案】解:如图所示,点或点即为所求.【考点】作三角形的内切圆与外接圆圆周角定理作图—复杂作图【解析】此题暂无解析【解答】解:如图所示,点或点即为所求.22.【答案】解:设购买一个甲种文具元,一个乙种文具元,EF AD O AD OA =OD ∠OAD =∠ODA AD ∠BAC ∠OAD =∠CAD ∠ODA =∠CAD OD//AC AC ⊥BC OD ⊥BC BC ⊙O OM =OA =OD =AM,M =4BM =4BM12OM =2BM,BO =3MM,AB =5BM,==BO AB 3BM 5BM 352Rt △BOD Rt △BAC ∠B Rt △BOD ∼Rt △BAC =DO CA BO BA =DO 1035DO =6⊙O 6M M ′M M ′(1)a b 2a +3b =45,由题意得:解得答:购买一个甲种文具元,一个乙种文具元.根据题意列不等式:,解得,由于是整数,∴,,,,,,∴有种购买方案..,∴随的增大而增大,的取值为当时,最小,(元),.答:购买甲种文具个,乙种文具个时需要的资金最少,最少资金是元.【考点】一次函数的应用一元一次不等式组的应用由实际问题抽象出二元一次方程组【解析】设购买一个甲种文具元,一个乙种文具元,根据“购买个甲种文具、个乙种文具共需花费元;购买个甲种文具、个乙种文具共需花费元”列方程组解答即可;根据题意列出不等式组求解即可;求出与的函数关系式,根据一次函数的性质解答即可.【解答】解:设购买一个甲种文具元,一个乙种文具元,由题意得:解得答:购买一个甲种文具元,一个乙种文具元.根据题意列不等式:,解得,由于是整数,∴,,,,,,∴有种购买方案..,∴随的增大而增大,的取值为当时,最小,(元),.答:购买甲种文具个,乙种文具个时需要的资金最少,最少资金是元.23.【答案】解:根据题意可得,每天生产口罩(万个)与生产时间(天)之间的函数表达式为:.由题意得:.{2a +3b =45,3a +b =50,{a =15,b =5.155(2)995≤15x+5(100−x)≤105049.5≤x ≤55x x =5051525354556(3)W =15x+5(100−x)=10x+500∵10>0W x x 50,51,52,53,54,55,x =50W =10×50+500=1000W min ∴100−50=5050501000(1)a b 23453150(2)(3)W x (1)a b {2a +3b =45,3a +b =50,{a =15,b =5.155(2)995≤15x+5(100−x)≤105049.5≤x ≤55x x =5051525354556(3)W =15x+5(100−x)=10x+500∵10>0W x x 50,51,52,53,54,55,x =50W =10×50+500=1000W min ∴100−50=5050501000(1)w t (t >4)w =(t >4)1600t (2)w =−1600t−41600t =1600t−1600(t−4)t(t−4)=6400−4tt 2t >4)6400答:每天要多做万个口罩才能完成任务.【考点】反比例函数的应用【解析】此题暂无解析【解答】解:根据题意可得,每天生产口罩(万个)与生产时间(天)之间的函数表达式为:.由题意得:.答:每天要多做万个口罩才能完成任务.24.【答案】【考点】二次函数综合题【解析】此题暂无解析【解答】25.【答案】解:(1)∵,是等边三角形,∴,,,∴,∴,∴,∴,∴,∴,即,∵,∴.∴.(2)∵是等边三角形,∴,∴,∴,(t >4)6400−4tt 2(1)w t (t >4)w =(t >4)1600t(2)w =−1600t−41600t =1600t−1600(t−4)t(t−4)=6400−4tt 2(t >4)6400−4t t 2===k AD AB BE BC CF CA △ABC AB =CB =AC ∠ABC =∠BAC =∠ACB =60∘AD =BE =CF△ABE ≅△BCF ≅△CAD ∠BAE =∠CBQ =∠ACD ∠ABP =∠BCQ =∠CAR △ABP ≅△BCQ ≅△CAR ∠APB =∠BQC =∠ARC −∠APB =−BQC =−ARC 180∘180∘180∘∠RPQ =∠PQR =∠PRQ ∠RPQ +∠PQR+∠PRQ =180∘∠RPQ =∠PQR =∠PRQ =60∘∠PQR =60∘△PQR ∠PRQ =60∘∠ARD =∠PRQ =60∘∠ARD =∠ABC =∠ABE∵,∴.(3)作于.易知,,,,在中,,∵,∴,∴,,,∴,当时,,∵,都是等边三角形,∴.【考点】相似三角形综合题【解析】(1)只要证明,推出,推出,即,由此即可解决问题.(2)只要证明即可解决问题.(3)想办法求出等边三角形与的边长即可解决问题.【解答】解:(1)∵,是等边三角形,∴,,,∴,∴,∴,∴,∴,∴,即,∵,∴.∴.(2)∵是等边三角形,∴,∴,∴,∵,∴.(3)作于.易知,,,,在中,,∵,∴,∴,,,∴,当时,,∵,都是等边三角形,∠DAR =∠EAB △ARD ∽△ABE AH ⊥BC H BH =CH =m 2AH =m 3–√2BE =km EH =m−km12Rt △AEH AE ==⋅m A +E H 2H 2−−−−−−−−−−√−k +1k 2−−−−−−−−√△ARD ∽△ABE ==AR m RD km km AE AR =⋅m k −k +1k 2−−−−−−−−√RD =⋅m k 2−k +1k 2−−−−−−−−√PE =RD =⋅m k 2−k +1k 2−−−−−−−−√AP =AE−PE =⋅m 1−k−k +1k 2−−−−−−−−√0<k <12RP =AP −AR =⋅m 1−2k−k +1k 2−−−−−−−−√△PQR △ABC ==S △PQR S △ABC (m 3–√41−2k−k +1k 2−−−−−−−−√)23–√4m 2(1−2k)2−k +1k 2△ABP ≅△BCQ ≅△CAR ∠APB =∠BQC =∠ARC −∠APB =−BQC =−ARC 180∘180∘180∘∠RPQ =∠PQR =∠PRQ ∠ARD =∠ABE =60∘△PQR △ABC ===k AD AB BE BC CF CA △ABCAB =CB =AC ∠ABC =∠BAC =∠ACB =60∘AD =BE =CF △ABE ≅△BCF ≅△CAD ∠BAE =∠CBQ =∠ACD ∠ABP =∠BCQ =∠CAR △ABP ≅△BCQ ≅△CAR ∠APB =∠BQC =∠ARC −∠APB =−BQC =−ARC 180∘180∘180∘∠RPQ =∠PQR =∠PRQ ∠RPQ +∠PQR+∠PRQ =180∘∠RPQ =∠PQR =∠PRQ =60∘∠PQR =60∘△PQR ∠PRQ =60∘∠ARD =∠PRQ =60∘∠ARD =∠ABC =∠ABE ∠DAR =∠EAB △ARD ∽△ABE AH ⊥BC H BH =CH =m 2AH =m 3–√2BE =km EH =m−km12Rt △AEH AE ==⋅m A +E H 2H 2−−−−−−−−−−√−k +1k 2−−−−−−−−√△ARD ∽△ABE ==AR m RD km km AEAR =⋅m k −k +1k 2−−−−−−−−√RD =⋅m k 2−k +1k 2−−−−−−−−√PE =RD =⋅m k 2−k +1k 2−−−−−−−−√AP =AE−PE =⋅m 1−k −k +1k 2−−−−−−−−√0<k <12RP =AP −AR =⋅m1−2k −k +1k 2−−−−−−−−√△PQR △ABC m –√∴.==S △PQR S △ABC (m 3–√41−2k −k +1k 2−−−−−−−−√)23–√4m 2(1−2k)2−k +1k 2。
2022年四川省达州市中考数学试卷(解析版)

2022年四川省达州市中考数学试卷一、单项选择题(每小题3分,共30分)1.(3分)下列四个数中,最小的数是()A.0B.﹣2C.1D.2.(3分)在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是()A.B.C.D.3.(3分)2022年5月19日,达州金垭机场正式通航.金垭机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元4.(3分)如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于()A.15°B.25°C.35°D.45°5.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.6.(3分)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a<b,则ac2<bc2D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是7.(3分)如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF8.(3分)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC 边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.189.(3分)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C 为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为()A.2π﹣2B.2π﹣C.2πD.π﹣10.(3分)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b 成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有()个.A.2B.3C.4D.5二、填空题(每小题3分,共18分)11.(3分)计算:2a+3a=.12.(3分)如图,在Rt△ABC中,∠C=90°,∠B=20°,分别以点A,B为圆心,大于AB的长为半径作弧,两弧分别相交于点M,N,作直线MN,交BC于点D,连接AD,则∠CAD的度数为.13.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD=10,则菱形ABCD的周长为.14.(3分)关于x的不等式组恰有3个整数解,则a的取值范围是.15.(3分)人们把≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a=,b=,记S1=+,S2=+,…,S100=+,则S1+S2+…+S100=.16.(3分)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)计算:(﹣1)2022+|﹣2|﹣()0﹣2tan45°.18.(6分)化简求值:÷(+),其中a=﹣1.19.(7分)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数96m众数b98方差28.628根据以上信息,解答下列问题:(1)上述图表中a=,b=,m=;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是多少?20.(8分)某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)21.(8分)某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种T恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?22.(8分)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.(8分)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA为半径的⊙O 与BC相切于点D,分别交AB,AC边于点E,F.(1)求证:AD平分∠BAC;(2)若BD=3,tan∠CAD=,求⊙O的半径.24.(11分)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:【初步探究】(1)如图2,当ED∥BC时,则α=;(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系:;【深入探究】(3)如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.【拓展延伸】(4)如图5,在△ABC与△CDE中,∠ACB=∠DCE=90°,若BC=mAC,CD=mCE (m为常数).保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.25.(11分)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.(1)求该二次函数的表达式;(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.2022年四川省达州市中考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.(3分)下列四个数中,最小的数是()A.0B.﹣2C.1D.【分析】根据负数小于0,正数大于0即可得出答案.【解答】解:∵﹣2<0<1<,∴最小的数是﹣2.故选:B.【点评】本题考查了实数大小比较,掌握负数小于0,正数大于0是解题的关键.2.(3分)在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:A.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)2022年5月19日,达州金垭机场正式通航.金垭机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:26.62亿=2662000000=2.662×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于()A.15°B.25°C.35°D.45°【分析】根据平行线的性质得到∠DNM=∠BME=80°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【解答】解:∵AB∥CD,∴∠DNM=∠BME=80°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=80°﹣45°=35°,故选:C.【点评】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.5.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:B.【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.6.(3分)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a<b,则ac2<bc2D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是【分析】根据对顶角的定义、圆周角,不等式的性质、概率公式判断即可.【解答】解:A、相等的两个角不一定是对顶角,原命题是假命题;B、在同圆或等圆中,相等的圆周角所对的弧相等,原命题是假命题;C、若a<b,c=0时,则ac2=bc2,原命题是假命题;D、在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是,是真命题;故选:D.【点评】考查了命题与定理的知识,解题的关键是了解对顶角的定义、圆周角,不等式的性质、概率公式等知识,难度不大.7.(3分)如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF【分析】利用三角形中位线定理得到DE∥AC,DE=AC,结合平行四边形的判定定理对各个选项进行判断即可.【解答】解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=AC,A、当∠B=∠F,不能判定AD∥CF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;B、∵DE=EF,∴DE=DF,∴AC=DF,∵AC∥DF,∴四边形ADFC为平行四边形,故本选项符合题意;C、根据AC=CF,不能判定AC=DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;D、∵AD=CF,AD=BD,∴BD=CF,由BD=CF,∠BED=∠CEF,BE=CE,不能判定△BED≌△CEF,不能判定CF∥AB,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;故选:B.【点评】本题考查了平行四边形的判定、三角形的中位线定理以及平行线的判定等知识;熟练掌握平行四边形的判定和三角形中位线定理是解题的关键.8.(3分)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC 边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.18【分析】证明△BEF∽△CFD,求得CF,设BF=x,用x表示DF、CD,由勾股定理列出方程即可求解.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠A=∠EBF=∠BCD=90°,∵将矩形ABCD沿直线DE折叠,∴AD=DF=BC,∠A=∠DFE=90°,∴∠BFE+∠DFC=∠BFE+∠BEF=90°,∴∠BEF=∠CFD,∴△BEF∽△CFD,∴,∵CD=3BF,∴CF=3BE=12,设BF=x,则CD=3x,DF=BC=x+12,∵∠C=90°,∴Rt△CDF中,CD2+CF2=DF2,∴(3x)2+122=(x+12)2,解得x=3(舍去0根),∴AD=DF=3+12=15,故选:C.【点评】本题主要考查了翻折变换,矩形的性质,相似三角形的性质与判定,勾股定理的运用,利用勾股定理列出方程和证明相似三角形是本题的关键.9.(3分)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C 为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为()A.2π﹣2B.2π﹣C.2πD.π﹣【分析】此三角形是由三段弧组成,如果周长为2π,则其中的一段弧长为,所以根据弧长公式可得=,解得r=2,即正三角形的边长为2.那么曲边三角形的面积就=三角形的面积+三个弓形的面积.【解答】解:设等边三角形ABC的边长为r,∴=,解得r=2,即正三角形的边长为2,∴这个曲边三角形的面积=2××+(﹣)×3=2π﹣2,故选:A.【点评】本题考查了扇形面积的计算.此题的关键是明确曲边三角形的面积就=三角形的面积+三个弓形的面积,然后再根据所给的曲边三角形的周长求出三角形的边长,从而求值.10.(3分)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b 成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有()个.A.2B.3C.4D.5【分析】①正确,判断出a,b,c的正负,可得结论;②正确.利用对称轴公式可得,b=﹣2a,当x=﹣1时,y>0,解不等式可得结论;③错误.当m=1时,m(am+b)=a+b;④错误.应该是y2<y3<y1,;⑤错误.当有四个交点或3个时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有两个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2.【解答】解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,﹣1),∴c=﹣1,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①正确,∵y=ax2﹣2ax﹣1,当x=﹣1时,y>0,∴a+2a﹣1>0,∴a>,故②正确,当m=1时,m(am+b)=a+b,故③错误,∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.【点评】本题考查二次函数的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共18分)11.(3分)计算:2a+3a=5a.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变求解.【解答】解:2a+3a=5a,故答案为:5a.【点评】本题考查了合并同类项的法则,解题时牢记法则是关键.12.(3分)如图,在Rt△ABC中,∠C=90°,∠B=20°,分别以点A,B为圆心,大于AB的长为半径作弧,两弧分别相交于点M,N,作直线MN,交BC于点D,连接AD,则∠CAD的度数为50°.【分析】根据∠CAD=∠CAB﹣∠DAB,求出∠CAB,∠DAB即可.【解答】解:∵∠C=90°,∠B=20°,∴∠CAB=90°﹣∠B=90°﹣20°=70°,由作图可知,MN垂直平分线段AB,∴DA=DB,∴∠DAB=∠B=20°,∴∠CAD=∠CAB﹣∠DAB=70°﹣20°=50°,故答案为:50°.【点评】本题考查作图﹣基本作图,三角形内角和定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.13.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD=10,则菱形ABCD的周长为52.【分析】菱形的四条边相等,要求周长,只需求出边长即可,菱形的对角线互相垂直且平分,根据勾股定理求边长即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,AO=CO,BO=DO,∵AC=24,BD=10,∴AO=AC=12,BO=BD=5,在Rt△AOB中,AB===13,∴菱形的周长=13×4=52.故答案为:52.【点评】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直且平分是解题的关键.14.(3分)关于x的不等式组恰有3个整数解,则a的取值范围是2≤a <3.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:,解不等式①得:x>a﹣2,解不等式②得:x≤3,∴不等式组的解集为:a﹣2<x≤3,∵恰有3个整数解,∴0≤a﹣2<1,∴2≤a<3,故答案为:2≤a<3.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情况分情况讨论结果,取出合理的答案.15.(3分)人们把≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a=,b=,记S1=+,S2=+,…,S100=+,则S1+S2+…+S100=5050.【分析】利用分式的加减法则分别可求S1=1,S2=2,S100=100,…,利用规律求解即可.【解答】解:∵a=,b=,∴ab=×=1,∵S1=+==1,S2=+==2,…,S100=+==100,∴S1+S2+…+S100=1+2+…+100=5050,故答案为:5050.【点评】本题考查了分式的加减法,找出的规律是本题的关键.16.(3分)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是①②④⑤.【分析】①正确.证明△BCP≌△DCP(SAS),可得结论;②正确.证明∠CFB=∠EFB,推出∠CBF+∠CFB=90°,推出2∠CBF+2∠CFB=180°,由∠EFD+2∠CFB=180°,可得结论;③错误.可以证明PQ<P A+CQ;④正确.利用相似三角形的性质证明∠BPF=90°,可得结论;⑤正确.求出BD,BH,根据DH≥BD﹣BH,可得结论.【解答】解:如图,∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCP=45°,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,故①正确,∵∠PBQ=∠QCF=45°,∠PQB=∠FQC,∴△PQB∽△FQC,∴=,∠BPQ=∠CFQ,∴=,∵∠PQF=∠BQC,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,P四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBFM故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2,BH=AB=2,∴DH≥BD﹣BH=2﹣2,∴DH的最小值为2﹣2,故⑤正确,故答案为:①②④⑤.【点评】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题关键是学会添加常用辅助线吗,构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)计算:(﹣1)2022+|﹣2|﹣()0﹣2tan45°.【分析】根据有理数的乘方,绝对值,零指数幂,特殊角的三角函数值计算即可.【解答】解:原式=1+2﹣1﹣2×1=1+2﹣1﹣2=0.【点评】本题考查了实数的运算,有理数的乘方,特殊角的三角函数值,掌握a0=1(a ≠0)是解题的关键.18.(6分)化简求值:÷(+),其中a=﹣1.【分析】先对分子分母因式分解,再通分,将除法变为乘法,约分后代入求值即可.【解答】解:原式=====,把a=﹣1代入.【点评】本题考查了分式的化简求值,解题的关键是分解因式.19.(7分)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数96m众数b98方差28.628根据以上信息,解答下列问题:(1)上述图表中a=30,b=96,m=93;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是多少?【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的众数高于七年级,于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)a=(1﹣20%﹣10%﹣)×100=30,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,∴m==93;∵在七年级10名学生的竞赛成绩中96出现的次数最多,∴b=96,故答案为:30,96,93;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的众数高于七年级;(3)估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是:1200×=540(人),答:估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是540人.【点评】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)【分析】根据题目中的数据和锐角三角函数,可以求得BE的长,然后再根据锐角三角函数,即可得到BC的长.【解答】解:作DF⊥CE交CE于点F,∵EC∥AD,∠CDG=63.4°,∴∠FCD=∠CDG=63.4°,∵tan∠FCD=,tan63.4°≈2.00,∴=2,∴DF=2CF,设CF=xm,则DF=2xm,BE=(3﹣2x)m,∵AD=2m,AD=EF,∴EF=2m,∴EC=(2+x)m,∵tan∠BCE=,tan10°≈0.18,∴0.18=,解得x≈1.21,∴BE=3﹣2x=0.58(m),∵sin∠BCE=,∴BC==≈3.4(m),即此遮阳篷BC的长度约为3.4m.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.21.(8分)某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种T恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?【分析】(1)设该商场购进第一批、第二批T恤衫每件的进价分别是x元和(x+4)元,根据所购数量是第一批购进量的2倍列出方程解答即可;(2)设每件T恤衫的标价至少是y元,根据题意列出不等式解答即可.【解答】(1)解:设该商场购进第一批、第二批T恤衫每件的进价分别是x元和(x+4)元,根据题意可得:,解得:x=40,经检验x=40是方程的解,x+4=40+4=44,答:该商场购进第一批、第二批T恤衫每件的进价分别是40元和44元;(2)解:(件),设每件T恤衫的标价至少是y元,根据题意可得:(300﹣40)y+40×0.7y≥(4000+8800)×(1+80%),解得:y≥80,答:每件T恤衫的标价至少是80元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8分)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)求出点A的坐标,利用待定系数法求解即可;(2)解方程组求出点B的坐标,利用割补法求三角形的面积;(3)有三种情形,画出图形可得结论.【解答】解:(1)∵一次函数y=x+1经过点A(m,2),∴m+1=2,∴m=1,∴A(1,2),∵反比例函数y=经过点(1,2),∴k=2,∴反比例函数的解析式为y=;(2)由题意,得,解得或,∴B(﹣2,﹣1),∵C(0,1),∴S△AOB=S△AOC+S△BOC=×1×2+×1×1=1.5;(3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).【点评】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,三角形的面积等知识,解题的关键是掌握待定系数法,学会构建方程组确定交点坐标,属于中考常考题型.23.(8分)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA为半径的⊙O与BC相切于点D,分别交AB,AC边于点E,F.(1)求证:AD平分∠BAC;(2)若BD=3,tan∠CAD=,求⊙O的半径.【分析】(1)连接OD,证明OD∥AC,再利用等腰三角形的性质平行线的性质即可解决问题;(2)连接DE,过点D作DT⊥AB于点T,tan∠CAD=tan∠DAE=,推出=,设DE=k,AD=2k,则AE=k,利用面积法求出DT,再利用勾股定理求出OT,再根据tan∠DOT==,构建方程求解即可.【解答】(1)证明:连接OD.∵BC是⊙O的切线,OD是⊙O半径,D是切点,∴OD⊥BC,∴∠ODB=∠C=90°,∴OD∥AC,∴∠ODA=∠CAD,∵OD=OA,∴∠ODA=∠OAD,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)解:连接DE,过点D作DT⊥AB于点T,∵AE是直径,∴∠ADE=90°,∵tan∠CAD=tan∠DAE=,∴=,设DE=k,AD=2k,则AE=k,∵•DE•AD=•AE•DT,∴DT=k,∴OT===k,∵tan∠DOT==,∴=,∴k=,∴OD=k=,∴⊙O的半径为.【点评】本题属于圆综合题,考查了切线的性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.24.(11分)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:【初步探究】(1)如图2,当ED∥BC时,则α=45°;(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系:BF=AF+CF;。
2022年四川省达州市中考数学试卷(含答案)

2022年四川省达州市中考数学试卷一、单项选择题(每小题3分,共30分)1.(3分)(2022•达州)下列四个数中,最小的数是()A.0B.﹣2C.1D.2.(3分)(2022•达州)在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是()A.B.C.D.3.(3分)(2022•达州)2022年5月19日,达州金垭机场正式通航.金垭机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元4.(3分)(2022•达州)如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于()A.15°B.25°C.35°D.45°5.(3分)(2022•达州)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.6.(3分)(2022•达州)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a<b,则ac2<bc2D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是7.(3分)(2022•达州)如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF8.(3分)(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A 恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.189.(3分)(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为()A.2π﹣2B.2π﹣C.2πD.π﹣10.(3分)(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有()个.A.2B.3C.4D.5二、填空题(每小题3分,共18分)11.(3分)(2022•达州)计算:2a+3a=.12.(3分)(2022•达州)如图,在Rt△ABC中,∠C=90°,∠B=20°,分别以点A,B 为圆心,大于AB的长为半径作弧,两弧分别相交于点M,N,作直线MN,交BC于点D,连接AD,则∠CAD的度数为.13.(3分)(2022•达州)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD =10,则菱形ABCD的周长为.14.(3分)(2022•达州)关于x的不等式组恰有3个整数解,则a的取值范围是.15.(3分)(2022•达州)人们把≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.a=,b=,记S1=+,S2=+,…,S100=+,则S1+S2+…+S100=.16.(3分)(2022•达州)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD 边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)(2022•达州)计算:(﹣1)2022+|﹣2|﹣()0﹣2tan45°.18.(6分)(2022•达州)化简求值:÷(+),其中a=﹣1.19.(7分)(2022•达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数96m众数b98方差28.628根据以上信息,解答下列问题:(1)上述图表中a=,b=,m=;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是多少?20.(8分)(2022•达州)某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)21.(8分)(2022•达州)某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种T恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?22.(8分)(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.(8分)(2022•达州)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA 为半径的⊙O与BC相切于点D,分别交AB,AC边于点E,F.(1)求证:AD平分∠BAC;(2)若BD=3,tan∠CAD=,求⊙O的半径.24.(11分)(2022•达州)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:【初步探究】(1)如图2,当ED∥BC时,则α=;(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系:;【深入探究】(3)如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.【拓展延伸】(4)如图5,在△ABC与△CDE中,∠ACB=∠DCE=90°,若BC=mAC,CD=mCE (m为常数).保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.25.(11分)(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.(1)求该二次函数的表达式;(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.2022年四川省达州市中考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.(3分)(2022•达州)下列四个数中,最小的数是()A.0B.﹣2C.1D.【考点】实数大小比较.【分析】根据负数小于0,正数大于0即可得出答案.【解答】解:∵﹣2<0<1<,∴最小的数是﹣2.故选:B.【点评】本题考查了实数大小比较,掌握负数小于0,正数大于0是解题的关键.2.(3分)(2022•达州)在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:A.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2022•达州)2022年5月19日,达州金垭机场正式通航.金垭机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:26.62亿=2662000000=2.662×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2022•达州)如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于()A.15°B.25°C.35°D.45°【考点】等腰直角三角形;平行线的性质.【分析】根据平行线的性质得到∠DNM=∠BME=80°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【解答】解:∵AB∥CD,∴∠DNM=∠BME=80°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=80°﹣45°=35°,故选:C.【点评】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.5.(3分)(2022•达州)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:B.【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.6.(3分)(2022•达州)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a<b,则ac2<bc2D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是【考点】命题与定理;概率公式;不等式的性质;对顶角、邻补角;圆周角定理.【分析】根据对顶角的定义、圆周角,不等式的性质、概率公式判断即可.【解答】解:A、相等的两个角不一定是对顶角,原命题是假命题;B、在同圆或等圆中,相等的圆周角所对的弧相等,原命题是假命题;C、若a<b,c=0时,则ac2=bc2,原命题是假命题;D、在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是,是真命题;故选:D.【点评】考查了命题与定理的知识,解题的关键是了解对顶角的定义、圆周角,不等式的性质、概率公式等知识,难度不大.7.(3分)(2022•达州)如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF【考点】平行四边形的判定;三角形中位线定理.【分析】利用三角形中位线定理得到DE∥AC,DE=AC,结合平行四边形的判定定理对各个选项进行判断即可.【解答】解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=AC,A、当∠B=∠F,不能判定AD∥CF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;B、∵DE=EF,∴DE=DF,∴AC=DF,∵AC∥DF,∴四边形ADFC为平行四边形,故本选项符合题意;C、根据AC=CF,不能判定AC=DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;D、∵AD=CF,AD=BD,∴BD=CF,由BD=CF,∠BED=∠CEF,BE=CE,不能判定△BED≌△CEF,不能判定CF∥AB,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;故选:B.【点评】本题考查了平行四边形的判定、三角形的中位线定理以及平行线的判定等知识;熟练掌握平行四边形的判定和三角形中位线定理是解题的关键.8.(3分)(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A 恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.18【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】证明△BEF∽△CFD,求得CF,设BF=x,用x表示DF、CD,由勾股定理列出方程即可求解.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠A=∠EBF=∠BCD=90°,∵将矩形ABCD沿直线DE折叠,∴AD=DF=BC,∠A=∠DFE=90°,∴∠BFE+∠DFC=∠BFE+∠BEF=90°,∴∠BEF=∠CFD,∴△BEF∽△CFD,∴,∵CD=3BF,∴CF=3BE=12,设BF=x,则CD=3x,DF=BC=x+12,∵∠C=90°,∴Rt△CDF中,CD2+CF2=DF2,∴(3x)2+122=(x+12)2,解得x=3(舍去0根),∴AD=DF=3+12=15,故选:C.【点评】本题主要考查了翻折变换,矩形的性质,相似三角形的性质与判定,勾股定理的运用,利用勾股定理列出方程和证明相似三角形是本题的关键.9.(3分)(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为()A.2π﹣2B.2π﹣C.2πD.π﹣【考点】扇形面积的计算;等边三角形的性质.【分析】此三角形是由三段弧组成,如果周长为2π,则其中的一段弧长为,所以根据弧长公式可得=,解得r=2,即正三角形的边长为2.那么曲边三角形的面积就=三角形的面积+三个弓形的面积.【解答】解:设等边三角形ABC的边长为r,∴=,解得r=2,即正三角形的边长为2,∴这个曲边三角形的面积=2××+(﹣)×3=2π﹣2,故选:A.【点评】本题考查了扇形面积的计算.此题的关键是明确曲边三角形的面积就=三角形的面积+三个弓形的面积,然后再根据所给的曲边三角形的周长求出三角形的边长,从而求值.10.(3分)(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有()个.A.2B.3C.4D.5【考点】二次函数图象上点的坐标特征;根的判别式;二次函数图象与系数的关系.【分析】①正确,判断出a,b,c的正负,可得结论;②正确.利用对称轴公式可得,b=﹣2a,当x=﹣1时,y>0,解不等式可得结论;③错误.当m=1时,m(am+b)=a+b;④错误.应该是y2<y3<y1,;⑤错误.当有四个交点或3个时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有两个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2.【解答】解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,﹣1),∴c=﹣1,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①正确,∵y=ax2﹣2ax﹣1,当x=﹣1时,y>0,∴a+2a﹣1>0,∴a>,故②正确,当m=1时,m(am+b)=a+b,故③错误,∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>Y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有四个交点或3个时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有两个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.【点评】本题考查二次函数的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共18分)11.(3分)(2022•达州)计算:2a+3a=5a.【考点】合并同类项.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变求解.【解答】解:2a+3a=5a,故答案为:5a.【点评】本题考查了合并同类项的法则,解题时牢记法则是关键.12.(3分)(2022•达州)如图,在Rt△ABC中,∠C=90°,∠B=20°,分别以点A,B 为圆心,大于AB的长为半径作弧,两弧分别相交于点M,N,作直线MN,交BC于点D,连接AD,则∠CAD的度数为50°.【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据∠CAD=∠CAB﹣∠DAB,求出∠CAB,∠DAB即可.【解答】解:∵∠C=90°,∠B=20°,∴∠CAB=90°﹣∠B=90°﹣20°=70°,由作图可知,MN垂直平分线段AB,∴DA=DB,∴∠DAB=∠B=20°,∴∠CAD=∠CAB﹣∠DAB=70°﹣20°=50°,故答案为:50°.【点评】本题考查作图﹣基本作图,三角形内角和定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.13.(3分)(2022•达州)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD =10,则菱形ABCD的周长为52.【考点】菱形的性质;勾股定理.【分析】菱形的四条边相等,要求周长,只需求出边长即可,菱形的对角线互相垂直且平分,根据勾股定理求边长即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,AO=CO,BO=DO,∵AC=24,BD=10,∴AO=AC=12,BO=BD=5,在Rt△AOB中,AB===13,∴菱形的周长=13×4=52.故答案为:52.【点评】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直且平分是解题的关键.14.(3分)(2022•达州)关于x的不等式组恰有3个整数解,则a的取值范围是2≤a<3.【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:,解不等式①得:x>a﹣2,解不等式②得:x≤3,∴不等式组的解集为:a﹣2<x≤3,∵恰有3个整数解,∴0≤a﹣2<1,∴2≤a<3,故答案为:2≤a<3.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情况分情况讨论结果,取出合理的答案.15.(3分)(2022•达州)人们把≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.a=,b=,记S1=+,S2=+,…,S100=+,则S1+S2+…+S100=5050.【考点】黄金分割;规律型:数字的变化类.【分析】利用分式的加减法则分别可求S1=1,S2=2,S100=100,…,利用规律求解即可.【解答】解:∵a=,b=,∴ab=×=1,∵S1=+==1,S2=+==2,…,S100=+==100,∴S1+S2+…+S100=1+2+…+100=5050,故答案为:5050.【点评】本题考查了分式的加减法,找出的规律是本题的关键.16.(3分)(2022•达州)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD 边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是①②④⑤.【考点】正方形的性质;勾股定理;等腰直角三角形.【分析】①正确.证明△BCP≌△DCP(SAS),可得结论;②正确.证明∠CFB=∠EFB,推出∠CBF+∠CFB=90°,推出2∠CBF+2∠CFB=180°,由∠EFD+2∠CFB=180°,可得结论;③错误.可以证明PQ<P A+CQ;④正确.利用相似三角形的性质证明∠BPF=90°,可得结论;⑤正确.求出BD,BH,根据DH≥BD﹣BH,可得结论.【解答】解:如图,∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCP=45°,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,故①正确,∵∠PBQ=∠QCF=45°,∠PQB=∠FQC,∴△PQB∽△FQC,∴=,∠BPQ=∠CFQ,∴=,∵∠PQF=∠BQC,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,Q四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=CF=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBFM故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2,BH=AB=2,∴DH≥BD﹣BH=2﹣2,∴DH的最小值为2﹣2,故⑤正确,故答案为:①②④⑤.【点评】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题关键是学会添加常用辅助线吗,构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)(2022•达州)计算:(﹣1)2022+|﹣2|﹣()0﹣2tan45°.【考点】特殊角的三角函数值;有理数的乘方;实数的运算;零指数幂.【分析】根据有理数的乘方,绝对值,零指数幂,特殊角的三角函数值计算即可.【解答】解:原式=1+2﹣1﹣2×1=1+2﹣1﹣2=0.【点评】本题考查了实数的运算,有理数的乘方,特殊角的三角函数值,掌握a0=1(a ≠0)是解题的关键.18.(6分)(2022•达州)化简求值:÷(+),其中a=﹣1.【考点】分式的化简求值.【分析】先对分子分母因式分解,再通分,将除法变为乘法,约分后代入求值即可.【解答】解:原式=====,把a=﹣1代入.【点评】本题考查了分式的化简求值,解题的关键是分解因式.19.(7分)(2022•达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数96m众数b98方差28.628根据以上信息,解答下列问题:(1)上述图表中a=30,b=96,m=93;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是多少?【考点】扇形统计图;中位数;众数;用样本估计总体.【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)a=(1﹣20%﹣10%﹣)×100=30,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,∴m==93;∵在七年级10名学生的竞赛成绩中96出现的次数最多,∴b=96,故答案为:30,96,93;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的众数高于七年级;(3)估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是:1200×=540(人),答:估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是540人.【点评】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)(2022•达州)某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)【考点】解直角三角形的应用.【分析】根据题目中的数据和锐角三角函数,可以求得BE的长,然后再根据锐角三角函数,即可得到BC的长.【解答】解:作DF⊥CE交CE于点F,∵EC∥AD,∠CDG=63.4°,∴∠FCD=∠CDG=63.4°,∵tan∠FCD=,tan63.4°≈2.00,∴=2,∴DF=2CF,设CF=xm,则DF=2xm,BE=(3﹣2x)m,∵AD=2m,AD=EF,∴EF=2m,∴EC=(2+x)m,∵tan∠BCE=,tan10°≈0.18,∴0.18=,解得x≈1.2,∴BE=3﹣2x=3﹣2×1.2=0.6(m),∵sin∠BCE=,∴BC==≈3.5(m),即此遮阳篷BC的长度约为3.5m.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.21.(8分)(2022•达州)某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种T恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设该商场购进第一批、第二批T恤衫每件的进价分别是x元和(x+4)元,根据所购数量是第一批购进量的2倍列出方程解答即可;(2)设每件T恤衫的标价至少是y元,根据题意列出不等式解答即可.【解答】(1)解:设该商场购进第一批、第二批T恤衫每件的进价分别是x元和(x+4)元,根据题意可得:,解得:x=40,经检验x=40是方程的解,x+4=40+4=44,答:该商场购进第一批、第二批T恤衫每件的进价分别是40元和44元;(2)解:(件),设每件T恤衫的标价至少是y元,根据题意可得:(300﹣40)y+40×0.7y≥(4000+8800)×(1+80%),解得:y≥80,答:每件T恤衫的标价至少是80元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8分)(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)求出点A的坐标,利用待定系数法求解即可;(2)解方程组求出点B的坐标,利用割补法求三角形的面积;(3)有三种情形,画出图形可得结论.【解答】解:(1)∵一次函数y=x+1经过点A(m,2),∴m+1=2,∴m=1,∴A(1,2),∵反比例函数y=经过点(1,2),∴k=2,∴反比例函数的解析式为y=;(2)由题意,得,解得或,∴B(﹣2,﹣1),∵C(0,1),∴S△AOB=S△AOC+S△BOC=×1×2+×1×1=1.5;(3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).【点评】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,三角形的面积等知识,解题的关键是掌握待定系数法,学会构建方程组确定交点坐标,属于中考常考题型.23.(8分)(2022•达州)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA 为半径的⊙O与BC相切于点D,分别交AB,AC边于点E,F.(1)求证:AD平分∠BAC;(2)若BD=3,tan∠CAD=,求⊙O的半径.。
2022年四川省达州市中考数学试卷(解析版)

2022年四川省达州市中考数学试卷一、单项选择题(每小题3分,共30分)1.(3分)(2022•达州)下列四个数中,最小的数是()A.0B.﹣2C.1D.2.(3分)(2022•达州)在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是()A.B.C.D.3.(3分)(2022•达州)2022年5月19日,达州金垭机场正式通航.金垭机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元4.(3分)(2022•达州)如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于()A.15°B.25°C.35°D.45°5.(3分)(2022•达州)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.6.(3分)(2022•达州)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a<b,则ac2<bc2D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是7.(3分)(2022•达州)如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF8.(3分)(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A 恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.189.(3分)(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为()A.2π﹣2B.2π﹣C.2πD.π﹣10.(3分)(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有()个.A.2B.3C.4D.5二、填空题(每小题3分,共18分)11.(3分)(2022•达州)计算:2a+3a=.12.(3分)(2022•达州)如图,在Rt△ABC中,∠C=90°,∠B=20°,分别以点A,B 为圆心,大于AB的长为半径作弧,两弧分别相交于点M,N,作直线MN,交BC于点D,连接AD,则∠CAD的度数为.13.(3分)(2022•达州)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD =10,则菱形ABCD的周长为.14.(3分)(2022•达州)关于x的不等式组恰有3个整数解,则a的取值范围是.15.(3分)(2022•达州)人们把≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.a=,b=,记S1=+,S2=+,…,S100=+,则S1+S2+…+S100=.16.(3分)(2022•达州)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD 边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)(2022•达州)计算:(﹣1)2022+|﹣2|﹣()0﹣2tan45°.18.(6分)(2022•达州)化简求值:÷(+),其中a=﹣1.19.(7分)(2022•达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数96m众数b98方差28.628根据以上信息,解答下列问题:(1)上述图表中a=,b=,m=;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是多少?20.(8分)(2022•达州)某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)21.(8分)(2022•达州)某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种T恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?22.(8分)(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.(8分)(2022•达州)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA 为半径的⊙O与BC相切于点D,分别交AB,AC边于点E,F.(1)求证:AD平分∠BAC;(2)若BD=3,tan∠CAD=,求⊙O的半径.24.(11分)(2022•达州)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:【初步探究】(1)如图2,当ED∥BC时,则α=;(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系:;【深入探究】(3)如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.【拓展延伸】(4)如图5,在△ABC与△CDE中,∠ACB=∠DCE=90°,若BC=mAC,CD=mCE (m为常数).保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.25.(11分)(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.(1)求该二次函数的表达式;(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.2022年四川省达州市中考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.(3分)(2022•达州)下列四个数中,最小的数是()A.0B.﹣2C.1D.【考点】实数大小比较.【分析】根据负数小于0,正数大于0即可得出答案.【解答】解:∵﹣2<0<1<,∴最小的数是﹣2.故选:B.【点评】本题考查了实数大小比较,掌握负数小于0,正数大于0是解题的关键.2.(3分)(2022•达州)在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:A.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2022•达州)2022年5月19日,达州金垭机场正式通航.金垭机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:26.62亿=2662000000=2.662×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2022•达州)如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于()A.15°B.25°C.35°D.45°【考点】等腰直角三角形;平行线的性质.【分析】根据平行线的性质得到∠DNM=∠BME=80°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【解答】解:∵AB∥CD,∴∠DNM=∠BME=80°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=80°﹣45°=35°,故选:C.【点评】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.5.(3分)(2022•达州)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:B.【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.6.(3分)(2022•达州)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a<b,则ac2<bc2D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是【考点】命题与定理;概率公式;不等式的性质;对顶角、邻补角;圆周角定理.【分析】根据对顶角的定义、圆周角,不等式的性质、概率公式判断即可.【解答】解:A、相等的两个角不一定是对顶角,原命题是假命题;B、在同圆或等圆中,相等的圆周角所对的弧相等,原命题是假命题;C、若a<b,c=0时,则ac2=bc2,原命题是假命题;D、在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是,是真命题;故选:D.【点评】考查了命题与定理的知识,解题的关键是了解对顶角的定义、圆周角,不等式的性质、概率公式等知识,难度不大.7.(3分)(2022•达州)如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF【考点】平行四边形的判定;三角形中位线定理.【分析】利用三角形中位线定理得到DE∥AC,DE=AC,结合平行四边形的判定定理对各个选项进行判断即可.【解答】解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=AC,A、当∠B=∠F,不能判定AD∥CF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;B、∵DE=EF,∴DE=DF,∴AC=DF,∵AC∥DF,∴四边形ADFC为平行四边形,故本选项符合题意;C、根据AC=CF,不能判定AC=DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;D、∵AD=CF,AD=BD,∴BD=CF,由BD=CF,∠BED=∠CEF,BE=CE,不能判定△BED≌△CEF,不能判定CF∥AB,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;故选:B.【点评】本题考查了平行四边形的判定、三角形的中位线定理以及平行线的判定等知识;熟练掌握平行四边形的判定和三角形中位线定理是解题的关键.8.(3分)(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A 恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.18【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】证明△BEF∽△CFD,求得CF,设BF=x,用x表示DF、CD,由勾股定理列出方程即可求解.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠A=∠EBF=∠BCD=90°,∵将矩形ABCD沿直线DE折叠,∴AD=DF=BC,∠A=∠DFE=90°,∴∠BFE+∠DFC=∠BFE+∠BEF=90°,∴∠BEF=∠CFD,∴△BEF∽△CFD,∴,∵CD=3BF,∴CF=3BE=12,设BF=x,则CD=3x,DF=BC=x+12,∵∠C=90°,∴Rt△CDF中,CD2+CF2=DF2,∴(3x)2+122=(x+12)2,解得x=3(舍去0根),∴AD=DF=3+12=15,故选:C.【点评】本题主要考查了翻折变换,矩形的性质,相似三角形的性质与判定,勾股定理的运用,利用勾股定理列出方程和证明相似三角形是本题的关键.9.(3分)(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为()A.2π﹣2B.2π﹣C.2πD.π﹣【考点】扇形面积的计算;等边三角形的性质.【分析】此三角形是由三段弧组成,如果周长为2π,则其中的一段弧长为,所以根据弧长公式可得=,解得r=2,即正三角形的边长为2.那么曲边三角形的面积就=三角形的面积+三个弓形的面积.【解答】解:设等边三角形ABC的边长为r,∴=,解得r=2,即正三角形的边长为2,∴这个曲边三角形的面积=2××+(﹣)×3=2π﹣2,故选:A.【点评】本题考查了扇形面积的计算.此题的关键是明确曲边三角形的面积就=三角形的面积+三个弓形的面积,然后再根据所给的曲边三角形的周长求出三角形的边长,从而求值.10.(3分)(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有()个.A.2B.3C.4D.5【考点】二次函数图象上点的坐标特征;根的判别式;二次函数图象与系数的关系.【分析】①正确,判断出a,b,c的正负,可得结论;②正确.利用对称轴公式可得,b=﹣2a,当x=﹣1时,y>0,解不等式可得结论;③错误.当m=1时,m(am+b)=a+b;④错误.应该是y2<y3<y1,;⑤错误.当有四个交点或3个时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有两个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2.【解答】解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,﹣1),∴c=﹣1,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①正确,∵y=ax2﹣2ax﹣1,当x=﹣1时,y>0,∴a+2a﹣1>0,∴a>,故②正确,当m=1时,m(am+b)=a+b,故③错误,∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>Y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有四个交点或3个时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有两个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.【点评】本题考查二次函数的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共18分)11.(3分)(2022•达州)计算:2a+3a=5a.【考点】合并同类项.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变求解.【解答】解:2a+3a=5a,故答案为:5a.【点评】本题考查了合并同类项的法则,解题时牢记法则是关键.12.(3分)(2022•达州)如图,在Rt△ABC中,∠C=90°,∠B=20°,分别以点A,B 为圆心,大于AB的长为半径作弧,两弧分别相交于点M,N,作直线MN,交BC于点D,连接AD,则∠CAD的度数为50°.【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据∠CAD=∠CAB﹣∠DAB,求出∠CAB,∠DAB即可.【解答】解:∵∠C=90°,∠B=20°,∴∠CAB=90°﹣∠B=90°﹣20°=70°,由作图可知,MN垂直平分线段AB,∴DA=DB,∴∠DAB=∠B=20°,∴∠CAD=∠CAB﹣∠DAB=70°﹣20°=50°,故答案为:50°.【点评】本题考查作图﹣基本作图,三角形内角和定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.13.(3分)(2022•达州)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD =10,则菱形ABCD的周长为52.【考点】菱形的性质;勾股定理.【分析】菱形的四条边相等,要求周长,只需求出边长即可,菱形的对角线互相垂直且平分,根据勾股定理求边长即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,AO=CO,BO=DO,∵AC=24,BD=10,∴AO=AC=12,BO=BD=5,在Rt△AOB中,AB===13,∴菱形的周长=13×4=52.故答案为:52.【点评】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直且平分是解题的关键.14.(3分)(2022•达州)关于x的不等式组恰有3个整数解,则a的取值范围是2≤a<3.【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:,解不等式①得:x>a﹣2,解不等式②得:x≤3,∴不等式组的解集为:a﹣2<x≤3,∵恰有3个整数解,∴0≤a﹣2<1,∴2≤a<3,故答案为:2≤a<3.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情况分情况讨论结果,取出合理的答案.15.(3分)(2022•达州)人们把≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.a=,b=,记S1=+,S2=+,…,S100=+,则S1+S2+…+S100=5050.【考点】黄金分割;规律型:数字的变化类.【分析】利用分式的加减法则分别可求S1=1,S2=2,S100=100,…,利用规律求解即可.【解答】解:∵a=,b=,∴ab=×=1,∵S1=+==1,S2=+==2,…,S100=+==100,∴S1+S2+…+S100=1+2+…+100=5050,故答案为:5050.【点评】本题考查了分式的加减法,找出的规律是本题的关键.16.(3分)(2022•达州)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD 边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是①②④⑤.【考点】正方形的性质;勾股定理;等腰直角三角形.【分析】①正确.证明△BCP≌△DCP(SAS),可得结论;②正确.证明∠CFB=∠EFB,推出∠CBF+∠CFB=90°,推出2∠CBF+2∠CFB=180°,由∠EFD+2∠CFB=180°,可得结论;③错误.可以证明PQ<P A+CQ;④正确.利用相似三角形的性质证明∠BPF=90°,可得结论;⑤正确.求出BD,BH,根据DH≥BD﹣BH,可得结论.【解答】解:如图,∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCP=45°,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,故①正确,∵∠PBQ=∠QCF=45°,∠PQB=∠FQC,∴△PQB∽△FQC,∴=,∠BPQ=∠CFQ,∴=,∵∠PQF=∠BQC,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,Q四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=CF=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBFM故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2,BH=AB=2,∴DH≥BD﹣BH=2﹣2,∴DH的最小值为2﹣2,故⑤正确,故答案为:①②④⑤.【点评】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题关键是学会添加常用辅助线吗,构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)(2022•达州)计算:(﹣1)2022+|﹣2|﹣()0﹣2tan45°.【考点】特殊角的三角函数值;有理数的乘方;实数的运算;零指数幂.【分析】根据有理数的乘方,绝对值,零指数幂,特殊角的三角函数值计算即可.【解答】解:原式=1+2﹣1﹣2×1=1+2﹣1﹣2=0.【点评】本题考查了实数的运算,有理数的乘方,特殊角的三角函数值,掌握a0=1(a ≠0)是解题的关键.18.(6分)(2022•达州)化简求值:÷(+),其中a=﹣1.【考点】分式的化简求值.【分析】先对分子分母因式分解,再通分,将除法变为乘法,约分后代入求值即可.【解答】解:原式=====,把a=﹣1代入.【点评】本题考查了分式的化简求值,解题的关键是分解因式.19.(7分)(2022•达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数96m众数b98方差28.628根据以上信息,解答下列问题:(1)上述图表中a=30,b=96,m=93;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是多少?【考点】扇形统计图;中位数;众数;用样本估计总体.【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)a=(1﹣20%﹣10%﹣)×100=30,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,∴m==93;∵在七年级10名学生的竞赛成绩中96出现的次数最多,∴b=96,故答案为:30,96,93;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的众数高于七年级;(3)估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是:1200×=540(人),答:估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是540人.【点评】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)(2022•达州)某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)【考点】解直角三角形的应用.【分析】根据题目中的数据和锐角三角函数,可以求得BE的长,然后再根据锐角三角函数,即可得到BC的长.【解答】解:作DF⊥CE交CE于点F,∵EC∥AD,∠CDG=63.4°,∴∠FCD=∠CDG=63.4°,∵tan∠FCD=,tan63.4°≈2.00,∴=2,∴DF=2CF,设CF=xm,则DF=2xm,BE=(3﹣2x)m,∵AD=2m,AD=EF,∴EF=2m,∴EC=(2+x)m,∵tan∠BCE=,tan10°≈0.18,∴0.18=,解得x≈1.2,∴BE=3﹣2x=3﹣2×1.2=0.6(m),∵sin∠BCE=,∴BC==≈3.5(m),即此遮阳篷BC的长度约为3.5m.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.21.(8分)(2022•达州)某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种T恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设该商场购进第一批、第二批T恤衫每件的进价分别是x元和(x+4)元,根据所购数量是第一批购进量的2倍列出方程解答即可;(2)设每件T恤衫的标价至少是y元,根据题意列出不等式解答即可.【解答】(1)解:设该商场购进第一批、第二批T恤衫每件的进价分别是x元和(x+4)元,根据题意可得:,解得:x=40,经检验x=40是方程的解,x+4=40+4=44,答:该商场购进第一批、第二批T恤衫每件的进价分别是40元和44元;(2)解:(件),设每件T恤衫的标价至少是y元,根据题意可得:(300﹣40)y+40×0.7y≥(4000+8800)×(1+80%),解得:y≥80,答:每件T恤衫的标价至少是80元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8分)(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)求出点A的坐标,利用待定系数法求解即可;(2)解方程组求出点B的坐标,利用割补法求三角形的面积;(3)有三种情形,画出图形可得结论.【解答】解:(1)∵一次函数y=x+1经过点A(m,2),∴m+1=2,∴m=1,∴A(1,2),∵反比例函数y=经过点(1,2),∴k=2,∴反比例函数的解析式为y=;(2)由题意,得,解得或,∴B(﹣2,﹣1),∵C(0,1),∴S△AOB=S△AOC+S△BOC=×1×2+×1×1=1.5;(3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).。
四川省达州市2020年部编人教版中考数学试题及答案(word版含精析)
2020年四川省达州市中考数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)(2020•达州)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km分析:根据正数和负数表示相反意义的量,向东记为正,可得答案.解答:解:向东行驶3km,记作+3km,向西行驶2km记作﹣2km,故选:B.点评:本题考查了正数和负数,相反意义的量用正数和负数表示.2.(3分)(2020•达州)2020年5月21日,中国石油天然气集团公司与俄罗斯天然气工业股份公司在上海签署了《中俄东线供气购销合同》,这份有效期为30年的合同规定,从2020年开始供气,每年的天然气供应量为380亿立方米,380亿立方米用科学记数法表示为()A.3.8×1010m3B.38×109m3C.380×108m3D.3.8×1011m3考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将380亿立方米用科学记数法表示为:3.8×1010m3.故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2020•达州)二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤2考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,﹣2x+4≥0,解得x≤2.故选:D.点评:本题考查的知识点为:二次根式的被开方数是非负数.4.(3分)(2020•达州)小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图,则n的值是()A.6B.7C.8D.9考点:由三视图判断几何体.分析:易得这个几何体共有3层,由俯视图可得第一层盒数,由正视图和左视图可得第二层,第三层盒数,相加即可.解答:解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,故选:B.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.(3分)(2020•达州)一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算?()A.甲B.乙C.一样D.无法确定考点:列代数式.分析:先求出它们的面积,再求出每平方厘米的卖价,即可比较那种煎饼划算.解答:解:甲的面积=100π平方厘米,甲的卖价为元/平方厘米;乙的面积=225π平方厘米,乙的卖价为元/平方厘米;∵>,∴乙种煎饼划算,故选:B.点评:本题考查了列代数式,是基础知识,要熟练掌握.6.(3分)(2020•达州)下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查考点:随机事件;全面调查与抽样调查;中位数;方差.分析:利用必然事件意义、中位数、方差的性质、普查和抽样调查的特点即可作出判断.解答:解:A.必然事件是一定会发生的事件,将油滴入水中,油会浮出水面是一个必然事件,故A选项正确;B.1、2、3、4这组数据的中位数是=2.5,故B选项正确;C.一组数据的方差越小,这组数据的稳定性越强,故C选项错误;D.要了解某种灯管的使用寿命,具有破坏性,一般采用抽样调查,故D选项正确.故选:C.点评:本题主要考查了必然事件意义、中位数、方差的性质、普查和抽样调查的特点,熟练掌握性质及意义是解题的关键.7.(3分)(2020•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α考点:多边形内角与外角;三角形内角和定理.分析:先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.解答:解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.点评:本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.8.(3分)(2020•达州)直线y=kx+b不经过第四象限,则()A.k>0,b>0 B.k<0,b>0 C.k≥0,b≥0 D.k<0,b≥0考点:一次函数图象与系数的关系.分析:直接根据一次函数图象与系数的关系求解.解答:解:∵直线y=kx+b不经过第四象限,即直线过第一、三象限且与y轴的交点不在x 轴的下方,∴k≥0,b≥0.故选:C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).9.(3分)(2020•达州)如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G 的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA•OC=OB•OD;③OC•G=OD•F1;④F=F1.其中正确的说法有()A.1个B.2个C.3个D.4个考点:相似三角形的应用.专题:跨学科.分析:根据在同一平面内,垂直于同一直线的两直线互相平行判断出B1C∥A1D,然后求出△OB1C∽△OA1D,判断出①正确;根据相似三角形对应边成比例列式求解即可得到②正确;根据杠杆平衡原理:动力×动力臂=阻力×阻力臂列式阻力判断出③正确;求出F的大小不变,判断出④正确.解答:解:∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∴=,由旋转的性质得,OB=OB1,OA=OA1,∴OA•OC=OB•OD,故②正确;由杠杆平衡原理,OC•G=OD•F1,故③正确;∴===是定值,∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选:D.点评:本题考查了相似三角形的判定与性质,杠杆平衡原理,熟练掌握相似三角形的判定方法和性质并准确识图是解题的关键.10.(3分)(2020•达州)如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()A.①②B.①④C.①③④D.②③④考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数与不等式(组).分析:根据抛物线与x轴有两个交点可得b2﹣4ac>0,进而判断①正确;根据题中条件不能得出x=﹣2时y的正负,因而不能得出②正确;如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此判断③错误;先根据抛物线的对称性可知x=﹣2与x=4时的函数值相等,再根据二次函数的增减性即可判断④正确.解答:解:①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故①正确;②x=﹣2时,y=4a﹣2b+c,而题中条件不能判断此时y的正负,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②错误;③如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③错误;④∵二次函数y=ax2+bx+c的对称轴是直线x=1,∴x=﹣2与x=4时的函数值相等,∵4<5,∴当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,∴y1<y2,故④正确.故选:B.点评:主要考查图象二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,以及二次函数与不等式的关系,根的判别式的熟练运用.二、填空题(本题6个小题,每小题3分,共18分.把最后答案直接填在题中的横线上)11.(3分)(2020•达州)化简:(﹣a2b3)3=﹣a6b9.考点:幂的乘方与积的乘方.分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:解:原式=(﹣1)3a2×3b3×3=﹣a6b9,故答案为:﹣a6b9.点评:本题考查了积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘是解题关键.12.(3分)(2020•达州)“每天锻炼一小时,健康生活一辈子”,自开展“阳光体育运动”以来,学校师生的锻炼意识都增强了,某校有学生8200人,为了解学生每天的锻炼时间,学校体育组随机调查了部分学生,统计结果如表.时间段频数频率29分钟及以下108 0.5430﹣39分钟24 0.1240﹣49分钟m 0.1550﹣59分钟18 0.091小时及以上20 0.1表格中,m=30;这组数据的众数是108;该校每天锻炼时间达到1小时的约有820人.考点:频数(率)分布表;用样本估计总体;众数.分析:根据表格中29分钟及以下的频数与对应的频率求出调查的总人数,再用调查的总人数乘0.15即为m的值;根据一组数据中出现次数最多的数据叫做众数可求出这组数据的众数;根据表格可知每天锻炼时间达到1小时的频率为0.1,再用样本估计总体的方法用8200乘0.1即可求解.解答:解:∵每天锻炼时间在29分钟及以下的频数为108,对应的频率为0.54,∴调查的总人数为108÷0.54=200(人),∴m=200×0.15=30(人),∵每天锻炼时间在29分钟及以下的有108人,人数最多,∴这组数据的众数是108;该校每天锻炼时间达到1小时的约有8200×0.1=820(人).故答案为:30;108;820.点评:本题考查读频数(率)分布表的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.同时考查了众数的定义及用样本估计总体的思想.13.(3分)(2020•达州)《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=.考点:规律型:图形的变化类.分析:由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.解答:解:=1﹣=.故答案为:.点评:此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.14.(3分)(2020•达州)己知实数a、b满足a+b=5,ab=3,则a﹣b=±.考点:完全平方公式.专题:计算题.分析:将a+b=5两边平方,利用完全平方公式展开,把ab的值代入求出a2+b2的值,再利用完全平方公式即可求出a﹣b的值.解答:解:将a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,将ab=3代入得:a2+b2=19,∴(a﹣b)2=a2+b2﹣2ab=19﹣6=13,则a﹣b=±.故答案为:±点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.15.(3分)(2020•达州)如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是π﹣2.考点:扇形面积的计算;等腰直角三角形.分析:通过图形知S=S半圆AB的面积+S半圆BC的面积﹣S△ABC的面积,所以由圆的面积公式阴影部分面积和三角形的面积公式可以求得阴影部分的面积.解答:解:∵在△ABC中,AB=BC=2,∠ABC=90°,∴△ABC是等腰直角三角形,∴图中阴影部分的面积是:S阴影部分面积=S半圆AB的面积+S半圆BC的面积﹣S△ABC的面积==π﹣2.故答案为:π﹣2.点评:本题考查了扇形面积的计算、勾股定理.解题的关键是推知S=S半圆AB的面积+S阴影部分面积﹣S△ABC的面积.半圆BC的面积16.(3分)(2020•达州)如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.考点:翻折变换(折叠问题).分析:判断出点F与点C重合时,折痕EF最大,根据翻折的性质可得BC=B′C,然后利用勾股定理列式求出B′D,从而求出AB′,设BE=x,根据翻折的性质可得B′E=BE,表示出AE,在Rt△AB′E中,利用勾股定理列方程求出x,再利用勾股定理列式计算即可求出EF.解答:解:如图,点F与点C重合时,折痕EF最大,由翻折的性质得,BC=B′C=10cm,在Rt△B′DC中,B′D===8cm,∴AB′=AD﹣B′D=10﹣8=2cm,设BE=x,则B′E=BE=x,AE=AB﹣BE=6﹣x,在Rt△AB′E中,AE2+AB′2=B′E2,即(6﹣x)2+22=x2,解得x=,在Rt△BEF中,EF===cm.故答案为:.点评:本题考查了翻折变换的性质,勾股定理的应用,难点在于判断出折痕EF最大的情况并利用勾股定理列出方程求出BE的长,作出图形更形象直观.三、解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)(2020•达州)计算:.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用乘方的意义化简,计算即可得到结果.解答:解:原式=+1+2﹣1=+2.点评:此题考查了实数的运算,熟练掌握运算法则解本题的关键.18.(6分)(2020•达州)化简求值:,a取﹣1、0、1、2中的一个数.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可.解答:解:原式=•﹣=﹣=﹣,当a=2时,原式=﹣=﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(7分)(2020•达州)四张背面完全相同的纸牌(如图,用①、②、③、④表示),正面分别写有四个不同的条件.小明将这4张纸牌背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张.(1)写出两次摸牌出现的所有可能的结果(用①、②、③、④表示);(2)以两次摸出的牌面上的结果为条件,求能判断四边形ABCD为平行四边形的概率.考点:列表法与树状图法;平行四边形的判定.分析:(1)利用树状图展示所有等可能的结果数;(2)由于共有12种等可能的结果数,根据平行四边形的判定能判断四边形ABCD为平行四边形有6种,则根据概率公式可得到能判断四边形ABCD为平行四边形的概率=.解答:解:(1)画树状图为:(2)共有12种等可能的结果数,其中能判断四边形ABCD为平行四边形有6种:①③、①④、②③、③①、③②、④①,所以能判断四边形ABCD为平行四边形的概率==.点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果数,再找出某事件所占有的结果数,然后根据概率公式计算这个事件的概率.也考查了平行四边形的判定.20.(7分)(2020•达州)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?考点:分式方程的应用.分析:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,根据第二批进货是第一批购进数量的2倍,列方程求出x的值,然后求出盈利.解答:解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,商家共盈利4200元.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.21.(8分)(2020•达州)如图,直线PQ与⊙O相交于点A、B,BC是⊙O的直径,BD平分∠CBQ交⊙O于点D,过点D作DE⊥PQ,垂足为E.(1)求证:DE与⊙O相切;(2)连结AD,己知BC=10,BE=2,求sinBAD的值.考点:切线的判定.专题:计算题.分析:(1)连结OD,利用角平分线的定义得∠CBD=∠QBD,而∠OBD=∠ODB,则∠ODB=∠QBD,于是可判断OD∥BQ,由于DE⊥PQ,根据平行线的性质得OD⊥DE ,则可根据切线的判定定理得到DE与⊙O相切;(2)连结CD,根据圆周角定理由BC是⊙O的直径得到∠BDC=90°,再证明Rt△BCD∽△BDE,利用相似比可计算出BD=2,在Rt△BCD中,根据正弦的定义得到sin∠C==,然后根据圆周角定理得∠BAD=∠C,即有sin∠BAD=.解答:(1)证明:连结OD,如图,∵BD平分∠CBQ交⊙O于点D,∴∠CBD=∠QBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠QBD,∴OD∥BQ,∵DE⊥PQ,∴OD⊥DE,∴DE与⊙O相切;(2)解:∵BC是⊙O的直径,∴∠BDC=90°,∵DE⊥AB,∴∠BED=90°,∵∠CBD=∠QBD,∴Rt△BCD∽△BDE,∴=,即=,∴BD=2,在Rt△BCD中,sin∠C===,∵∠BAD=∠C,∴sin∠BAD=.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、锐角三角函数和相似三角形的判定与性质.22.(8分)(2020•达州)达州市凤凰小学位于北纬21°,此地一年中冬至日正午时刻,太阳光与地面的夹角最小,约为35.5°;夏至日正午时刻,太阳光的夹角最大,约为82.5°.己知该校一教学楼窗户朝南,窗高207cm,如图(1).请你为该窗户设计一个直角形遮阳棚BCD,如图(2),要求最大限度地节省材料,夏至日正午刚好遮住全部阳光,冬至日正午能射入室内的阳光没有遮挡.(1)在图(3)中画出设计草图;(2)求BC、CD的长度(结果精确到个位)(参考数据:sin35.5°≈0.58,cos35.5°≈0.81,tan35.5°≈0.71,sin82.5°≈0.99,cos82.5°≈0.13,tan82.5°≈7.60)考点:解直角三角形的应用.分析:(1)根据题意结合入射角度进而画出符合题意的图形即可;(2)首先设CD=x,则tan35.5°=,表示出DC的长,进而利用tan82.5°=求出DC的长,进而得出答案.解答:解:(1)如图所示:(2)由题意可得出:∠CDB=35.5°,∠CDA=82.5°,设CD=x,则tan35.5°=,∴BC=0.71x,∴在Rt△ACD中,tan82.5°===0.76,解得:x≈30,∴BC=0.71×30≈21(cm),答:BC的长度是21cm,CD的长度是30cm.点评:此题主要考查了解直角三角形的应用,正确选择锐角三角函数关系进而求出CD的长是解题关键.23.(8分)(2020•达州)如图,直线L:y=﹣x+3与两坐标轴分别相交于点A、B.(1)当反比例函数(m>0,x>0)的图象在第一象限内与直线L至少有一个交点时,求m 的取值范围.(2若反比例函数(m>0,x>0)在第一象限内与直线L相交于点C、D,当CD=时,求m 的值.(3)在(2)的条件下,请你直接写出关于x的不等式﹣x+3<的解集.考点:反比例函数与一次函数的交点问题.分析:(1)根据方程有交点,可得判别是大于或等于0,可得答案;(2)根据韦达定理,可得方程两根的关系,根据两点间距离公式,可得答案;(3)根据反比例函数图象在上方的区域,可得不等式的解集.解答:解:(1)当反比例函数(m>0,x>0)的图象在第一象限内与直线L至少有一个交点,得﹣x+3=,x2﹣3x+m=0,△=(﹣3)2﹣4m≥0,解得m≤.∴m的取值范围为:0<x≤.(2)x2﹣3x+m=0,x1+x2=3,x1•x2=m,CD=,,2(9﹣4m)=8,m=;(3)当m=时,x2﹣3x+m=0,解得x1=,x2=,由反比例函数图象在上方的区域得0<x<,或x.点评:本题考查了反比例函数与一次函数的交点问题,利用了韦达定理,两点间的距离公式,一次函数与不等式的关系.24.(10分)(2020•达州)倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题.习题解答:习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.∴∠E′AF=90°﹣45°=45°=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.习题研究观察分析:观察图(1),由解答可知,该题有用的条件是①ABCD是四边形,点E、F分别在边BC、CD上;②AB=AD;③∠B=∠D=90°;④∠EAF=∠BAD.类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗?研究一个问题,常从特例入手,请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180,∠EAF=∠BAD 时,EF=BE+DF吗?归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180,∠EAF=∠BAD时,则EF=BE+DF.考点:四边形综合题.专题:综合题.分析:(1)根据菱形的性质和∠EAF=60°得到AB=AD,∠1+∠3=60°,∠B=∠ADC=60°,则把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据旋转的性质得∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,则∠2+∠3=60°,所以∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;(2)如图(3),由于AB=AD,则把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),根据旋转的性质得∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,由于∠B+∠D=180,则∠ADE′+∠D=180°,所以点F、D、E′共线,利用∠EAF=∠BAD,得到∠1+∠2=∠BAD,则∠2+∠3=∠BAD,所以∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,所以EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳为:在四边形ABCD中,点E、F分别在BC、CD上,当满足AB=AD,∠B+∠D=180,∠EAF=∠BAD时,则有EF=BE+DF.解答:解:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,∴AB=AD,∠1+∠3=60°,∠B=∠ADC=60°,∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,∴∠2+∠3=60°,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,∴DE′+DF>EF∴BE+DF>EF;(2)当AB=AD,∠B+∠D=180,∠EAF=∠BAD时,EF=BE+DF成立.理由如下:如图(3),∵AB=AD,∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180,∴∠ADE′+∠D=180°,∴点F、D、E′共线,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF ≌△AE ′F (SAS ),∴EF=E ′F ,∴EF=DE ′+DF=BE+DF ;归纳:在四边形ABCD 中,点E 、F 分别在BC 、CD 上,当AB=AD ,∠B+∠D=180,∠EAF=∠BAD 时,则EF=BE+DF .点评:本题考查了四边形的综合题:熟练掌握特殊平行四边形的性质和旋转的性质;会运用三角形全等的判定与性质解决线段相等的问题.25.(12分)(2020•达州)如图,在平面直角坐标系中,己知点O (0,0),A (5,0),B (4,4).(1)求过O 、B 、A 三点的抛物线的解析式.(2)在第一象限的抛物线上存在点M ,使以O 、A 、B 、M 为顶点的四边形面积最大,求点M 的坐标.(3)作直线x=m 交抛物线于点P ,交线段OB 于点Q ,当△PQB 为等腰三角形时,求m 的值.考点:二次函数综合题.专题:压轴题;分类讨论.分析: (1)由于抛物线与x 轴的两个交点已知,因此抛物线的解析式可设成交点式,然后把点B 的坐标代入,即可求出抛物线的解析式.(2)以O 、A 、B 、M 为顶点的四边形中,△OAB 的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大;求出另一个三角形面积的表达式,利用二次函数的性质确定其最值;本问需分类讨论:①当0<x ≤4时,点M 在抛物线OB 段上时,如答图1所示;②当4<x ≤5时,点M 在抛物线AB 段上时,图略.(3)△PQB 为等腰三角形时,有三种情形,需要分类讨论,避免漏解:①若点B 为顶点,即BP=BQ ,如答图2﹣1所示;②若点P 为顶点,即PQ=PB ,如答图2﹣2所示;③若点P 为顶点,即PQ=QB ,如答图2﹣3所示.解答: 解:(1)∵该抛物线经过点A (5,0),O (0,0),∴该抛物线的解析式可设为y=a (x ﹣0)(x ﹣5)=ax (x ﹣5).∵点B (4,4)在该抛物线上,∴a ×4×(4﹣5)=4.∴a=﹣1.∴该抛物线的解析式为y=﹣x (x ﹣5)=﹣x 2+5x .(2)以O 、A 、B 、M 为顶点的四边形中,△OAB 的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大.①当0<x≤4时,点M在抛物线OB段上时,如答图1所示.∵B(4,4),∴易知直线OB的解析式为:y=x.设M(x,﹣x2+5x),过点M作ME∥y轴,交OB于点E,则E(x,x),∴ME=(﹣x2+5x)﹣x=﹣x2+4x.S△OBM=S△MEO+S△MEB=ME(x E﹣0)+ME(x B﹣x E)=ME•x B=ME×4=2ME,∴S△OBM=﹣2x2+8x=﹣2(x﹣2)2+8∴当x=2时,S△OBM最大值为8,即四边形的面积最大.②当4<x≤5时,点M在抛物线AB段上时,图略.可求得直线AB解析式为:y=﹣4x+20.设M(x,﹣x2+5x),过点M作ME∥y轴,交AB于点E,则E(x,﹣4x+20),∴ME=(﹣x2+5x)﹣(﹣4x+20)=﹣x2+9x﹣20.S△ABM=S△MEB+S△MEA=ME(x E﹣x B)+ME(x A﹣x E)=ME•(x A﹣x B)=ME×1=ME,∴S△ABM=﹣x2+x﹣10=﹣(x﹣)2+∴当x=时,S△ABM最大值为,即四边形的面积最大.比较①②可知,当x=2时,四边形面积最大.当x=2时,y=﹣x2+5x=6,∴M(2,6).(3)由题意可知,点P在线段OB上方的抛物线上.设P(m,﹣m2+5m),则Q(m,m)当△PQB为等腰三角形时,①若点B为顶点,即BP=BQ,如答图2﹣1所示.过点B作BE⊥PQ于点E,则点E为线段PQ中点,∴E(m,).∵BE∥x轴,B(4,4),∴=4,解得:m=2或m=4(与点B重合,舍去)∴m=2;②若点P为顶点,即PQ=PB,如答图2﹣2所示.易知∠BOA=45°,∴∠PQB=45°,则△PQB为等腰直角三角形.∴PB∥x轴,∴﹣m2+5m=4,解得:m=1或m=4(与点B 重合,舍去)∴m=1;③若点P 为顶点,即PQ=QB ,如答图2﹣3所示.∵P (m ,﹣m 2+5m ),Q (m ,m ),∴PQ=﹣m 2+4m .又∵QB=(x B ﹣x Q )=(4﹣m ),∴﹣m 2+4m=(4﹣m ),解得:m=或m=4(与点B 重合,舍去),∴m=.综上所述,当△PQB 为等腰三角形时,m 的值为1,2或.点评: 本题是二次函数压轴题,涉及考点较多,有一定的难度.重点考查了分类讨论的数学思想,第(2)(3)问均需要进行分类讨论,避免漏解.注意第(2)问中求面积表达式的方法,以及第(3)问中利用方程思想求m 值的方法.。
2022年四川省达州市中考数学试卷(含答案)
2022年四川省达州市中考数学试卷一、单项选择题(每小题3分,共30分)1.下列四个数中,最小的数是()A.0B.﹣2C.1D.2.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是()A.B.C.D.3.2022年5月19日,达州金垭机场正式通航.金垭机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元4.如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于()A.15°B.25°C.35°D.45°5.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.6.下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a<b,则ac2<bc2D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是7.如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF8.如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.189.如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为()A.2π﹣2B.2π﹣C.2πD.π﹣10.二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x =1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有()个.A.2B.3C.4D.5二、填空题(每小题3分,共18分)11.计算:2a+3a=.12.如图,在Rt△ABC中,∠C=90°,∠B=20°,分别以点A,B为圆心,大于AB的长为半径作弧,两弧分别相交于点M,N,作直线MN,交BC于点D,连接AD,则∠CAD的度数为.13.如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD=10,则菱形ABCD的周长为.14.关于x的不等式组恰有3个整数解,则a的取值范围是.15.人们把≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.a=,b=,记S1=+,S2=+,…,S100=+,则S1+S2+…+S100=.16.如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)(2022•达州)计算:(﹣1)2022+|﹣2|﹣()0﹣2tan45°.18.(6分)(2022•达州)化简求值:÷(+),其中a=﹣1.19.(7分)(2022•达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数96m众数b98方差28.628根据以上信息,解答下列问题:(1)上述图表中a=,b=,m=;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是多少?20.(8分)(2022•达州)某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)21.(8分)(2022•达州)某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种T恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?22.(8分)(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.(8分)(2022•达州)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA 为半径的⊙O与BC相切于点D,分别交AB,AC边于点E,F.(1)求证:AD平分∠BAC;(2)若BD=3,tan∠CAD=,求⊙O的半径.24.(11分)(2022•达州)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:【初步探究】(1)如图2,当ED∥BC时,则α=;(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系:;【深入探究】(3)如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.【拓展延伸】(4)如图5,在△ABC与△CDE中,∠ACB=∠DCE=90°,若BC=mAC,CD=mCE (m为常数).保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.25.(11分)(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.(1)求该二次函数的表达式;(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.2022年四川省达州市中考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.下列四个数中,最小的数是()A.0B.﹣2C.1D.解:∵﹣2<0<1<,∴最小的数是﹣2.故选:B.2.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是()A.B.C.D.解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:A.3.2022年5月19日,达州金垭机场正式通航.金垭机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元解:26.62亿=2662000000=2.662×109.故选:C.4.如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于()A.15°B.25°C.35°D.45°解:∵AB∥CD,∴∠DNM=∠BME=80°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=80°﹣45°=35°,故选:C.5.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:B.6.下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a<b,则ac2<bc2D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是解:A、相等的两个角不一定是对顶角,原命题是假命题;B、在同圆或等圆中,相等的圆周角所对的弧相等,原命题是假命题;C、若a<b,c=0时,则ac2=bc2,原命题是假命题;D、在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是,是真命题;故选:D.7.如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=AC,A、当∠B=∠F,不能判定AD∥CF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;B、∵DE=EF,∴DE=DF,∴AC=DF,∵AC∥DF,∴四边形ADFC为平行四边形,故本选项符合题意;C、根据AC=CF,不能判定AC=DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;D、∵AD=CF,AD=BD,∴BD=CF,由BD=CF,∠BED=∠CEF,BE=CE,不能判定△BED≌△CEF,不能判定CF∥AB,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;故选:B.8.如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.18解:∵四边形ABCD是矩形,∴AD=BC,∠A=∠EBF=∠BCD=90°,∵将矩形ABCD沿直线DE折叠,∴AD=DF=BC,∠A=∠DFE=90°,∴∠BFE+∠DFC=∠BFE+∠BEF=90°,∴∠BEF=∠CFD,∴△BEF∽△CFD,∴,∵CD=3BF,∴CF=3BE=12,设BF=x,则CD=3x,DF=BC=x+12,∵∠C=90°,∴Rt△CDF中,CD2+CF2=DF2,∴(3x)2+122=(x+12)2,解得x=3(舍去0根),∴AD=DF=3+12=15,故选:C.9.如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为()A.2π﹣2B.2π﹣C.2πD.π﹣解:设等边三角形ABC的边长为r,∴=,解得r=2,即正三角形的边长为2,∴这个曲边三角形的面积=2××+(﹣)×3=2π﹣2,故选:A.10.二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x =1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有()个.A.2B.3C.4D.5解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,﹣1),∴c=﹣1,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①正确,∵y=ax2﹣2ax﹣1,当x=﹣1时,y>0,∴a+2a﹣1>0,∴a>,故②正确,当m=1时,m(am+b)=a+b,故③错误,∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>Y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有四个交点或3个时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有两个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.二、填空题(每小题3分,共18分)11.计算:2a+3a=5a.解:2a+3a=5a,故答案为:5a.12.如图,在Rt△ABC中,∠C=90°,∠B=20°,分别以点A,B为圆心,大于AB的长为半径作弧,两弧分别相交于点M,N,作直线MN,交BC于点D,连接AD,则∠CAD的度数为50°.解:∵∠C=90°,∠B=20°,∴∠CAB=90°﹣∠B=90°﹣20°=70°,由作图可知,MN垂直平分线段AB,∴DA=DB,∴∠DAB=∠B=20°,∴∠CAD=∠CAB﹣∠DAB=70°﹣20°=50°,故答案为:50°.13.如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD=10,则菱形ABCD的周长为52.解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,AO=CO,BO=DO,∵AC=24,BD=10,∴AO=AC=12,BO=BD=5,在Rt△AOB中,AB===13,∴菱形的周长=13×4=52.故答案为:52.14.关于x的不等式组恰有3个整数解,则a的取值范围是2≤a<3.解:,解不等式①得:x>a﹣2,解不等式②得:x≤3,∴不等式组的解集为:a﹣2<x≤3,∵恰有3个整数解,∴0≤a﹣2<1,∴2≤a<3,故答案为:2≤a<3.15.人们把≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.a=,b=,记S1=+,S2=+,…,S100=+,则S1+S2+…+S100=5050.解:∵a=,b=,∴ab=×=1,∵S1=+==1,S2=+==2,…,S100=+==100,∴S1+S2+…+S100=1+2+…+100=5050,故答案为:5050.16.如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是①②④⑤.解:如图,∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCP=45°,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,故①正确,∵∠PBQ=∠QCF=45°,∠PQB=∠FQC,∴△PQB∽△FQC,∴=,∠BPQ=∠CFQ,∴=,∵∠PQF=∠BQC,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,Q四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=CF=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBFM故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2,BH=AB=2,∴DH≥BD﹣BH=2﹣2,∴DH的最小值为2﹣2,故⑤正确,故答案为:①②④⑤.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)(2022•达州)计算:(﹣1)2022+|﹣2|﹣()0﹣2tan45°.解:原式=1+2﹣1﹣2×1=1+2﹣1﹣2=0.18.(6分)(2022•达州)化简求值:÷(+),其中a=﹣1.解:原式=====,把a=﹣1代入.19.(7分)(2022•达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数96m众数b98方差28.628根据以上信息,解答下列问题:(1)上述图表中a=30,b=96,m=93;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是多少?解:(1)a=(1﹣20%﹣10%﹣)×100=30,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,∴m==93;∵在七年级10名学生的竞赛成绩中96出现的次数最多,∴b=96,故答案为:30,96,93;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的众数高于七年级;(3)估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是:1200×=540(人),答:估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是540人.20.(8分)(2022•达州)某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)解:作DF⊥CE交CE于点F,∵EC∥AD,∠CDG=63.4°,∴∠FCD=∠CDG=63.4°,∵tan∠FCD=,tan63.4°≈2.00,∴=2,∴DF=2CF,设CF=xm,则DF=2xm,BE=(3﹣2x)m,∵AD=2m,AD=EF,∴EF=2m,∴EC=(2+x)m,∵tan∠BCE=,tan10°≈0.18,∴0.18=,解得x≈1.2,∴BE=3﹣2x=3﹣2×1.2=0.6(m),∵sin∠BCE=,∴BC==≈3.5(m),即此遮阳篷BC的长度约为3.5m.21.(8分)(2022•达州)某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种T恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?(1)解:设该商场购进第一批、第二批T恤衫每件的进价分别是x元和(x+4)元,根据题意可得:,解得:x=40,经检验x=40是方程的解,x+4=40+4=44,答:该商场购进第一批、第二批T恤衫每件的进价分别是40元和44元;(2)解:(件),设每件T恤衫的标价至少是y元,根据题意可得:(300﹣40)y+40×0.7y≥(4000+8800)×(1+80%),解得:y≥80,答:每件T恤衫的标价至少是80元.22.(8分)(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵一次函数y=x+1经过点A(m,2),∴m+1=2,∴m=1,∴A(1,2),∵反比例函数y=经过点(1,2),∴k=2,∴反比例函数的解析式为y=;(2)由题意,得,解得或,∴B(﹣2,﹣1),∵C(0,1),∴S△AOB=S△AOC+S△BOC=×1×2+×1×1=1.5;(3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).23.(8分)(2022•达州)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA 为半径的⊙O与BC相切于点D,分别交AB,AC边于点E,F.(1)求证:AD平分∠BAC;(2)若BD=3,tan∠CAD=,求⊙O的半径.(1)证明:连接OD.∵BC是⊙O的切线,OD是⊙半径,D是切点,∴OD⊥BC,∴∠ODB=∠C=90°,∴OD∥AC,∴∠ODA=∠CAD,∵OD=OA,∴∠ODA=∠OAD,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)解:连接DE,过点D作DT⊥AB于点T,∵AE是直径,∴∠ADE=90°,∵tan∠CAD=tan∠DAE=,∴=,设DE=k,AD=2k,则AE=k,∵•DE•AD=•AE•DT,∴DT=k,∴OT===k,∵tan∠DOT==,∴=,∴k=,∴OD=k=,∴⊙O的半径为.24.(11分)(2022•达州)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:【初步探究】(1)如图2,当ED∥BC时,则α=45°;(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系:BF=AF+CF;【深入探究】(3)如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.【拓展延伸】(4)如图5,在△ABC与△CDE中,∠ACB=∠DCE=90°,若BC=mAC,CD=mCE (m为常数).保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.解:(1)∵△CED是等腰直角三角形,∴∠CDE=45°,∵ED∥BC,∴∠BCD=∠CDE=45°,即α=45°,故答案为:45°;(2)BF=AF+CF,理由如下:如图3,∵△ABC和△CDE是等腰直角三角形,∴∠DCE=∠ACB,AC=BC,CD=CE,DF=CF,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AF=BD,∵BF=DF+BD,∴BF=AF+CF;故答案为:BF=AF+CF;(3)如图4,当点E,F不重合时,(2)中的结论仍然成立,理由如下:由(2)知,△ACE≌△BCD(SAS),∴∠CAF=∠CBD,过点C作CG⊥CF交BF于点G,∵∠ACF+∠ACG=90°,∠ACG+∠GCB=90°,∴∠ACF=∠BCG,∵∠CAF=∠CBG,BC=AC,∴△BCG≌△ACF(ASA),∴GC=FC,BG=AF,∴△GCF为等腰直角三角形,∴GF=CF,∴BF=BG+GF=AF+CF;(4)BF=mAF+•FC.理由如下:由(2)知,∠ACE=∠BCD,而BC=mAC,CD=mEC,即==m,∴△BCD∽△ACE,∴∠CBD=∠CAE,过点C作CG⊥CF交BF于点G,如图6所示:由(3)知,∠BCG=∠ACF,∴△BGC∽△AFC,∴===m,∴BG=mAF,GC=mFC,在Rt△CGF中,GF===•CF,∴BF=BG+GF=mAF+•FC.25.(11分)(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.(1)求该二次函数的表达式;(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(3,0),∴,解得:,∴该二次函数的表达式为y=x2+x+2;(2)存在,理由如下:如图1,当点P在BC上方时,∵∠PCB=∠ABC,∴CP∥AB,即CP∥x轴,∴点P与点C关于抛物线对称轴对称,∵y=x2+x+2,∴抛物线对称轴为直线x=﹣=1,∵C(0,2),∴P(2,2);当点P在BC下方时,设CP交x轴于点D(m,0),则OD=m,DB=3﹣m,∵∠PCB=∠ABC,∴CD=BD=3﹣m,在Rt△COD中,OC2+OD2=CD2,∴22+m2=(3﹣m)2,解得:m=,∴D(,0),设直线CD的解析式为y=kx+d,则,解得:,∴直线CD的解析式为y=x+2,联立,得,解得:(舍去),,∴P(,﹣),综上所述,点P的坐标为(2,2)或(,﹣);(3)由(2)知:抛物线y=x2+x+2的对称轴为直线x=1,∴E(1,0),设Q(t,t2+t+2),且﹣1<t<3,设直线AQ的解析式为y=ex+f,则,解得:,∴直线AQ的解析式为y=(t+2)x﹣t+2,当x=1时,y=﹣t+4,∴M(1,﹣t+4),同理可得直线BQ的解析式为y=(﹣t﹣)x+2t+2,当x=1时,y=t+,∴N(1,t+),∴EM=﹣t+4,EN=t+,∴EM+EN=﹣t+4+t+=,故EM+EN的值为定值.。
2022年四川省达州市中考数学试题及答案解析
2022年四川省达州市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 下列四个数中,最小的数是( )A. 0B. −2C. 1D. √22. 在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是( )A.B.C.D.3. 2022年5月19日,达州金垭机场正式通航.金垭机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为( )A. 2.662×108元B. 0.2662×109元C. 2.662×109元D. 26.62×1010元4. 如图,AB//CD ,直线EF 分别交AB ,CD 于点M ,N ,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB =80°,则∠PNM 等于( )A. 15°B. 25°C. 35°D. 45°5. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A. {4x +6y =382x +5y =48 B. {4x +6y =482x +5y =38 C. {4x +6y =485x +2y =38D. {4y +6x =482y +5x =386. 下列命题是真命题的是( )A. 相等的两个角是对顶角B. 相等的圆周角所对的弧相等C. 若a <b ,则ac 2<bc 2D. 在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是137.如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是( )A. ∠B=∠FB. DE=EFC. AC=CFD. AD=CF8.如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为( )A. 9B. 12C. 15D. 189.如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作BC⏜,AC⏜,AB⏜,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为( )A. 2π−2√3B. 2π−√3C. 2πD. π−√310.二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,−1),对称轴为直线x=1.下列结论:①abc>0;②a>1;③对于任意实数m,都有m(am+b)>a+b成3,y2),(2,y3)在该函数图象上,则立;④若(−2,y1),(12y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有个.( )A. 2B. 3C. 4D. 5二、填空题(本大题共6小题,共18.0分)11.计算:2a+3a=______ .12. 如图,在Rt △ABC 中,∠C =90°,∠B =20°,分别以点A ,B为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数为______.13. 如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC =24,BD =10,则菱形ABCD 的周长为______.14. 关于x 的不等式组{−x +a <23x−12≤x +1恰有3个整数解,则a 的取值范围是______.15. 人们把√5−12≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.a =√5−12,b =√5+12,记S 1=11+a +11+b ,S 2=21+a 2+21+b 2,…,S 100=1001+a100+1001+b 100,则S 1+S 2+⋯+S 100=______.16. 如图,在边长为2的正方形ABCD 中,点E ,F 分别为AD ,CD 边上的动点(不与端点重合),连接BE ,BF ,分别交对角线AC 于点P ,Q.点E ,F 在运动过程中,始终保持∠EBF =45°,连接EF ,PF ,PD.下列结论:①PB =PD ;②∠EFD =2∠FBC ;③PQ =PA +CQ ;④△BPF 为等腰直角三角形;⑤若过点B 作BH ⊥EF ,垂足为H ,连接DH ,则DH 的最小值为2√2−2,其中所有正确结论的序号是______.三、解答题(本大题共9小题,共72.0分) 17. 计算:(−1)2022+|−2|−(12)0−2tan45°. 18. 化简求值:a−1a 2−2a+1÷(a 2+a a 2−1+1a−1),其中a =√3−1.19. “防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水⋅珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共分成四组:A.80≤x <85,B.85≤x <90,C.90≤x <95,D.95≤x ≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数96m众数b98方差28.628根据以上信息,解答下列问题:(1)上述图表中a=______,b=______,m=______;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是多少?20.某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)21.某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种T恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?的图象相交于A(m,2),B两点,分别22.如图,一次函数y=x+1与反比例函数y=kx连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA为半径的⊙O与BC相切于点D,分别交AB,AC边于点E,F.(1)求证:AD平分∠BAC;(2)若BD=3,tan∠CAD=1,求⊙O的半径.224.某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:【初步探究】(1)如图2,当ED//BC时,则α=______;(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系:______;【深入探究】(3)如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.【拓展延伸】(4)如图5,在△ABC与△CDE中,∠ACB=∠DCE=90°,若BC=mAC,CD=mCE(m为常数).保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.25.如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(−1,0),B(3,0),与y轴交于点C.(1)求该二次函数的表达式;(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.答案和解析1.【答案】B【解析】解:∵−2<0<1<√2,∴最小的数是−2.故选:B.根据负数小于0,正数大于0即可得出答案.本题考查了实数大小比较,掌握负数小于0,正数大于0是解题的关键.2.【答案】A【解析】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:A.根据轴对称图形的概念求解.本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】C【解析】解:26.62亿=2662000000=2.662×109.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:∵AB//CD,∴∠DNM=∠BME=80°,∵∠PND=45°,∴∠PNM =∠DNM −∠DNP =80°−45°=35°, 故选:C .根据平行线的性质得到∠DNM =∠BME =80°,由等腰直角三角形的性质得到∠PND =45°,即可得到结论.本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.5.【答案】B【解析】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为:{4x +6y =482x +5y =38.故选:B .直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.6.【答案】D【解析】解:A 、相等的两个角不一定是对顶角,原命题是假命题; B 、在同圆或等圆中,相等的圆周角所对的弧相等,原命题是假命题; C 、若a <b ,c =0时,则ac 2=bc 2,原命题是假命题;D 、在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,是真命题; 故选:D .根据对顶角的定义、圆周角,不等式的性质、概率公式判断即可.考查了命题与定理的知识,解题的关键是了解对顶角的定义、圆周角,不等式的性质、概率公式等知识,难度不大.7.【答案】B【解析】解:∵D ,E 分别是AB ,BC 的中点, ∴DE 是△ABC 的中位线, ∴DE//AC ,DE =12AC ,A 、当∠B =∠F ,不能判定AD//CF ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;B、∵DE=EF,∴DE=12DF,∴AC=DF,∵AC//DF,∴四边形ADFC为平行四边形,故本选项符合题意;C、根据AC=CF,不能判定AC=DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;D、∵AD=CF,AD=BD,∴BD=CF,由BD=CF,∠BED=∠CEF,BE=CE,不能判定△BED≌△CEF,不能判定CF//AB,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;故选:B.利用三角形中位线定理得到DE//AC,DE=12AC,结合平行四边形的判定定理对各个选项进行判断即可.本题考查了平行四边形的判定、三角形的中位线定理以及平行线的判定等知识;熟练掌握平行四边形的判定和三角形中位线定理是解题的关键.8.【答案】C【解析】解:∵四边形ABCD是矩形,∴AD=BC,∠A=∠EBF=∠BCD=90°,∵将矩形ABCD沿直线DE折叠,∴AD=DF=BC,∠A=∠DFE=90°,∴∠BFE+∠DFC=∠BFE+∠BEF=90°,∴∠BEF=∠CFD,∴△BEF∽△CFD,∴BFCD =BECF,∵CD=3BF,∴CF=3BE=12,设BF=x,则CD=3x,DF=BC=x+12,∵∠C=90°,∴Rt△CDF中,CD2+CF2=DF2,∴(3x)2+122=(x+12)2,解得x=3(舍去0根),∴AD=DF=3+12=15,故选:C.证明△BEF∽△CFD,求得CF,设BF=x,用x表示DF、CD,由勾股定理列出方程即可求解.本题主要考查了翻折变换,矩形的性质,相似三角形的性质与判定,勾股定理的运用,利用勾股定理列出方程和证明相似三角形是本题的关键.9.【答案】A【解析】解:设等边三角形ABC的边长为r,∴60πr180=2π3,解得r=2,即正三角形的边长为2,∴这个曲边三角形的面积=2×√3×12+(60π×4360−√3)×3=2π−2√3,故选:A.此三角形是由三段弧组成,如果周长为π,则其中的一段弧长为2π3,所以根据弧长公式可得60π r180=2π3,解得r=2,即正三角形的边长为2.那么曲边三角形的面积就=三角形的面积+三个弓形的面积.本题考查了扇形面积的计算.此题的关键是明确曲边三角形的面积就=三角形的面积+三个弓形的面积,然后再根据所给的曲线三角形的周长求出三角形的边长,从而求值.10.【答案】A【解析】解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,−1),∴c=−1,∵−b2a=1,∴b=−2a<0,∴abc>0,故①正确,∵y=ax2−2ax−1,当x=−1时,y>0,∴a+2a−1>0,∴a>1,故②正确,3当m=1时,m(am+b)=a+b,故③错误,∵点(−2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∵点(12∴y3>Y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有四个交点或3个时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有两个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.①正确,判断出a,b,c的正负,可得结论;②正确.利用对称轴公式可得,b=−2a,当x=−1时,y>0,解不等式可得结论;③错误.当m=1时,m(am+b)=a+b;④错误.应该是y2<y3<y1,;⑤错误.当有四个交点或3个时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有两个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2.本题考查二次函数的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.11.【答案】5a【解析】解:2a+3a=5a,故答案为5a.根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变求解.本题考查了合并同类项的法则,解题时牢记法则是关键.12.【答案】50°【解析】解:∵∠C=90°,∠B=20°,∴∠CAB=90°−∠B=90°−20°=70°,由作图可知,MN垂直平分线段AB,∴DA=DB,∴∠DAB=∠B=20°,∴∠CAD=∠CAB−∠DAB=70°−20°=50°,故答案为:50°.根据∠CAD=∠CAB−∠DAB,求出∠CAB,∠DAB即可.本题考查作图−基本作图,三角形内角和定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.13.【答案】52【解析】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,AO=CO,BO=DO,∵AC=24,BD=10,∴AO=12AC=12,BO=12BD=5,在Rt△AOB中,AB=√AO2+BO2=√122+52=13,∴菱形的周长=13×4=52.故答案为:52.菱形的四条边相等,要求周长,只需求出边长即可,菱形的对角线互相垂直且平分,根据勾股定理求边长即可.本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直且平分是解题的关键.14.【答案】2<a≤3【解析】解:{−x+a<2①3x−12≤x+1②,解不等式①得:x>a−2,解不等式②得:x≤3,∴不等式组的解集为:a−2<x≤3,∵恰有3个整数解,∴0<a−2≤1,∴2<a≤3,故答案为:2<a≤3.首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情况分情况讨论结果,取出合理的答案.15.【答案】5050【解析】解:∵a =√5−12,b =√5+12, ∴ab =√5−12×√5+12=1, ∵S 1=11+a+11+b =2+a+b 1+a+b+ab =1, S 2=21+a 2+21+b 2=2(1+a 2+1+b 2)1+a 2+b 2+a 2b 2=2,…,S 100=1001+a 100+1001+b 100=100(1+a 100+1+b 100)1+a 100+b 100+a 100b 100=100,∴S 1+S 2+⋯+S 100=1+2+⋯+100=5050,故答案为:5050.利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,…,利用规律求解即可. 本题考查了分式的加减法,找出的规律是本题的关键.16.【答案】①②④⑤【解析】解:如图,∵四边形ABCD 是正方形,∴CB =CD ,∠BCP =∠DCP =45°,在△BCP 和△DCP 中,{CB =CD ∠BCP =∠DCP CP =CP,∴△BCP≌△DCP(SAS),∴PB =PD ,故①正确,∵∠PBQ =∠QCF =45°,∠PQB =∠FQC ,∴△PQB∽△FQC ,∴BQ CQ =PQFQ ,∠BPQ =∠CFQ ,∴BQ PQ =CQ FQ ,∵∠PQF =∠BQC ,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,Q四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=CF=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBFM故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2√2,BH=AB=2,∴DH≥BD−BH=2√2−2,∴DH的最小值为2√2−2,故⑤正确,故答案为:①②④⑤.①正确.证明△BCP≌△DCP(SAS),可得结论;②正确.证明∠CFB=∠EFB,推出∠CBF+∠CFB=90°,推出2∠CBF+2∠CFB=180°,由∠EFD+2∠CFB=180°,可得结论;③错误.可以证明PQ<PA+CQ;④正确.利用相似三角形的性质证明∠BPF=90°,可得结论;⑤正确.求出BD,BH,根据DH≥BD−BH,可得结论.本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题关键是学会添加常用辅助线吗,构造全等三角形解决问题,属于中考填空题中的压轴题.17.【答案】解:原式=1+2−1−2×1=1+2−1−2=0.【解析】根据有理数的乘方,绝对值,零指数幂,特殊角的三角函数值计算即可.本题考查了实数的运算,有理数的乘方,特殊角的三角函数值,掌握a0=1(a≠0)是解题的关键.18.【答案】解:原式=a−1(a−1)2÷[a(a+1)(a−1)(a+1)+a+1(a−1)(a+1)]=1a−1÷(a+1)2(a−1)(a+1)=1a−1÷a+1a−1=1a−1×a−1a+1=1a+1,把a=√3−1代入1a+1=1√3−1+1=√33.【解析】先对分子分母因式分解,再通分,将除法变为乘法,约分后代入求值即可.本题考查了分式的化简求值,解题的关键是分解因式.19.【答案】309693【解析】解:(1)a=(1−20%−10%−410)×100=30,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,∴m=92+942=93;∵在七年级10名学生的竞赛成绩中96出现的次数最多,∴b=96,故答案为:30,96,93;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的众数高于七年级;(3)估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是:1200×6+320=540(人),答:估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是540人.(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.【答案】解:作DF⊥CE交CE于点F,∵EC//AD,∠CDG=63.4°,∴∠FCD=∠CDG=63.4°,∵tan∠FCD=DFCF,tan63.4°≈2.00,∴DFCF=2,∴DF=2CF,设CF=x m,则DF=2x m,BE=(3−2x)m,∵AD=2m,AD=EF,∴EF=2m,∴EC=(2+x)m,∵tan∠BCE=BECE,tan10°≈0.18,∴0.18=3−2x2+x,解得x≈1.2,∴BE=3−2x=3−2×1.2=0.6(m),∵sin∠BCE=BEBC,∴BC=BEsin∠BCE =0.60.17≈3.5(m),即此遮阳篷BC的长度约为3.5m.【解析】根据题目中的数据和锐角三角函数,可以求得BE的长,然后再根据锐角三角函数,即可得到BC的长.本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.21.【答案】(1)解:设该商场购进第一批、第二批T恤衫每件的进价分别是x元和(x+4)元,根据题意可得:2×4000x =8800x+4,解得:x=40,经检验x=40是方程的解,x+4=40+4=44,答:该商场购进第一批、第二批T恤衫每件的进价分别是40元和44元;(2)解:400040+880044=300(件),设每件T恤衫的标价至少是y元,根据题意可得:(300−40)y+40×0.7y≥(4000+ 8800)×(1+80%),解得:y≥80,答:每件T恤衫的标价至少是80元.【解析】(1)设该商场购进第一批、第二批T 恤衫每件的进价分别是x 元和(x +4)元,根据所购数量是第一批购进量的2倍列出方程解答即可;(2)设每件T 恤衫的标价至少是y 元,根据题意列出不等式解答即可.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【答案】解:(1)∵一次函数y =x +1经过点A(m,2),∴m +1=2,∴m =1,∴A(1,2),∵反比例函数y =k x 经过点(1,2),∴k =2,∴反比例函数的解析式为y =2x ;(2)由题意,得{y =x +1y =2x, 解得{x =−2y =−1或{x =1y =2, ∴B(−2,−1),∵C(0,1),∴S △AOB =S △AOC +S △BOC =12×1×2+12×1×1=1.5;(3)有三种情形,如图所示,满足条件的点P 的坐标为(−3,−3)或(−1,1)或(3,3).【解析】(1)求出点A 的坐标,利用待定系数法求解即可;(2)解方程组求出点B 的坐标,利用割补法求三角形的面积;(3)有三种情形,画出图形可得结论.本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,三角形的面积等知识,解题的关键是掌握待定系数法,学会构建方程组确定交点坐标,属于中考常考题型.23.【答案】(1)证明:连接OD.∵BC是⊙O的切线,OD是⊙半径,D是切点,∴OD⊥BC,∴∠ODB=∠C=90°,∴OD//AC,∴∠ODA=∠CAD,∵OD=OA,∴∠ODA=∠OAD,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)解:连接DE,过点D作DT⊥AB于点T,∵AE是直径,∴∠ADE=90°,∵tan∠CAD=tan∠DAE=12,∴DEAD =12,设DE=k,AD=2k,则AE=√5k,∵12⋅DE⋅AD=12⋅AE⋅DT,∴DT=2√55k,∴OT=√OD2−DT2=√(√52k)2−(2√55k)2=3√510k,∵tan∠DOT=DTTO =BDOD,∴2√55k3√510k=3√52k,∴k=9√510,∴OD=√52k=94,∴⊙O的半径为94.【解析】(1)连接OD ,证明OD//AC ,再利用等腰三角形的性质平行线的性质即可解决问题;(2)连接DE ,过点D 作DT ⊥AB 于点T ,tan∠CAD =tan∠DAE =12,推出DE AD =12,设DE =k ,AD =2k ,则AE =√5k ,利用面积法求出DT ,再利用勾股定理求出OT ,再根据tan∠DOT =DT TO =BD OD ,构建方程求解即可.本题属于圆综合题,考查了切线的性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.24.【答案】45° BF =AF +√2CF【解析】解:(1)∵△CED 是等腰直角三角形,∴∠CDE =45°,∵ED//BC ,∴∠BCD =∠CDE =45°,即α=45°,故答案为:45°;(2)BF =AF +√2CF ,理由如下:如图3,∵△ABC 和△CDE 是等腰直角三角形,∴∠DCE =∠ACB ,AC =BC ,CD =CE ,DF =√2CF ,∴∠ACE =∠BCD ,∴△ACE≌△BCD(SAS),∴AF =BD ,∵BF =DF +BD ,∴BF =AF +√2CF ;故答案为:BF =AF +√2CF ;(3)如图4,当点E ,F 不重合时,(2)中的结论仍然成立,理由如下:由(2)知,△ACE≌△BCD(SAS),∴∠CAF=∠CBD,过点C作CG⊥CF交BF于点G,∵∠ACF+∠ACG=90°,∠ACG+∠GCB=90°,∴∠ACF=∠BCG,∵∠CAF=∠CBG,BC=AC,∴△BCG≌△ACF(ASA),∴GC=FC,BG=AF,∴△GCF为等腰直角三角形,∴GF=√2CF,∴BF=BG+GF=AF+√2CF;(4)BF=mAF+√1+m2⋅FC.理由如下:由(2)知,∠ACE=∠BCD,而BC=mAC,CD=mEC,即BCAC =CDEC=m,∴△BCD∽△ACE,∴∠CBD=∠CAE,过点C作CG⊥CF交BF于点G,如图6所示:由(3)知,∠BCG=∠ACF,∴△BGC∽△AFC,∴BGAF =BCAC=CGCF=m,∴BG=mAF,GC=mFC,在Rt △CGF 中,GF =√CF 2+CG 2=√CF 2+(mCF)2=√1+m 2⋅CF ,∴BF =BG +GF =mAF +√1+m 2⋅FC .(1)由平行线的性质和等腰直角三角形的定义可得α的值;(2)先根据SAS 证明△ACE≌△BCD(SAS),得AF =BD ,最后由线段的和及等腰直角三角形斜边与直角边的关系可得结论;(3)如图4,过点C 作CG ⊥CF 交BF 于点G ,证△BCG≌△ACF(ASA),得GC =FC ,BG =AF ,则△GCF 为等腰直角三角形,GF =√2CF ,即可得出结论;(4)先证△BCD∽△ACE ,得∠CBD =∠CAE ,过点C 作CG ⊥CF 交BF 于点G ,再证△BGC∽△AFC ,得BG =mAF ,GC =mFC ,然后由勾股定理求出GF =√k 2+1⋅FC ,即可得出结论.本题是三角形的综合题,考查了旋转的性质,全等三角形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会运用类比的方法解决问题,属于中考压轴题.25.【答案】解:(1)∵抛物线y =ax 2+bx +2经过点A(−1,0),B(3,0),∴{a −b +2=09a +3b +2=0, 解得:{a =−23b =43, ∴该二次函数的表达式为y =−23x 2+43x +2;(2)存在,理由如下:如图1,当点P 在BC 上方时,∵∠PCB =∠ABC ,∴CP//AB ,即CP//x 轴,∴点P 与点C 关于抛物线对称轴对称,∵y =−23x 2+43x +2,∴抛物线对称轴为直线x =−432×(−23)=1,∵C(0,2),∴P(2,2);当点P 在BC 下方时,设CP 交x 轴于点D(m,0),则OD =m ,DB =3−m ,∵∠PCB =∠ABC ,∴CD =BD =3−m ,在Rt △COD 中,OC 2+OD 2=CD 2,∴22+m 2=(3−m)2,解得:m =56,∴D(56,0),设直线CD 的解析式为y =kx +d ,则{56k +d =0d =2, 解得:{k =−125d =2, ∴直线CD 的解析式为y =−125x +2, 联立,得{y =−125x +2y =−23x 2+43x +2, 解得:{x 1=0y 1=2(舍去),{x 2=225y 2=−21425, ∴P(225,−21425),综上所述,点P 的坐标为(2,2)或(225,−21425); (3)由(2)知:抛物线y =−23x 2+43x +2的对称轴为直线x =1,∴E(1,0),设Q(t,−23t 2+43t +2),且−1<t <3,设直线AQ 的解析式为y =ex +f ,则{−e +f =0te +f =−23t 2+43t +2,解得:{e =−23t +2f =−23t +2, ∴直线AQ 的解析式为y =(−23t +2)x −23t +2,当x =1时,y =−43t +4,∴M(1,−43t +4),同理可得直线BQ 的解析式为y =(−23t −23)x +2t +2,当x =1时,y =43t +43,∴N(1,43t +43),∴EM =−43t +4,EN =43t +43,∴EM +EN =−43t +4+43t +43=163,故E M +EN 的值为定值163.【解析】(1)运用待定系数法即可求得答案;(2)分两种情况:当点P 在BC 上方时,根据平行线的判定定理可得CP//x 轴,可得P(2,2);当点P 在BC 下方时,设CP 交x 轴于点D(m,0),则OD =m ,DB =3−m ,利用勾股定理即可求得m =56,得出D(56,0),再运用待定系数法求得直线CD 的解析式为y =−125x +2,通过联立方程组求解即可得出P(225,−21425); (3)设Q(t,−23t 2+43t +2),且−1<t <3,运用待定系数法求得:直线AQ 的解析式为y =(−23t +2)x −23t +2,直线BQ 的解析式为y =(−23t −23)x +2t +2,进而求出M 、N 的坐标,即可得出答案.本题是二次函数综合题,考查了待定系数法,平行线性质及应用,等腰三角形性质等知识,解题的关键是学会利用参数构建二次函数解决问题,学会用转化的思想思考问题,属于中考压轴题.。
四川省达州市中考数学试卷及答案(word版含解析)
四川省达州市中考数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)(2014•达州)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km分析:根据正数和负数表示相反意义的量,向东记为正,可得答案.解答:解:向东行驶3km,记作+3km,向西行驶2km记作﹣2km,故选:B.点评:本题考查了正数和负数,相反意义的量用正数和负数表示.2.(3分)(2014•达州)2014年5月21日,中国石油天然气集团公司与俄罗斯天然气工业股份公司在上海签署了《中俄东线供气购销合同》,这份有效期为30年的合同规定,从2018年开始供气,每年的天然气供应量为380亿立方米,380亿立方米用科学记数法表示为()A.3.8×1010m3B.38×109m3C.380×108m3D.3.8×1011m3考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将380亿立方米用科学记数法表示为:3.8×1010m3.故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014•达州)二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤2考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,﹣2x+4≥0,解得x≤2.故选:D.点评:本题考查的知识点为:二次根式的被开方数是非负数.4.(3分)(2014•达州)小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图,则n的值是()A.6B.7C.8D.9考点:由三视图判断几何体.分析:易得这个几何体共有3层,由俯视图可得第一层盒数,由正视图和左视图可得第二层,第三层盒数,相加即可.解答:解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,故选:B.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.(3分)(2014•达州)一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算?()A.甲B.乙C.一样D.无法确定考点:列代数式.分析:先求出它们的面积,再求出每平方厘米的卖价,即可比较那种煎饼划算.解答:解:甲的面积=100π平方厘米,甲的卖价为元/平方厘米;乙的面积=225π平方厘米,乙的卖价为元/平方厘米;∵>,∴乙种煎饼划算,故选:B.点评:本题考查了列代数式,是基础知识,要熟练掌握.6.(3分)(2014•达州)下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查考点:随机事件;全面调查与抽样调查;中位数;方差.分析:利用必然事件意义、中位数、方差的性质、普查和抽样调查的特点即可作出判断.解答:解:A.必然事件是一定会发生的事件,将油滴入水中,油会浮出水面是一个必然事件,故A选项正确;B.1、2、3、4这组数据的中位数是=2.5,故B选项正确;C.一组数据的方差越小,这组数据的稳定性越强,故C选项错误;D.要了解某种灯管的使用寿命,具有破坏性,一般采用抽样调查,故D选项正确.故选:C.点评:本题主要考查了必然事件意义、中位数、方差的性质、普查和抽样调查的特点,熟练掌握性质及意义是解题的关键.7.(3分)(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α考点:多边形内角与外角;三角形内角和定理.分析:先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.解答:解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.点评:本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.8.(3分)(2014•达州)直线y=kx+b不经过第四象限,则()A.k>0,b>0 B.k<0,b>0 C.k≥0,b≥0 D.k<0,b≥0考点:一次函数图象与系数的关系.分析:直接根据一次函数图象与系数的关系求解.解答:解:∵直线y=kx+b不经过第四象限,即直线过第一、三象限且与y轴的交点不在x 轴的下方,∴k≥0,b≥0.故选:C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).9.(3分)(2014•达州)如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G 的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA•OC=OB•OD;③OC•G=OD•F1;④F=F1.其中正确的说法有()A.1个B.2个C.3个D.4个考点:相似三角形的应用.专题:跨学科.分析:根据在同一平面内,垂直于同一直线的两直线互相平行判断出B1C∥A1D,然后求出△OB1C∽△OA1D,判断出①正确;根据相似三角形对应边成比例列式求解即可得到②正确;根据杠杆平衡原理:动力×动力臂=阻力×阻力臂列式阻力判断出③正确;求出F的大小不变,判断出④正确.解答:解:∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∴=,由旋转的性质得,OB=OB1,OA=OA1,∴OA•OC=OB•OD,故②正确;由杠杆平衡原理,OC•G=OD•F1,故③正确;∴===是定值,∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选:D.点评:本题考查了相似三角形的判定与性质,杠杆平衡原理,熟练掌握相似三角形的判定方法和性质并准确识图是解题的关键.10.(3分)(2014•达州)如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()A.①②B.①④C.①③④D.②③④考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数与不等式(组).分析:根据抛物线与x轴有两个交点可得b2﹣4ac>0,进而判断①正确;根据题中条件不能得出x=﹣2时y的正负,因而不能得出②正确;如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此判断③错误;先根据抛物线的对称性可知x=﹣2与x=4时的函数值相等,再根据二次函数的增减性即可判断④正确.解答:解:①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故①正确;②x=﹣2时,y=4a﹣2b+c,而题中条件不能判断此时y的正负,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②错误;③如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③错误;④∵二次函数y=ax2+bx+c的对称轴是直线x=1,∴x=﹣2与x=4时的函数值相等,∵4<5,∴当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,∴y1<y2,故④正确.故选:B.点评:主要考查图象二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,以及二次函数与不等式的关系,根的判别式的熟练运用.二、填空题(本题6个小题,每小题3分,共18分.把最后答案直接填在题中的横线上)11.(3分)(2014•达州)化简:(﹣a2b3)3=﹣a6b9.考点:幂的乘方与积的乘方.分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:解:原式=(﹣1)3a2×3b3×3=﹣a6b9,故答案为:﹣a6b9.点评:本题考查了积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘是解题关键.12.(3分)(2014•达州)“每天锻炼一小时,健康生活一辈子”,自开展“阳光体育运动”以来,学校师生的锻炼意识都增强了,某校有学生8200人,为了解学生每天的锻炼时间,学校体育组随机调查了部分学生,统计结果如表.时间段频数频率29分钟及以下108 0.5430﹣39分钟24 0.1240﹣49分钟m 0.1550﹣59分钟18 0.091小时及以上20 0.1表格中,m=30;这组数据的众数是108;该校每天锻炼时间达到1小时的约有820人.考点:频数(率)分布表;用样本估计总体;众数.分析:根据表格中29分钟及以下的频数与对应的频率求出调查的总人数,再用调查的总人数乘0.15即为m的值;根据一组数据中出现次数最多的数据叫做众数可求出这组数据的众数;根据表格可知每天锻炼时间达到1小时的频率为0.1,再用样本估计总体的方法用8200乘0.1即可求解.解答:解:∵每天锻炼时间在29分钟及以下的频数为108,对应的频率为0.54,∴调查的总人数为108÷0.54=200(人),∴m=200×0.15=30(人),∵每天锻炼时间在29分钟及以下的有108人,人数最多,∴这组数据的众数是108;该校每天锻炼时间达到1小时的约有8200×0.1=820(人).故答案为:30;108;820.点评:本题考查读频数(率)分布表的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.同时考查了众数的定义及用样本估计总体的思想.13.(3分)(2014•达州)《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=.考点:规律型:图形的变化类.分析:由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n 次剩下,共截取1﹣,得出答案即可.解答:解:=1﹣=.故答案为:.点评:此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.14.(3分)(2014•达州)己知实数a、b满足a+b=5,ab=3,则a﹣b=±.考点:完全平方公式.专题:计算题.分析:将a+b=5两边平方,利用完全平方公式展开,把ab的值代入求出a2+b2的值,再利用完全平方公式即可求出a﹣b的值.解答:解:将a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,将ab=3代入得:a2+b2=19,∴(a﹣b)2=a2+b2﹣2ab=19﹣6=13,则a﹣b=±.故答案为:±点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.15.(3分)(2014•达州)如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是π﹣2.考点:扇形面积的计算;等腰直角三角形.分析:通过图形知S=S半圆AB的面积+S半圆BC的面积﹣S△ABC的面积,所以由圆的面积公式阴影部分面积和三角形的面积公式可以求得阴影部分的面积.解答:解:∵在△ABC中,AB=BC=2,∠ABC=90°,∴△ABC是等腰直角三角形,∴图中阴影部分的面积是:S阴影部分面积=S半圆AB的面积+S半圆BC的面积﹣S△ABC的面积==π﹣2.故答案为:π﹣2.点评:本题考查了扇形面积的计算、勾股定理.解题的关键是推知S=S半圆AB的面积+S阴影部分面积﹣S△ABC的面积.半圆BC的面积16.(3分)(2014•达州)如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.考点:翻折变换(折叠问题).分析:判断出点F与点C重合时,折痕EF最大,根据翻折的性质可得BC=B′C,然后利用勾股定理列式求出B′D,从而求出AB′,设BE=x,根据翻折的性质可得B′E=BE,表示出AE,在Rt△AB′E中,利用勾股定理列方程求出x,再利用勾股定理列式计算即可求出EF.解答:解:如图,点F与点C重合时,折痕EF最大,由翻折的性质得,BC=B′C=10cm,在Rt△B′DC中,B′D===8cm,∴AB′=AD﹣B′D=10﹣8=2cm,设BE=x,则B′E=BE=x,AE=AB﹣BE=6﹣x,在Rt△AB′E中,AE2+AB′2=B′E2,即(6﹣x)2+22=x2,解得x=,在Rt△BEF中,EF===cm.故答案为:.点评:本题考查了翻折变换的性质,勾股定理的应用,难点在于判断出折痕EF最大的情况并利用勾股定理列出方程求出BE的长,作出图形更形象直观.三、解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)(2014•达州)计算:.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用乘方的意义化简,计算即可得到结果.解答:解:原式=+1+2﹣1=+2.点评:此题考查了实数的运算,熟练掌握运算法则解本题的关键.18.(6分)(2014•达州)化简求值:,a取﹣1、0、1、2中的一个数.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可.解答:解:原式=•﹣=﹣=﹣,当a=2时,原式=﹣=﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(7分)(2014•达州)四张背面完全相同的纸牌(如图,用①、②、③、④表示),正面分别写有四个不同的条件.小明将这4张纸牌背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张.(1)写出两次摸牌出现的所有可能的结果(用①、②、③、④表示);(2)以两次摸出的牌面上的结果为条件,求能判断四边形ABCD为平行四边形的概率.考点:列表法与树状图法;平行四边形的判定.分析:(1)利用树状图展示所有等可能的结果数;(2)由于共有12种等可能的结果数,根据平行四边形的判定能判断四边形ABCD为平行四边形有6种,则根据概率公式可得到能判断四边形ABCD为平行四边形的概率=.解答:解:(1)画树状图为:(2)共有12种等可能的结果数,其中能判断四边形ABCD为平行四边形有6种:①③、①④、②③、③①、③②、④①,所以能判断四边形ABCD为平行四边形的概率==.点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果数,再找出某事件所占有的结果数,然后根据概率公式计算这个事件的概率.也考查了平行四边形的判定.20.(7分)(2014•达州)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?考点:分式方程的应用.分析:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,根据第二批进货是第一批购进数量的2倍,列方程求出x的值,然后求出盈利.解答:解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,商家共盈利4200元.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.21.(8分)(2014•达州)如图,直线PQ与⊙O相交于点A、B,BC是⊙O的直径,BD平分∠CBQ交⊙O于点D,过点D作DE⊥PQ,垂足为E.(1)求证:DE与⊙O相切;(2)连结AD,己知BC=10,BE=2,求sinBAD的值.考点:切线的判定.专题:计算题.分析:(1)连结OD,利用角平分线的定义得∠CBD=∠QBD,而∠OBD=∠ODB,则∠ODB=∠QBD,于是可判断OD∥BQ,由于DE⊥PQ,根据平行线的性质得OD⊥DE ,则可根据切线的判定定理得到DE与⊙O相切;(2)连结CD,根据圆周角定理由BC是⊙O的直径得到∠BDC=90°,再证明Rt△BCD∽△BDE,利用相似比可计算出BD=2,在Rt△BCD中,根据正弦的定义得到sin∠C==,然后根据圆周角定理得∠BAD=∠C,即有sin∠BAD=.解答:(1)证明:连结OD,如图,∵BD平分∠CBQ交⊙O于点D,∴∠CBD=∠QBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠QBD,∴OD∥BQ,∵DE⊥PQ,∴OD⊥DE,∴DE与⊙O相切;(2)解:∵BC是⊙O的直径,∴∠BDC=90°,∵DE⊥AB,∴∠BED=90°,∵∠CBD=∠QBD,∴Rt△BCD∽△BDE,∴=,即=,∴BD=2,在Rt△BCD中,sin∠C===,∵∠BAD=∠C,∴sin∠BAD=.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、锐角三角函数和相似三角形的判定与性质.22.(8分)(2014•达州)达州市凤凰小学位于北纬21°,此地一年中冬至日正午时刻,太阳光与地面的夹角最小,约为35.5°;夏至日正午时刻,太阳光的夹角最大,约为82.5°.己知该校一教学楼窗户朝南,窗高207cm,如图(1).请你为该窗户设计一个直角形遮阳棚BCD,如图(2),要求最大限度地节省材料,夏至日正午刚好遮住全部阳光,冬至日正午能射入室内的阳光没有遮挡.(1)在图(3)中画出设计草图;(2)求BC、CD的长度(结果精确到个位)(参考数据:sin35.5°≈0.58,cos35.5°≈0.81,tan35.5°≈0.71,sin82.5°≈0.99,cos82.5°≈0.13,tan82.5°≈7.60)考点:解直角三角形的应用.分析:(1)根据题意结合入射角度进而画出符合题意的图形即可;(2)首先设CD=x,则tan35.5°=,表示出DC的长,进而利用tan82.5°=求出DC的长,进而得出答案.解答:解:(1)如图所示:(2)由题意可得出:∠CDB=35.5°,∠CDA=82.5°,设CD=x,则tan35.5°=,∴BC=0.71x,∴在Rt△ACD中,tan82.5°===0.76,解得:x≈30,∴BC=0.71×30≈21(cm),答:BC的长度是21cm,CD的长度是30cm.点评:此题主要考查了解直角三角形的应用,正确选择锐角三角函数关系进而求出CD的长是解题关键.23.(8分)(2014•达州)如图,直线L:y=﹣x+3与两坐标轴分别相交于点A、B.(1)当反比例函数(m>0,x>0)的图象在第一象限内与直线L至少有一个交点时,求m的取值范围.(2若反比例函数(m>0,x>0)在第一象限内与直线L相交于点C、D,当CD=时,求m的值.(3)在(2)的条件下,请你直接写出关于x的不等式﹣x+3<的解集.考点:反比例函数与一次函数的交点问题.分析:(1)根据方程有交点,可得判别是大于或等于0,可得答案;(2)根据韦达定理,可得方程两根的关系,根据两点间距离公式,可得答案;(3)根据反比例函数图象在上方的区域,可得不等式的解集.解答:解:(1)当反比例函数(m>0,x>0)的图象在第一象限内与直线L至少有一个交点,得﹣x+3=,x2﹣3x+m=0,△=(﹣3)2﹣4m≥0,解得m≤.∴m的取值范围为:0<x≤.(2)x2﹣3x+m=0,x1+x2=3,x1•x2=m,CD=,,2(9﹣4m)=8,m=;(3)当m=时,x2﹣3x+m=0,解得x1=,x2=,由反比例函数图象在上方的区域得0<x<,或x.点评:本题考查了反比例函数与一次函数的交点问题,利用了韦达定理,两点间的距离公式,一次函数与不等式的关系.24.(10分)(2014•达州)倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题.习题解答:习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.∴∠E′AF=90°﹣45°=45°=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.习题研究观察分析:观察图(1),由解答可知,该题有用的条件是①ABCD是四边形,点E、F分别在边BC、CD上;②AB=AD;③∠B=∠D=90°;④∠EAF=∠BAD.类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗?研究一个问题,常从特例入手,请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180,∠EAF=∠BAD时,EF=BE+DF吗?归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180,∠EAF=∠BAD时,则EF=BE+DF.考点:四边形综合题.专题:综合题.分析:(1)根据菱形的性质和∠EAF=60°得到AB=AD,∠1+∠3=60°,∠B=∠ADC=60°,则把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据旋转的性质得∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,则∠2+∠3=60°,所以∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;(2)如图(3),由于AB=AD,则把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),根据旋转的性质得∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,由于∠B+∠D=180,则∠ADE′+∠D=180°,所以点F、D、E′共线,利用∠EAF=∠BAD,得到∠1+∠2=∠BAD,则∠2+∠3=∠BAD,所以∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,所以EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳为:在四边形ABCD中,点E、F分别在BC、CD上,当满足AB=AD,∠B+∠D=180,∠EAF=∠BAD时,则有EF=BE+DF.解答:解:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,∴AB=AD,∠1+∠3=60°,∠B=∠ADC=60°,∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,∴∠2+∠3=60°,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,∴DE′+DF>EF∴BE+DF>EF;(2)当AB=AD,∠B+∠D=180,∠EAF=∠BAD时,EF=BE+DF成立.理由如下:如图(3),∵AB=AD,∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180,∴∠ADE′+∠D=180°,∴点F、D、E′共线,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∴EF=DE′+DF=BE+DF;归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180,∠EAF=∠BAD时,则EF=BE+DF.点评:本题考查了四边形的综合题:熟练掌握特殊平行四边形的性质和旋转的性质;会运用三角形全等的判定与性质解决线段相等的问题.25.(12分)(2014•达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B (4,4).(1)求过O、B、A三点的抛物线的解析式.(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.二次函数综合题.考点:压轴题;分类讨论.专题:分(1)由于抛物线与x轴的两个交点已知,因此抛物线的解析式可设成交点式,然后把析: 点B 的坐标代入,即可求出抛物线的解析式.(2)以O 、A 、B 、M 为顶点的四边形中,△OAB 的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大;求出另一个三角形面积的表达式,利用二次函数的性质确定其最值;本问需分类讨论:①当0<x ≤4时,点M 在抛物线OB 段上时,如答图1所示;②当4<x ≤5时,点M 在抛物线AB 段上时,图略.(3)△PQB 为等腰三角形时,有三种情形,需要分类讨论,避免漏解:①若点B 为顶点,即BP=BQ ,如答图2﹣1所示;②若点P 为顶点,即PQ=PB ,如答图2﹣2所示;③若点P 为顶点,即PQ=QB ,如答图2﹣3所示.解答: 解:(1)∵该抛物线经过点A (5,0),O (0,0),∴该抛物线的解析式可设为y=a (x ﹣0)(x ﹣5)=ax (x ﹣5).∵点B (4,4)在该抛物线上,∴a ×4×(4﹣5)=4.∴a=﹣1.∴该抛物线的解析式为y=﹣x (x ﹣5)=﹣x 2+5x .(2)以O 、A 、B 、M 为顶点的四边形中,△OAB 的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大.①当0<x ≤4时,点M 在抛物线OB 段上时,如答图1所示.∵B (4,4),∴易知直线OB 的解析式为:y=x .设M (x ,﹣x 2+5x ),过点M 作ME ∥y 轴,交OB 于点E ,则E (x ,x ),∴ME=(﹣x 2+5x )﹣x=﹣x 2+4x .S △OBM =S △MEO +S △MEB =ME (x E ﹣0)+ME (x B ﹣x E )=ME •x B =ME ×4=2ME , ∴S △OBM =﹣2x 2+8x=﹣2(x ﹣2)2+8∴当x=2时,S △OBM 最大值为8,即四边形的面积最大.②当4<x ≤5时,点M 在抛物线AB 段上时,图略.可求得直线AB 解析式为:y=﹣4x+20.设M (x ,﹣x 2+5x ),过点M 作ME ∥y 轴,交AB 于点E ,则E (x ,﹣4x+20),∴ME=(﹣x 2+5x )﹣(﹣4x+20)=﹣x 2+9x ﹣20.S △ABM =S △MEB +S △MEA =ME (x E ﹣x B )+ME (x A ﹣x E )=ME •(x A ﹣x B )=ME×1=ME,∴S△ABM=﹣x2+x﹣10=﹣(x﹣)2+∴当x=时,S△ABM最大值为,即四边形的面积最大.比较①②可知,当x=2时,四边形面积最大.当x=2时,y=﹣x2+5x=6,∴M(2,6).(3)由题意可知,点P在线段OB上方的抛物线上.设P(m,﹣m2+5m),则Q(m,m)当△PQB为等腰三角形时,①若点B为顶点,即BP=BQ,如答图2﹣1所示.过点B作BE⊥PQ于点E,则点E为线段PQ中点,∴E(m,).∵BE∥x轴,B(4,4),∴=4,解得:m=2或m=4(与点B重合,舍去)∴m=2;②若点P为顶点,即PQ=PB,如答图2﹣2所示.易知∠BOA=45°,∴∠PQB=45°,则△PQB为等腰直角三角形.∴PB∥x轴,∴﹣m2+5m=4,解得:m=1或m=4(与点B重合,舍去)∴m=1;③若点P为顶点,即PQ=QB,如答图2﹣3所示.∵P(m,﹣m2+5m),Q(m,m),∴PQ=﹣m2+4m.又∵QB=(x B﹣x Q)=(4﹣m),∴﹣m2+4m=(4﹣m),解得:m=或m=4(与点B 重合,舍去),∴m=.综上所述,当△PQB 为等腰三角形时,m 的值为1,2或.点评: 本题是二次函数压轴题,涉及考点较多,有一定的难度.重点考查了分类讨论的数学思想,第(2)(3)问均需要进行分类讨论,避免漏解.注意第(2)问中求面积表达式的方法,以及第(3)问中利用方程思想求m 值的方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年四川省达州市中考数学试卷-解析版一、选择题:(本题8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1、(2011•达州)﹣5的相反数是()A、﹣5B、5C、±5D、考点:相反数。
专题:计算题。
分析:根据相反数的概念:只有符号不同的两个数是相反数,求解即可.解答:解:∵|﹣5|=5,且其符号为负号.∴﹣5的相反数为5.故选B.点评:此题主要考查学生对相反数的概念的理解及掌握情况.2、图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是()A、B、C、D、考点:轴对称图形。
分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.解答:解:A、B、D都是轴对称图形,而C不是轴对称图形.故选C.点评:本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、如图是由几个相同的小正方体搭成的一个几何体,它的左视图是()A、B、C、D、考点:简单组合体的三视图。
分析:根据左视图是从左面看到的图判定则可.解答:解:左面看去得到的正方形从左往右依次是2,1,故选B.点评:本题考查了几何体的三视图,从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.4、(2008•湘潭)已知样本数据1,2,4,3,5,下列说法不正确的是()A、平均数是3B、中位数是4C、极差是4D、方差是2考点:算术平均数;中位数;极差;方差。
专题:计算题。
分析:要求平均数只要求出数据之和再除以总个数即可;根据中位数的定义可求出;对于极差是最大值与最小值的差;方差是样本中各数据与样本平均数的差的平方和的平均数解答:解:在已知样本数据1,2,4,3,5中,平均数是3;极差=5﹣1=4;方差=2.所以根据中位数的定义,中位数是3,所以B不正确.故本题选B.点评:本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.5、(2010•攀枝花)如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A、S△AFD=2S△EFBB、BF=DFC、四边形AECD是等腰梯形D、∠AEB=∠ADC考点:平行四边形的性质;相似三角形的判定与性质。
分析:本题要综合分析,但主要依据都是平行四边形的性质.解答:解:A、∵AD∥BC∴△AFD∽△EFB∴===∴S△AFD=2S△ABF,S△ABF=2S△EFB,故S△AFD=4S△EFB;B、利用平行四边形的性质可知正确.C、由∠AEC=∠DCE可知正确.D、利用等腰三角形和平行的性质即可证明.故选A.点评:解决本题的关键是利用相似求得各对应线段的比例关系.6、(2011•达州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为()A、5B、4C、3D、2考点:垂径定理;勾股定理。
专题:计算题。
分析:连接OC,由垂径定理求出CE的长,再根据勾股定理得出线段OE的长.解答:解:连接OC∵AB是⊙O的直径,弦CD⊥AB,∴CE=CD,∵CD=8,∴CE=4,∵AB=10,∴由勾股定理得,OE===3.故选C.点评:本题考查了垂径定理、勾股定理以及圆中辅助线的做法,是重点知识,要熟练掌握.7、(2008•宁德)如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映出的两圆位置关系有()A、内切、相交B、外离、相交C、外切、外离D、外离、内切考点:圆与圆的位置关系。
分析:根据圆与圆关系的定义,两个圆与圆没有公共点,并且每个圆上的点都在另一个圆的外部时叫做这两个圆外离;两个圆有两个公共点时叫做这两个圆相交.所以在这个图案中反映出的两圆位置关系有外离和相交.解答:解:在这个图案中反映出的两圆位置关系有两种外离和相交.故选B.点评:本题可直接由图案得出圆与圆的位置关系,比较容易.8、(2011•达州)如图所示,在数轴上点A所表示的数x的范围是()A、B、C、D、考点:特殊角的三角函数值;实数与数轴。
专题:计算题。
分析:先根据数轴上A点的位置确定出其范围,再根据特殊角的三角函数值对四个选项进行分析即可.解答:解:由数轴上A点的位置可知,<A<2.A、由sin30°<x<sin60°可知,×<x<,即<x<,故本选项错误;B、由cos30°<x<cos45°可知,<x<×,即<x<,故本选项错误;C、由tan30°<x<tan45°可知,×<x<1,即<x<1,故本选项错误;D、由cot45°<x<cot30°可知,×1<x<,即<x<,故本选项正确.故选D.点评:本题考查的是特殊角的三角函数值及在数轴的特点,熟记各特殊角的三角函数值是解答此题的关键.二、填空题(本题7小题,每小题3分,共21分)把最后答案直接填在题中的横线上.9、(2011•达州)据报道,达州市2010年全年GDP(国内生产总值)约为819.2亿元,请把这个数用科学记数法表示为8.2×1010元(保留两个有效数字).考点:科学记数法与有效数字。
专题:探究型。
分析:先根据科学记数法的概念表示出819.2亿元,再保留两个有效数字即可.解答:解:∵819.2亿元=81920000000元,∴用科学记数法表示为:8.192×1010元,∴保留两个有效数字为:8.2×1010.故答案为:8.2×1010.点评:本题考查的是科学记数法与有效数字,熟知科学记数法的概念与有效数字的概念是解答此题的关键.10、(2011•达州)已知关于x的方程x2﹣mx+n=0的两个根是0和﹣3,则m= ﹣3 ,n= 0 .考点:一元二次方程的解。
专题:方程思想。
分析:根据一元二次方程的解的定义,列出关于m、n的二元一次方程组,解方程组即可.解答:解:根据题意,得,解得,.故答案是:﹣3、0.点评:本题主要考查了一元二次方程的解.一元二次方程的解都适合方程的解析式.11、(2011•达州)如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD= S△BOC.(填“>”、“=”或“<”)考点:梯形;三角形的面积。
专题:数形结合。
分析:根据题意可判断出△ABD和△ABC的同底等高,由此可判断出两者的面积相等,进而可判断出S△AOD和S△BOC的关系.解答:解:由题意得:△ABD和△ABC的同底等高,∴S△ABD和S△ABC相等,∴S△AOD=S△ABD﹣S△AOB=S△ABC﹣S△AOB=S△BOC.故答案为:=.点评:本题考查了梯形及三角形的面积,难度一般,解答本题的关键是根据梯形的性质判断出△ABD和△ABC的同底等高.12、(2011•达州)我市某中学七年级甲、乙、丙三个班中,每班的学生人数都为60名,某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值)分数50~60 60~70 70~80 80~90 90~100人数 2 9 18 17 14根据以上图、表提供的信息,则80~90分这一组人数最多的班是甲班.考点:频数(率)分布直方图;扇形统计图。
分析:从直方图可求出甲班80~90的人数,从扇形图求出乙班这个范围内的人数,从频数统计表可求出丙班的,从而可求出总人数.解答:解:甲班:60﹣3﹣7﹣12﹣18=20(人)乙班:60×(1﹣35%﹣10%﹣5%﹣20%)=18(人).丙班:17(人).所以最多的是甲班.点评:本题考查频数直方图,扇形图以及频数表的认知能力,关键知道直方图能够直接看出每组的人数,扇形图看出每部分占总体的百分比,频数表中频数就是每组的人数.13、(2011•达州)如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AC=2,则图中阴影部分的面积为2﹣(结果不取近似值).考点:扇形面积的计算;等腰直角三角形。
专题:计算题。
分析:用三角形ABC的面积减去扇形EAD和扇形FBD的面积,即可得出阴影部分的面积.解答:解:∵BC=AC,∠C=90°,AC=2,∴AB=2,∵点D为AB的中点,∴AD=BD=,∴S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD=×2×2﹣×2,=2﹣.故答案为:2﹣.点评:本题考查了扇形面积的计算以及等腰直角三角形的性质,熟记扇形的面积公式:S=.14、(2011•达州)用同样大小的小圆按下图所示的方式摆图形,第1个图形需要1个小圆,第2个图形需3个小圆,第3个图形需要6个小圆,第4个图形需要10个小圆,按照这样的规律摆下去,则第n个图形需要小圆()(或)个(用含n的代数式表示).考点:规律型:图形的变化类。
分析:本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.解答:解:由题目得,第1个图形为1个小圆,即×1×(1+1)第2个图形为3个小圆,即即×2×(2+1)第3个图形为6个小圆,即×3×(3+1)第4个图形为10个小圆,即×4×(4+1)进一步发现规律:第n个图形的小圆的个数为即×n(n+1)故答案为:n(n+1).点评:本题是一道关于数字猜想的问题,主要考察通过归纳与总结能力,通过总结得到其中的规律.15、(2011•达州)若,则=6 .考点:完全平方公式;非负数的性质:偶次方;非负数的性质:算术平方根。
专题:计算题;整体思想。
分析:根据非负数的性质先求出a2+、b的值,再代入计算即可.解答:解:∵,∴+(b+1)2=0,∴a2﹣3a+1=0,b+1=0,∴a+=3,a2+=7;b=﹣1.∴=7﹣1=6.故答案为:6.点评:本题考查了非负数的性质,完全平方公式,整体思想,解题的关键是整体求出a2+的值.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(55分)16、(2011•达州)(1)计算:(2)先化简,再求值:,其中a=﹣5.考点:分式的化简求值;零指数幂;负整数指数幂。
分析:(1)根据0指数幂,负整数指数幂的意义进行运算;(2)将分式的分子、分母因式分解,除法化为乘法,约分,再代值计算.解答:解:(1),=1﹣(﹣2010),(2分)=1+2010,(3分)=2011;(14分)(2),=,(1分)=,(2分)当a=﹣5时,原式=,(3分)=,=,=3.(4分)点评:本题考查了0指数幂,负整数指数幂、分式的化简求值.解答此题的关键是把分式化到最简,然后代值计算.17、(2011•达州)我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB水平距离60米(BD=60米)处有一居民住宅楼,该居民住宅楼CD高15米,在该该住宅楼顶C处测得此危房屋顶A的仰角为30°,请你通过计算说明在实施定向爆破危房AB时,该居民住宅楼有无危险?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域,参考数据:,)考点:解直角三角形的应用-仰角俯角问题。