九上第四章《相似三角形》单元测试

合集下载

第4章 相似三角形 浙教版九年级数学上册单元测试卷(含解析)

第4章 相似三角形 浙教版九年级数学上册单元测试卷(含解析)

第4章相似三角形单元测试卷一.选择题(共10小题,满分30分)1.《九章算术》中记载了一种测量古井水面以上部分深度的办法,如图所示,在井口A处立一垂直于井口的木杆AB,从木杆的顶端B观测井水水岸D,视线BD与井口的直径CA 交于点E,若测得AB=1米,AC=1.6米,AE=0.4米,则水面以上深度CD为( )A.4米B.3米C.3.2米D.3.4米2.设=,则的值为( )A.B.C.D.3.已知△ABC∽△DEF,=,若BC=2,则EF=( )A.4B.6C.8D.164.两个相似多边形的周长之比为1:4,则它们的面积之比为( )A.1:2B.1:4C.1:8D.1:165.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A.6B.C.D.6.已知在△ABC中,∠A=78°,AB=4,AC=6,下列阴影部分的三角形与原△ABC不相似的是( )A.B.C.D.7.甲、乙两地相距60千米,在比例尺1:1000000的地图上,图上距离应是( )厘米.A.6000000B.600C.60D.68.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“美学”.如图,的值接近黄金比,则黄金比(参考数据:2.12=4.41,2.22=4.84,2.32=5.29,2.42=5.76)( )A.在0.1到0.3之间B.在0.3到0.5之间C.在0.5到0.7之间D.在0.7到0.9之间9.在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,AD=3,BD=2,则CD的长为( )A.2B.3C.D.10.如图,在△ABC中,∠BAC=90°,AH⊥BC,M是AC中点,CN=2BN,BM交AN于O,BM交AH于I,若S△ABC=48,则下面结论正确的是( )①∠CAH=∠ABC;②S△ABO=12;③AO=3NO;④=2.A.①②③B.②③④C.①②④D.①②③④二.填空题(共10小题,满分30分)11.已知四边形ABCD∽四边形A′B′C′D′,BC=3,CD=2.4,B′C′=2,则C′D ′= .12.如图,△ADE∽△ACB,已知∠A=40°,∠ADE=∠B,则∠C= °.13.如图,在△ABC中,DE∥BC,G为BC上一点,连接AG交DE于点F,已知AF=2,AG=6,EC=5,则AC= .14.已知a=4,c=13,则a,c的比例中项是 .15.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则= .16.如图,在第一象限内作与x轴的正半轴成60°的射线OC,在射线OC上截取OA=2,过点A作AB⊥x轴于点B,在坐标轴上取一点P(不与点B重合),使得以P,O,A为顶点的三角形与△AOB相似,则所有符合条件的点P的坐标为 .17.如图,以点O为位似中心,把△ABC放大2倍得到△A'B'C'',①AB∥A'B';②△ABC∽△A'B'C';③AO:AA'=1:2;④点C、O、C'三点在同一直线上.则以上四种说法正确的是 .18.如图,△ABC的顶点在1×3的正方形网格的格点上,在图中画出一个与△ABC相似但不全等的△DEF(△DEF的顶点在格点上),则△DEF的三边长分别是 .19.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为 .20.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,著名的“断臂维纳斯”便是如此,这个数我们把它叫做黄金分割数.若介于整数n 和n+1之间,则n的值是 .三.解答题(共7小题,满分90分)21.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=﹣(x>0)的图象经过的中点D,且与AB交于点E,连接DE(1)求△BDE的面积(2)若点F是OC边上一点,且△FBC∽△DEB,求点F坐标.22.如图,四边形ABCD∽四边形EFGH,求角α、β的大小和EF的长度x.23.如图,C是线段AB上的一点,AC:CB=2:1.(1)图中以点A,B,C中任意两点为端点的线段共有 条.(2)若AC=4,求AB的长.24.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.25.如图,AB∥EF∥CD,E为AD与BC的交点,F在BD上,求证:+=.26.小颍想利用标杆和皮尺测量自己小区大门口前遮雨玻璃水平宽度AB,他在楼门前水平地面上选择一条直线CH,AB∥CH,在CH上距离C点8米的D处竖立标杆DE,DE⊥CH,他沿着DH方向走了2米到点N处,发现他的视线从M处通过标杆的顶端E正好落在遮雨玻璃的B点处,继续沿原方向再走2米到点Q处,发现他的视线从P处通过标杆的顶端E正好落在遮雨玻璃的A点处,求遮雨玻璃的水平宽度AB.27.如图,AC、BD交于点E,BC=CD,且BD平分∠ABC.(1)求证:△AEB∽△CED;(2)若BC=9,EC=3,AE=2,求AB的长.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:由题意知:AB∥CD,∴△ABE∽△CDE,∴,∴,∴解得CD=3,∴水面以上深度CD为3米.故选:B.2.解:∵=,∴x=y,∴====.故选:C.3.解:∵△ABC∽△DEF,∴,∵=,BC=2,∴,∴EF=4,故选:A.4.解:相似多边形的周长的比是1:4,周长的比等于相似比,因而相似比是1:4,面积的比是相似比的平方,因而它们的面积比为1:16;故选:D.5.解:∵AD∥BE∥CF,∴=,即=,解得:DE=,故选:D.6.解:A、由有两组角对应相等的两个三角形相似,可证阴影部分的三角形与原△ABC相似,故选项A不符合题意;B、不能证明阴影部分的三角形与原△ABC相似,故选项B符合题意;C、由有两组角对应相等的两个三角形相似,可证阴影部分的三角形与原△ABC相似,故选项C不符合题意;D、由两组对应边的比相等且夹角对应相等的两个三角形相似,故选项D不符合题意;故选:B.7.解:60千米=6000000厘米,6000000×=6(厘米).答:图上距离应是6厘米.故选:D.8.解:∵2.22=4.84,2.32=5.29,2.2<<2.3,∴1.2<﹣1<1.3,∴0.6<<0.65,故选:C.9.解:∠BAC=90°,∴∠BAD+∠CAD=90°,∵AD⊥BC,∴∠C+∠CAD=90°,∴∠C=∠BAD,∵∠BDA=∠ADC=90°,∴△BDA∽△ADC,∴,即,解得,DC=,故选:D.10.解:①∵∠BAC=90°,AH⊥BC,∴∠ABC+∠BAH=∠BAH+∠CAH=90°,∴∠CAH=∠ABC,故①正确;②过点M作ME∥BC,与AO交于点E,∵M是AC中点,∴ME是△ACN的中位线,∴ME=,AE=EN,∵CN=2BN,∴ME=BN,∵ME∥BC,∴∠OBN=∠OME,∵∠BON=∠MOE,∴△OBN≌△OME(AAS),∴ON=OE,∵AE=EN,∴AN=4ON,∴,∵CN=2BN,S△ABC=48,∴,∴,故②正确;③∵AE=EN,OE=ON,∴AO=3NO,故③正确;④过点C作CF⊥BC,与BM的延长线交于点F,∴∠AIM=∠F,∵M是AC的中点,∴AM=CM,∵∠AMI=∠CMF,∴△AMI≌△CMF(AAS),∴AI=CF,∵IH∥CF,当H不是BC的中点时,IH≠,∴IH≠,故④不正确;故选:A.二.填空题(共10小题,满分30分)11.解:∵四边形ABCD∽四边形A′B′C′D′,∴=,即=,∴C′D′=1.6.故答案为:1.6.12.解:∵△ADE∽△ACB,∴∠AED=∠B,∠ADE=∠C,∵∠ADE=∠B,∴∠C=∠B,∴∠B=4∠C,∵∠A=40°,∠A+∠B+∠C=180°,∴∠C=28°,故答案为:28.13.解:∵DE∥BC,∴,即,∴AE=,∴AC=AE+EC=+5=,故答案为:.14.解:设a,c的比例中项为b,根据题意得b2=ac,∵a=4,c=13,∴b=±=±2.故答案为:±2.15.解:∵=,∴=,∵四边形ABCD与四边形EFGH位似,∴EH∥AD,∴△OEH∽△OAD,∴==,故答案为:.16.解:∵∠AOB=60°,∠ABC=90°,∴当P点在x轴上,∠AOP=60°,∠OAP=90°时,△PAO∽△ABO,此时OP=2OA=4,则P(4,0);当P点在y轴上,若∠APO=60°,∠OAP=90°时,△PAO∽△OBA,此时AP=OA=,OP=2AP=,则P(0,);若∠PAO=60°,∠APO=90°时,△APO∽△OBA,此时AP=OA=1,OP=AP=,则P(0,);综上所述,P点坐标为:(4,0)或(0,)或(0,).故答案为:(4,0)或(0,)或(0,).17.解:∵以点O为位似中心,把△ABC放大2倍得到△A'B'C'',∴AB∥A'B,△ABC∽△A'B'C';AO:AA'=2:1;点C、O、C'三点在同一直线上,①①②④正确,故答案为:①②④.18.解:如图所示:△ABC∽△DEF,DE=,ED=2,EF=.故答案为:,2,.19.解:∵∠BAC=90°,AD⊥BC,∴AD2=CD•BD=36,∴AD=6,故答案为:6.20.解:∵2<<3,∴1<﹣1<2,∴<<1∵n<<n+1,n为整数,∴n=0.故答案为:0.三.解答题(共7小题,满分90分)21.解:(1)∵D点为BC的中点,B(2,3),∴D(1,3),把D(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=,∵AB⊥x,∴E点的横坐标为2,当x=2时,y==,即E(2,),∴△BDE的面积=×(2﹣1)×(3﹣)=;(2)∵△FBC∽△DEB,∴=,即=,解得CF=,∴OF=OC﹣CF=3﹣=,∴点F坐标为(0,).22.解:∵四边形ABCD∽四边形EFGH,∴α=∠C=83°,∠F=∠B=78°,EH:AD=EF:AB,∴x:21=24:18,解得x=28.在四边形EFGH中,β=360°﹣83°﹣78°﹣118°=81°.∴∠G=∠C=67°.故α=83°,β=81°,x=28.23.解:(1)线段有:AC,AB,CB,共3条,故答案为:3;(2)∵AC=4,AC:CB=2:1,∴CB=2,∴AB=AC+CB=4+2=6.24.解;(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点C2点坐标为(﹣6,4).25.解:∵AB∥EF,∴=,∵EF∥CD,∴=,∴+=+=1,∴+=.26.解:连接AE,过E作EI⊥AC于点I,延长PM交AC于J,交ED于K,则IE=JK=CD =8,KM=DM=DN=NQ=2,∴JE∥PJ,∠AEJ=∠EPK,∵∠AJE=∠EKP=90°,∴△AEJ∽△EPK,∴,∵AB∥MP,∴,即,∴AB=4,答:遮雨玻璃的水平宽度AB为4m.27.(1)证明:∵BC=CD,∴∠CBD=∠CDB,∵BD平分∠ABC.∴∠CBD=∠ABD,∴∠CDB=∠ABD,又∵∠CED=∠AEB,∴△AEB∽△CED.(2)解:∵BC=CD,BC=9,∴CD=9,∵△AEB∽△CED,∴==,∴AB=DC=6.。

【浙教版】九年级数学上册第四章相似三角形单元提优测试(含答案)

【浙教版】九年级数学上册第四章相似三角形单元提优测试(含答案)

第四章 相似三角形单元提优测试一. 选择题:(本大题共10小题,每小题3分,共30 分) 温馨提示:每一个小题有四个选项,其中只有一个是正确的, 请将正确的答案选出来!1.如图所示,△ ABC 中, DE/ BC ,若齧=£,贝卩下列结论中正确的是()2.如图,点P 在厶ABC 勺边AC 上,要判断厶AB KA ACB 添加一个条件,不正确的是()A. / ABP Z CB. / AP^Z ABC3.如图,在直角坐标系中,有两点 A (6 , 3). B (6 , 0).以原点O 为位似中心,相似比为1 ,在第一象限内把线段AB 缩小后 得到线段CD 则点C 的坐标为( )A. (2, 1)B.(2 , 0)C.(3 , 3)D.(3 , 1)面积1AP ABAB ACAB AC BP CBAO ;B.srctfj 面积34.如图,已知AB.CD.EF都与BD垂直,垂足分别是B.D.F,且AB= 1, CD= 3,那么EF的长是()A.1B. 2C. ?D. 43 34 55. 如图,在四边形ABCE中, DC/ AB CB!AB, AB二ADCD』AB2点E.F分别为AB.AD的中点,则△ AEF与多边形BCDFE勺面积之比为()A. -B. -C. -D. -7 6 5 46. 如图,D E分别是△ ABQ的边ABBC上的点,DE// AC若5BDE: 3,则DOE S A AOC的值为()CD=1A. -B. -C. -D. -3 4 9 167. 如图,△ OABW^OCD是以点O为位似中心的位似图形,相似比为I : 2,Z OCD90°, COCD若B(1 , 0),则点C的坐标为()A(1, 2) B.(1, 1)C(血,血)D(2, 1)A8. 如图,d II U,两条直线与这三条平行线分别交于点ABC和D E F.已知磊弓,则第的值为()A. 3B. 2C. -D. -2 3 5 59. 如图,在矩形ABCD^,AB=10 , BC=5 .若点MN分别是线段ACA上的两个动点,则BM+MN的最小值为()A.10B.8C. 5 3D.610. 如图,在△ ABC中, Z ACB90O, AC=B(=1, E. F为线段AB 上两动点,且Z ECF45。

九年级数学相似三角形单元测试的题目及答案详解

九年级数学相似三角形单元测试的题目及答案详解

九年级数学相似单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km 2.已知0432c b a ,则c b a的值为( )A.54B.45C.2D.213.已知⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是( )A.2B.22C.26D.334.在相同时刻,物高与影长成正比。

如果高为 1.5米的标杆影长为 2.5米,那么影长为30米的旗杆的高为( ) A 20米 B 18米 C 16米 D 15米5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD, 只要CD 等于( ) A.cb2B.ab2C.cabD.ca26.一个钢筋三角架三长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ) A.一种 B.两种 C.三种 D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置8、如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则CD 的长()A .163B .8C .10D .169.已知a 、b 、c 为非零实数,设k=c ba bca a cb ,则k 的值为()A .2B .-1C .2或-1D .110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m二.填空题(每小题3分,共30分)11、已知43yx,则._____yy x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= . 13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .14、如图,⊿ABC中,D,E分别是AB,AC上的点(DE BC),当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且2·,则∠BCA的度数为____________。

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

第四章测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,)题号12345678910答案B C A D B C C C A C1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )2.在比例尺为1:500000的交通地图上,玉林到灵山的长度约为 23.6cm ,则它的实际长度约为( )A.0.118km B.1.18km C.118km D.1180km3.如图,以A ,B ,C 为顶点的三角形与以D ,E ,F 为顶点的三角形相似,则这两个三角形的相似比为( )A.2:1B.3:1C.4:3D.3:24.在△ABC 中,D 是AB 中点,E 是AC 中点,若△ADE 的面积是3,则△ABC 的面积是 ( )A.3 B.6 C.9 D.125.如图,在△ABC 中,点D 在AB 边上,过点 D 作DE ∥BC 交AC 于点E,DF ∥AC 交BC 于F,若AE:DF=2:3,则BF:BC 的值是 ( )A. 23 B. 35 C. 12D. 256.如图,在四边形ABCD 中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC 相似的是 ( )A.∠DAC=∠ABC B. AC 是∠BCD 的平分线 C.AC²=BC ⋅CD D.ADAB =DCAC7. 若△ABC 的各 边都分别扩大到原来的 2 倍,得到△A ₁B ₁C ₁,下列结论正确的是 ( )A.△ABC 与△A ₁B ₁C ₁的对应角不相等 B.△ABC 与△A ₁B ₁C ₁不一定相似C.△ABC 与△A ₁B ₁C ₁的相似比为1:2 D.△ABC 与△A ₁B ₁C ₁的相似比为2:18.如图,点 E 是▱ABCD 的边 BC 延长线上的一点,AE 和CD 交于点G ,AC 是▱ABCD 的对角线,则图中相似三角形共有 ( )A.2 对B.3 对C.4 对D.5 对9.如图,已知E(-4,2),F(--2,--2),以O 为位似中心,把△EFO 缩小到原来的 12,则点E 的对应点的坐标为( )A.(2,一1)或(-2,1)B.(8,一4)或(一8,4)C.(2,-1)D.(8,-4)10.如图,在正方形 ABCD 中,点 E 、F 分别在边AD 和CD 上,AF ⊥BE,垂足为G,若 AEED =2,则 AGGF 的值为( )A. 45B. 56C.67D.78二、填空题(每小题3分,共15分)11.若△ABC ∽△A'B'C',且相似比为3:5,已知△ABC 的周长为21,则△A'B'C'的周长为 .12.如图是一架梯子的示意图,其中 AA₁‖BB₁‖CC₁‖DD₁,且AB=BC=CD.为使其更稳固,在A ,D ₁间加绑一条安全绳( 线段AD ₁),量得 AE=0.4m,则 AD₁= m13.如图,阳光通过窗口照到室内,在地上留下3m 宽的亮区.已知亮区一边到窗下的墙角的距离CE=7m ,窗口高AB=1.8m,那么窗口底边离地面的高BC 等于 m.14.如图,已知每个小方格的边长均为1,则△ABC 与△CDE 的面积比为 .15.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且 CF =14CD,下列结论:①∠BAE=30°,②△ABE ∽△ECF,③AE ⊥EF,④△ADF ∽△ECF.其中正确的结论是 (填序号).三、解答题(本大题8个小题,共75 分)16.(8分)根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由. AB =3,BC =4,AC =5,A 'B '=12,B 'C '=16,C 'A '=2017.(9分)如图,D 是△ABC 的边AC 上的一点,连接BD,已知∠ABD=∠C,BC=6,BD=4,如果△ABD 的面积为4,求△BC D 的面积.18.(9分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是 A(1,3),B(4,1),C(1,1).(1)画出△ABC 关于x 轴成轴对称的△A ₁B ₁C ₁;(2)画出△ABC 以点O 为位似中心,相似比为 1:2的△A ₂B ₂C ₂.19.(9分)如图,四边形ABCD 是菱形,AF ⊥BC 交BD 于E,交 BC 于F.求证: AD 2=12DE ⋅DB.20.(10分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一颗大树,将其底部作为点 A,在他们所在的岸边选择了 B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点 D 竖起标杆DE,使得点 E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m,测量示意图如图所示.请根据相关测量信息,求河宽 AB.21.(10分)如图,E是平行四边形ABCD的边 DA 延长线上一点,连结 EC 交AB 于 P.(1)写出图中的三对相似三角形(不添加辅助线);(2)请在你所写的相似三角形中选一对,说明相似的理由.22.(10分)阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图1,在△ABC中,AD平分∠BAC,则ABAC =BDCD.下面是这个定理的部分证明过程.证明:如图2,过点C作CE∥DA,交 BA的延长线于点 E⋯任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图3,在△ABC中,AD是角平分线,AB=5cm ,AC=4 cm,BC=7 cm.求 BD的长.23.(10分)在矩形 ABCD中,点 E 是对角线AC 上一动点,连接 DE,过点 E 作EF⊥DE 交AB 于点 F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E 在运动过程中,DEEF的值是否发生变化?请说明理由.第四章测试卷答案一、选择题1、B2、C3、A4、D5、B6、C7、C8、C9、A 10、C 二、填空题11、35 12、1.2m 13、2.4m 14、4:1 15、②③三、解答题16、解:相似,理由: ∵AB A 'B '=312=14,BC B 'C '=416=14,AC A 'C '=520=14,∴ABA 'B'=BCB 'C '=ACA 'C ',∴ABC ∽A 'B 'C '.17、解:∵∠ABD=∠C,又∠A=∠A,∴△ABD ∽△ACB,S ABD S ACB=(BD CB )2=(46)2=49,18、解:如图所示19、证明:连接AC 交 BD 于点O,∵四边形ABCD 为菱形,∴AC ⊥BD,BO=OD,∵AE ⊥AD,∴△AOD ∽△EAD, ∴AD OD=ED AD,∴A D 2=ED ⋅OD,即 A D 2=12DE ⋅DB.20、解:∵CB ⊥AD,ED ⊥AD, ∴∠CBA =∠EDA =90°.∵∠CAB=∠EAD, ∴ABCOADE,∴AB AD=BC DE,∴AB AB +8.5=11.5,∴AB =17,.∴河宽为17m.21、解:(1)△EAP ∽△CBP,△AEP ∽△DEC,△BCP ∽△DEC.(2)选. △EAPO △CBP,理由如下:在▱ABCD 中AD ∥BC,∴∠EAP=∠B.又∵∠APE=∠BPC,∴△EAP ∽△CBP.22、解:(1)证明:如图2,过点C作CE∥DA,交BA的延长线于点E, ∵CEDA,∴BDCD =BAEA,∠CAD=∠ACE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD, ∠ACE=∠E,∴AE=AC,∴ABAC =BDCD;(2)∵AD是角平分线, ∴ABAC =BDCD,AB=5 cm,AC=4 cm,BC=7 cm, C.54=BD7−BD,解得BD=359cm.23、解:(1)证明:如图,连接 DF,在矩形ABCD 中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)DEEF 的值不变.如图,过点E作EM⊥AD于点M,过点E 作EN⊥AB 于点 N,∵EM∥CD,EN∥BC,∴EMCD =AEAC,ENBC=AEAC,∴EMEN=CDBC,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又·∴∠DME=∠ENF=90°,∴△DME⊗△FNE,∴DEEF =EMEN,∴DEEF=CDBC,∵CD 与BC 的长度不变, ∴DEFF的长度不变.。

浙教版数学九年级上册 第四章 相似三角形 单元练习(含答案)

浙教版数学九年级上册 第四章 相似三角形  单元练习(含答案)

浙教版数学九年级上册第四章相似三角形一、选择题1.如果2a =5b ,那么下列比例式中正确的是( )A .a b =25B .a 5=2b C .a 2=b 5D .a 5=b 22.如图,直线l 1∥l 2∥l 3,AC =6,DE =3,EF =2,则AB 的长为( )A .3B .125C .165D .1853.如图,点P 是线段AB 的黄金分割点,且PA >PB ,若AB =2,则PA 的长度是( )A .5−1B .3−5C .25−4D .14.如图, 在▱ABCD 中, E 是边AB 上一点, 连结AC ,DE 相交于点F . 若AE EB =23,则 AF CF 等于( )A .13B .23C .25D .355.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )A .B .C.D.6.△ABC和△DEF是两个等边三角形,AB=2,DE=4,则△ABC与△DEF的面积比是( ) A.1:2B.1:4C.1:8D.1:27.如图,在△ABC中,BC=6,AC=8,∠C=90°,以B为圆心,BC长为半径画弧,与AB交于点D,再分别以点A,D为圆心,大于12AD的长为半径画弧,两弧交于点M,N,作直线MN,分别交AC,AB于点E,F,则AE的长度为( )A.52B.103C.3D.228.如图,△ABC和△A1B1C1是以点O为位似中心的位似图形,点A在线段O A1上,若OA:A A1=1:2,则△ABC和△A1B1C1的周长之比为( )A.1:2B.2:1C.1:3D.3:19.如图,在△ABC中,D为线段AC上一点,点E在AC的延长线上,过点D作DF∥AB交BC于点F,连结BE,EF,若A C2+D E2=A E2,则△BEF与△DCF的面积比为( )A.1:2B.1:3C.2:3D.2:510.如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是( )A .4B .154C .3D .114二、填空题11.如图,AC 、BD 交于点O ,连接AB 、CD ,若要使△AOB ∽△COD ,可以添加条件 .(只需写出一个条件即可)12.已知△ABC ∽△DEF ,且AB:DE =1:3,△ABC 与△DEF 的周长比是 .13.如图,在这架小提琴中,点C 是线段AB 的黄金分割点(BC >AC ).若AB =60cm ,则BC = cm .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图,矩形ABCD 中,AB =3 6 ,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .16.如图,正方形ABCD 中,BF =FG =CG ,BE =2AE ,CE 交DF 、DG 于M 、N 两点,有下列结论:①DF ⊥EC ;②S △MFC =59S 四边形MFBE ;③DM :MF =2:1;④MN NC =913.其中,正确的有  .三、解答题17.(1)已知线段a =2,b =6,求线段a ,b 的比例中项线段c 的长.(2)已知x :y =3:2,求2x−yx的值.18.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥BC ,AD BD =32,求DE BC 的值.19.如图,AD 、BC 相交于点P ,连接AC 、BD ,且∠1=∠2,AC =6,CP =4,DP =2,求BD 的长.20. 如图,在平行四边形ABCD 中,E 为DC 边上一点,∠EAB =∠EBC .(1)求证:△ABE∽△BEC ;(2)若AB=4,DE=3,求BE的长.21.如图,在四边形ABCD中,OA=OC,OB=OD,AB=BC,AC=12,BD=16.(1)求证:四边形ABCD时菱形;(2)延长BC至点M,连接OM交CD于点N,若∠M=12∠BAC,求MNOM.22.如图,AB∥CD,且AB=2CD,E是AB的中点,F是边BC上的动点(F不与B,C重合),EF与BD相交于点M.(1)求证:△FDM∽△FBM;(2)若F是BC的中点,BD=18,求BM的长;(3)若AD=BC,BD平分∠ABC,点P是线段BD上的动点,是否存在点P使DP⋅BP=BF⋅CD,若存在,求出∠CPF的度数;若不存在,请说明理由.23.如图,在平面直角坐标系中,已知抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于C点,且OB=OC=4.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使∠ABC=∠BCM,如果存在,求M点的坐标,如果不存在,说明理由;(3)若D是抛物线第二象限上一动点,过点D作DF⊥x轴于点F,过点A、B、D的圆与DF交于E点,求△ABE的面积.答案解析部分1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】B11.【答案】∠A=∠C(答案不唯一)12.【答案】1:313.【答案】(305−30)14.【答案】9415.【答案】21516.【答案】①④17.【答案】(1)解:∵线段a=2,b=6,线段c是线段a、b的比例中项,∴c2=ab=12,∴c=23(负值舍去);(2)解:∵x:y=3:2,∴可设x=3k,y=2k(k≠0),∴2x−yx=6k−2k3k=43.18.【答案】3519.【答案】BD=320.【答案】(1)证明:∵平行四边形ABCD,∴AB//CD,∴∠EBA=∠BEC,又∵∠EAB=∠EBC,∴△ABE∽△BEC.(2)解:∵四边形ABCD 平行四边形,∴AB =DC =4,∵DE =3,∴CE =1,∵△ABE∽△BEC ,∴AB EB =EBEC,∴AB ⋅CE =B E 2=4×1=4,∴BE =2.21.【答案】(1)证明:∵ 在四边形ABCD 中,OA=OC ,OB=OD∴ 四边形ABCD 是平行四边形 ∵ AB=BC∴ 平行四边形ABCD 是菱形。

浙教版九年级数学上册第四章【相似三角形】单元检测试卷及答案解析

浙教版九年级数学上册第四章【相似三角形】单元检测试卷及答案解析

A. 两个三角形是位似图形 C. AE︰AD 是位似比
B. 点 A 是两个三角形的位似中心 D. 点 B 与点 E、点 C 与点 D 是对应位似点 , 则 S△CBF 等于( )
9.如图,▱ABCD 中,AE∶ED=1∶2,S△AEF=6 cm2
A. 12 cm2
B. 24 cm2
C. 54 cm2
浙教版九年级数学上册第四章【相似三角形】单元检测试卷及答案解析
九年级数学上册第四章【相似三角形】单元检测试卷
一、单选题(共 10 题;共 30 分)
1.如图,△ABC 中,AD⊥BC 于 D
, 下列条件:①∠B+∠DAC=90°;②∠B=∠DAC;③
=

④AB2=BD•BC . 其中一定能够判定△ABC 是直角三角形的有(
三、解答题(共 8 题;共 60 分) 21.如图,在△ABC 和△ADE 中,已知∠B=∠D , ∠BAD=∠CAE , 求证:△ABC∽△ADE .
22.如图所示的网格中,每个小方格都是边长为 1 的小正方形,B(﹣1,﹣1),C(5,﹣1)
(1)把△ABC 绕点 C 按顺时针旋转 90°后得到△A1B1C1 (2)以点 A 为位似中心放大△ABC,得到△A2B2C2 内出△A2B2C2 .
, 请画出这个三角形并写出点 B1 的坐标;
, 使放大前后的面积之比为 1:4,请在下面网格
第 5 页 共 16 页
浙教版九年级数学上册第四章【相似三角形】单元检测试卷及答案解析
23.如图,G 是正方形 ABCD 对角线 AC 上一点,作 GE⊥AD,GF⊥AB,垂足分别为点 E、F. 求证:四边形 AFGE 与四边形 ABCD 相似.
C.
28 5

浙教版九年级数学上第四章 相似三角形单元测试(含解析)

第四章相似三角形单元测试一、单选题(共10题;共30分)1、已知△ABC∽△DEF,AB:DE=1:2,则△ABC与△DEF的周长比等于()A、1:2B、1:4C、2:1D、4:12、如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为( )A、B、C、D、3、如图,Rt△ABC∽Rt△DEF,∠A=35°,则∠E的度数为().A、35°B、45°C、55°D、65°4、如图,菱形ABCD中,对角线A C、BD相交于点O,M、N分别是边A B、AD的中点,连接OM、ON、MN,则下列叙述正确的是()A、△AOM和△AON都是等边三角形B、四边形MBON和四边形MODN都是菱形5、若=,则的值为()A、1B、C、D、6、如图,在△ABC中,D,E分别是AB和AC上的点,满足AD=3,AE=2,EC=1,DE∥BC,则AB=()A、6B、4.5C、2D、1.57、已知△ABC∽△A′B′C′,△A′B′C′的面积为6,周长为△ABC周长的一半,则△ABC的面积等于()A、1.5B、3C、12D、248、如图,如果AB∥CD∥EF,那么下列结论正确的是()A、B、C、D、9、在△ABC中,点D,E分别在边AB,AC上,且DE∥BC,下列结论错误的是()A、B、C、D、10、两个相似三角形的面积比为1:4,则它们的相似比为()A、1:4B、1:2C、1:16D、无法确定二、填空题(共8题;共24分)11、若两个三角形的相似比为2:3,则这两个三角形对应角平分线的比为________ 、12、如图,直线AA1∥BB1∥CC1,如果,AA1=2,CC1=6,那么线段BB1的长是________ 、13、已知,则=________14、如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为________15、已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP的长等于________厘米、16、如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD=________、17、若= ,则=________、18、如图,添加一个条件:________,使△ADE∽△AC B、三、解答题(共5题;共36分)19、如图,△ABC中,AB=AC,F为BC的中点,D为CA延长线上一点,∠DFE=∠B、(1)求证:△CDF∽△BFE;(2)若EF∥CD,求证:2CF2=AC•C D、20、两个相似五边形,一组对应边的长分别为3cm和4.5cm,如果它们的面积之和是78cm2,则这两个五边形面积各是多少cm2?21、如图,一个矩形广场的长为60m,宽为40m,广场内两条纵向小路的宽均为1.5m,如果设两条横向小路的宽都为x m,那么当x为多少时,小路内外边缘所围成的两个矩形相似?22、在△ABC中,点D是AB边上一点(不与AB重合),AD=kBD,过点D作∠EDF+∠C=180°,与C A、CB分别交于E、F、(1)如图1,当DE=DF时,求的值、(2)如图2,若∠ACB=90°,∠B=30°,DE=m,求DF的长(用含k,m的式子表示)23、如图,四边形中ABCD中,E,F分别是AB,CD的中点,P为对角线AC延长线上的任意一点,PF 交AD于M,PE交BC于N,EF交MN于K、求证:K是线段MN的中点、四、综合题(共1题;共10分)24、将一副三角尺如图①摆放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)、点D为AB的中点,DE交AC于点P,DF经过点C、(1)求∠ADE的度数;(2)如图②,在图①的基础上将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,求证:、答案解析一、单选题1、【答案】A【考点】相似三角形的性质【解析】直接根据相似三角形周长的比等于相似比即可得出结论、【解答】∵△ABC∽△DEF,AB:DE=1:2,∴△ABC与△DEF的周长比为1:2、故选A、本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比、2、【答案】B【考点】相似三角形的判定与性质【解析】【分析】由在梯形ABCD中,AD∥BC,可得△AOD∽△COB,然后由相似三角形的对应边成比例求得答案、【解答】∵在梯形ABCD中,AD∥BC,∴△AOD∽△COB,∴,∵AD=1,BC=3,∴、故答案为:B3、【答案】C【考点】相似三角形的性质【解析】【解答】∵Rt△ABC∽Rt△DEF,∠A=35°,∴∠D=∠A=35°、∵∠F=90°,∴∠E=55°、故选C、【分析】由Rt△ABC∽Rt△DEF,∠A=35°,根据相似三角形的对应角相等,即可求得∠D的度数,又由∠F=90°,即可求得∠E的度数、【考点】位似变换【解析】【解答】根据位似图形的定义可知A.O与OM和AM的大小却无法判断,所以无法判断△AMO和△AON是等边三角形,故错误;B.无法判断BM是否等于OB和BM是否等于OC,所以也无法判断平行四边形MBON和MODN是菱形,故错误;C.四边形MBCO和四边形NDCO是位似图形,故此选项正确;D.无法判断四边形MBCO和NDCO是等腰梯形,故此选项错误;故选C.【分析】在Rt△ABO中,根据直角三角形斜边上的中线等于斜边的一半可得,OM=AM=BM,但AO与OM和AM的大小却无法判断,所以无法判断△AMO和△AON是等边三角形.同样,我们也无法判断BM 是否等于OB和BM是否等于OC,所以也无法判断平行四边形MBON和MODN是菱形,也无法判断四边形MBCO和NDCO是等腰梯形.根据位似图形的定义可知四边形MBCO和四边形NDCO是位似图形,故本题选C.5、【答案】D【考点】比例的性质【解析】【解答】解:∵=,∴==、故选D、【分析】根据合分比性质求解、6、【答案】B【考点】平行线分线段成比例【解析】【解答】解:∵DE∥BC,∴,∵AD=3,AE=2,EC=1,∴,∴DB= =1.5,∴AB=AD+DB=3+1.5=4.5,【分析】根据平行线分线段成比例定理得出,再把A D、AE、EC代入求出DB,最后根据AB=AD+DB代入计算即可、7、【答案】D【考点】相似三角形的性质【解析】【解答】解:∵△ABC与△A′B′C′的周长比为2:1,△ABC∽△A′B′C′,∴△ABC与△A′B′C′的面积比为4:1,又△A′B′C′的面积为6,∴△ABC的面积=24,故选:D、【分析】根据题意求出两个三角形的周长比,根据相似三角形的性质解答即可、8、【答案】B【考点】平行线分线段成比例【解析】【解答】解:A、∵AB∥CD∥EF,∴,故错误;B、∵AB∥CD∥EF,∴,故正确;C、∵AB∥CD∥EF,∴,故错误;D、∵AB∥CD∥EF,∴,∴AC•DF=BD•CE,故错误、故选B、【分析】由AB∥CD∥EF,根据平行线分线段成比例定理求解即可求得答案、注意排除法在解选择题中的应用、9、【答案】C【考点】相似三角形的判定与性质【解析】【解答】解:∵DE∥BC,∴△ADE∽△ABC,,∴= ,选项A、B、D正确;选项C错误、【分析】根据平行线分线段成比例定理和相似三角形对应边对应成比例作答、10、【答案】B【考点】相似三角形的性质【解析】【解答】解:∵两个相似三角形的面积比为1:4,∴它们的相似比为1:2,故选:B、【分析】根据相似三角形面积的比等于相似比的平方解答即可、二、填空题11、【答案】2:3【考点】相似三角形的性质【解析】【解答】∵两个相似三角形的相似比为2:3,∴这两个三角形对应角平分线的比为2:3、故答案为2:3、【分析】根据相似三角形对应角平分线的比等于相似比的性质解答、12、【答案】3【考点】平行线分线段成比例【解析】【解答】解:如图:过A1作AE∥AC,交BB1于D,交CC1于E,∵直线AA1∥BB1∥CC1,∴四边形ABDA1和四边形BCED是平行四边形,∴AA1=2,CC1=6,∴AA1=BD=CE=2,EC1=6﹣2=4,,∴∵BB1∥CC1,∴,∴,∴DB1=1,∴BB1=2+1=3,故答案为:3、【分析】过A1作AE∥AC,交BB1于D,交CC1于E,得出四边形ABDA1和四边形BCED是平行四边形,求出AA1=BD=CE=2,EC1=6﹣2=4,,根据BB1∥CC1得出,代入求出DB1=1即可、13、【答案】【考点】比例的性质【解析】【解答】解:∵∴设x=2k,y=3k,∴原式=故答案为、【分析】由,则可设x=2k,y=3k,然后把x=2k,y=3k代入原式进行分式的运算即可、14、【答案】6【考点】位似变换【解析】【解答】解:∵△ABC与△DEF是位似图形,位似比为2:3,∴AB:DE=2:3,∴DE=6、故答案为:6、【分析】位似图形就是特殊的相似图形,位似比等于相似比、利用相似三角形的性质即可求解、15、【答案】5 ﹣5【考点】黄金分割【解析】【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP= AB=(5 ﹣5)厘米,故答案为:5 ﹣5、【分析】根据黄金比值是计算即可、16、【答案】【考点】平行线分线段成比例【解析】【解答】解:∵AC=2,AE=5.5,∴CE=3.5,AB∥CD∥EF,∴,∴BD= ,故答案为:、【分析】根据平行线分线段成比例定理即可得到结论、17、【答案】【考点】比例的性质【解析】【解答】解:∵= ,∴设a=2k,b=5k,∴= = ,故答案为:、【分析】根据已知设a=2k,b=5k,代入求出即可、18、【答案】∠ADE=∠C(答案不唯一)【考点】相似三角形的判定【解析】【解答】解:添加∠ADE=∠C、理由如下:∵∠ADE=∠C,∠A=∠A,∴△ADE∽△AC B、故答案为:∠ADE=∠C(答案不唯一)、【分析】△ADE和△ACB有一个公共角,再有一组角对应相等,那么这两个三角形就相似、三、解答题19、【答案】(1)证明:∵∠DFB=∠DFE+∠EFB=∠C+∠FDC,∴∠EFB=∠FDC,∵AB=AC,∴∠C=∠B,∴△CDF∽△BFE;(2)解:∵EF∥CD,∴∠EFD=∠FDC,∵∠B=∠C,∠DEG=∠B,∴∠FDC=∠C=∠B,∴△CDF∽△BCA,∴,∵BC=2CF,DF=CF,∴,∴CF2=AC•C D、【考点】相似三角形的判定与性质【解析】【分析】(1)根据外角的性质得到∠EFB=∠FDC,由等腰三角形的性质得到∠C=∠B,证得△CDF∽△BFE;(2)根据平行线的性质得到∠EFD=∠FDC,∠C=∠EFB,根据等腰三角形的性质得到∠B=∠C,等量代换得到∠FDC=∠C,推出△CDF∽△BCA,根据相似三角形的性质得到结论、20、【答案】解:设较小五边形与较大五边形的面积分别是xcm2,ycm2、则=()2=,因而x=y、根据面积之和是78cm2,得到y+y=78,解得:y=54,则x=×54=24、即较小五边形与较大五边形的面积分别是24cm2,54cm2、【考点】相似多边形的性质【解析】【分析】根据相似多边形相似比即对应边的比,面积的比等于相似比的平方,即可解决、21、【答案】解:∵小路内外边缘所围成的两个矩形相似,∴解得,x=1m,答:当x为1m时,小路内外边缘所围成的两个矩形相似、【考点】相似多边形的性质【解析】【分析】根据相似多边形的性质:对应边的比相等列出比例式,解出x的值即可、22、【答案】解:(1)如图1,连接CD,∵∠EDF+∠C=180°,∴D,E,C,F四点共圆,∵DE=DF,∴∠DCE=∠DCF,根据正弦定理得①,,∴,②,∵∠ADC=180°﹣∠BDC,∴sin∠ADC=sin∠BDC,①÷②d得,,∵AD=kBD,∴=k;(2)∵∠ACB=90°,∠B=30°,∴∠A=60°,根据正弦定理得:③,,④,由(1)知D,E,C,F四点共圆,∴∠DEA+∠DFB=180°,∴sin∠DEA=sin∠DFB,④÷③得:,∴DF=,∵AD=kBD,DE=m,∴DF=、【考点】相似三角形的判定与性质【解析】【分析】(1)连接CD,由∠EDF+∠C=180°,推出D,E,C,F四点共圆,根据正弦定理得①,,②,①÷②得,,根据AD=kBD,根据得到结论;(2)根据三角形的内角和得到∠A=60°,根据正弦定理得:③,,④,④÷③得:,求得DF=,即可得到结论、23、【答案】证明:∵EF截△PMN,则(1)∵BC截△PAE,则(2),∴即有,所以(3),∵CD截△PMA,则,即,∴(4)因AP=AC+CP,得2CP+AC=2AP﹣AC,由(3),(4)得,,即,所以由(1)得NK=KM,即K是线段MN的中点、【考点】相似三角形的判定与性质【解析】【分析】根据题意,EF截△PMN,则(1);BC截△PAE,则(2);所以(3)、而CD截△PMA,则,即,∴(4),因AP=AC+CP,得2CP+AC=2AP﹣AC,由(3),(4)得,,即,所以由(1)得NK=KM,即K是线段AM的中点、四、综合题24、【答案】(1)解:∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD= AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°(2)解:∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴、【考点】相似三角形的判定与性质【解析】【分析】(1)首先证明∠ACD=∠A,再求出∠ADC=120°,再根据∠ADE=∠ADC﹣∠EDF计算即可得解;(2)只要证明△DPM和△DCN相似,再根据相似三角形对应边成比例即可证明、。

浙教版2022年九年级上册第4章《相似三角形》单元检测卷 (含解析)

浙教版2022年九年级上册第4章《相似三角形》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.已知线段a,b,c,求作线段x,使bx=ac,下列作法中正确的是()A.B.C.D.2.如果x:y=2:3,那么下列各式中成立的是()A.B.2x=3y C.D.3.如图所示的两个五边形相似,则以下a,b,c,d的值错误的是()A.a=3B.b=4.5C.c=4D.d=84.已知△ABC∽△DEF,AG和DH是它们的对应边上的高,若AG=4,DH=6,则△ABC与△DEF的面积比是()A.2:3B.4:9C.3:2D.9:45.如图,在△ABC中,P为AB上一点,在下列四个条件中,不能判定△APC和△ACB相似的条件是()A.∠ACP=∠B B.∠APC=∠ACBC.AC2=AP•AB D.AC•CP=AP•CB6.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,则下列结论不正确的是()A.B.C.△ADE∽△ABC D.AD•AB=AE•AC7.如图所示,在平面直角坐标系中,A(1,0),B(0,2),C(﹣2,1),以A为位似中心,把△ABC在点A同侧按相似比1:2放大,放大后的图形记作△A'B'C',则C'的坐标为()A.(﹣6,2)B.(﹣5,2)C.(﹣4,2)D.(﹣3,2)8.将两张直角三角形纸片按如图所示的方式摆进⊙O内,点A,B,C,D都在圆上,点E在边AC上,已知∠BAC =∠AED=90°,AB=AE=6,DE=2,则⊙O的直径为()A.B.C.D.109.已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是点B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与△ABP相似,则BM为()A.3B.C.3 或D.以上都错10.如图,在边长为4的正方形ABCD中,对角线AC,BD交于点O,E在BD上,连接CE,作EF⊥CE交AB于点F,交AC于点G,连接CF交BD于点H,延长CE交AD于点M,连接FM,则下列结论:①点E到AB,BC的距离相等;②∠FCE=45°;③∠DMC=∠FMC;④若DM=2,则.正确的有()个.A.1B.2C.3D.4二.填空题(共6小题,满分18分,每小题3分)11.已知,则的值为.12.如图,l1∥l2∥l3,已知AB=6cm,BC=3cm,A1B1=4cm,则线段B1C1的长为cm.13.在△ABC中,AC=6,BC=9,D是△ABC的边BC上的点,且∠CAD=∠B,则BD=.14.有五本形状为长方体的书放置在方形书架中,如图所示,其中四本竖放,第五本斜放,点G正好在书架边框上.每本书的厚度为5cm,高度为20cm,书架宽为40cm,则FI的长.15.如图,已知平行四边形ABCD中,E,F分别是边AB,AD上的点,EF与对角线AC交于P,若,,则的值为.16.如图,一个由8个正方形组成“C”型模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均是1,则边AB的长为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,BD平分∠ABC,交AC于点D,点E是AB上一点,连接DE,BD2=BC•BE.证明:△BCD∽△BDE.18.(6分)某校初三年级在一次研学活动中,数学研学小组为了估计澧水河某段水域的宽度,在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=25米,BD=12米,DE=35米,求河的宽度AB为多少米?19.(7分)已知线段a,b,c满足a:b:c=2:3:4,且a+b﹣c=3.(1)求线段a,b,c的长.(2)若线段m是线段a,b的比例中项,求线段m的长.20.(8分)已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA1B1;(2)在y轴的左侧以O为位似中心作△OAB的位似图形△OA2B2,使新图与原图相似比为2:1;(3)若点D(a,b)在线段OA上,直接写出变化(2)后点D的对应点D2的坐标为.(4)分别求出△OAB的周长和△OA2B2的面积.21.(8分)如图,正方形ABCD中,点E是边CD的中点,点F在AD边上,且=2,AE与CF相交于点G.(1)若AD=6,EG=3,连接DG,求证:△ADE∽△DGE;(2)求∠AGF的度数.22.(8分)如图,正方形ABCD中,E、F分别是AD、AB上的点,AP⊥BE于点P.(1)如图1,如果点F是AB的中点,求证:BP•BE=2PF•BC;(2)如图2,如果AE=AF,联结CP,求证:CP⊥FP.23.(9分)如图,在矩形ABCD中,AB=6,AD=8,点E是CD边上的一个动点(点E不与点C重合),延长DC 到点F,使EC=2CF,且AF与BE交于点G.(1)当EC=4时,求线段BG的长;(2)设CF=x,△GEF的面积为y,求y与x的关系式,并求出y的最大值;(3)连接DG,求线段DG的最小值.浙教版2022年九年级上册第4章《相似三角形》单元检测卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:由题意,bx=ac,∴=,故选:D.2.【解答】解:∵x:y=2:3,∴设x=2k,y=3k,A、==﹣,故本选项不符合题意;B、∵x:y=2:3,∴3x=2y,故本选项不符合题意;C、∵x:y=2:3,∴=,故本选项,符合题意;D、不能约分,故本选项不符合题意.故选:C.3.【解答】解:∵两个五边形相似,∴====,∴a=3,b=4.5,c=4,d=6.故选:D.4.【解答】解:∵△ABC∽△DEF,AG和DH是它们的对应边上的高,∴=()2=()2=,故选:B.5.【解答】解:当∠ACP=∠B时,∵∠A=∠A,∴△ACP∽∠ABC;当∠APC=∠ACB时,∵∠A=∠A,∴△ACP∽∠ABC;当AC2=AP•AB时,即,∵A=∠A,∴△ACP∽∠ABC;当AB•CP=AP•CB时,即,∵A=∠A,∴不能判定△APC和△ACB相似,故选:D.6.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∴,故选:D.7.【解答】解:∵以A为位似中心,把△ABC按相似比1:2放大,放大后的图形记作△AB'C',∴AC=AC′,∴点C是线段AC′的中点,∵A(1,0),C(﹣2,1),∴C'的坐标为'(﹣5,2).故选:B.8.【解答】解:连接BD,CD,∵圆周角∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°,设CE=a,由勾股定理得:AD===2,CD===,BC===,∵∠DEA=∠BDC=90°,∠DBC=∠DAE(在同圆中,同弧所对的圆周角相等),∴△AED∽△BDC,∴=,∴=,解得:a=﹣或a=,∵a表示边的长度,不能为负,∴a=﹣舍去,∴BC==,即⊙O的直径是,故选:A.9.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=4,又∵∠PBF=90°,∴∠ABP=∠CBF=90°﹣∠CBP;若以点B,M,C为顶点的三角形与△ABP相似,则:①如图1中,,即=,解得BM=;②如图2中,,即=,解得BM=3.综上所述,满足条件的BM的值为3或.故选:C.10.【解答】解:如图,连接AE,设FM交AC于点I,∵四边形ABCD是正方形,∴AB=AD=CB=CD,∠BAD=∠BCD=∠ABC=90°,∴∠ABD=∠ADB=45°,∠CBD=∠CDB=45°,∴∠ABD=∠CBD,∴点E到AB,BC的距离相等,故①正确;在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∠BAE=∠BCE,∵EF⊥CE,∴∠CEF=∠MEF=90°,∴∠BCE+∠BFE=180°,∵∠EF A+∠BFE=180°,∴∠BCE=∠EF A,∴∠BAE=∠EF A,∴AE=FE,∴CE=FE,∴∠FCE=∠CFE=45°,故②正确;∵AD∥BC,∴∠DME=∠BCE=∠BAE,∵∠MDE=∠ABE,∴△MDE∽△ABE,∴=,∴=,∵∠MEF=∠MDC,∴△MEF∽△MDC,∴∠DMC=∠FMC,故③正确;作FL⊥BD于点L,则∠BLF=90°,设BL=x,∴∠LFB=∠LBF=45°,∴FL=BL=x,∵BF2=BL2+FL2=2BL2,∴BF=x,∵AD=CD=BC=4,DM=2,∴CM==2,BD==4,∵△DEM∽△BEC,∴====,∴FE=CE=CM=,BE=BD=,∵EL===,∴x+=,解得x1=,x2=2(不符合题意,舍去),∴BF=×=≠,故④错误,故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:∵=1,∴x=y,∴==0.故答案为:0.12.【解答】解:∵l1∥l2∥l3,∴,∴AB=6cm,BC=3cm,A1B1=4cm,∴,解得B1C1=2.故答案为:2.13.【解答】解:∵∠CAD=∠B,∠C=∠C,∴△DAC∽△ABC,∴=,∵AC=6,BC=9,∴=,∴DC=4,∴BD=BC﹣DC=9﹣4=5,故答案为:5.14.【解答】解:由题知,CI=BI﹣BC=40﹣20=20cm,EF=20cm,FG=5cm,∵∠EFC+∠CEF=90°,∠EFC+∠GFI=90°,∴∠CEF=∠GFI,∵∠ECF=∠FIG=90°,∴△GIF∽△FEC,∴=,即=,∴CE=4FI,在Rt△CEF中,由勾股定理得CE2+CF2=EF2,即(4FI)2+(20﹣FI)2=202,解得FI=或FI=0(舍去),故答案为:cm.15.【解答】解:过E作EH∥AD,交DC于点H,交AC于点G,如图:∵四边形ABCD是平行四边形,∴AD∥BC,∴EH∥BC,∴==,∴设AG=a,GC=2a,∵DC∥AB,∴△CHG∽△AEG,∴==,∴=,∴EG=EH,∵=,∴=,,∴AF=AD=EH,∵AD∥EH,∴AF∥EG,∴△APF∽△GPE,∴===,∴AP=a,PG=,∴PC=a,∴=,故答案为:.16.【解答】解:如图所示,连接EG,则∠OEP=90°,由题意得,小正方形的边长为1,∴OP==,∵四边形ABCD是矩形,∴∠B=∠C=∠A=90°,∠MQP=90°,∴∠BMQ=∠CQP=90°﹣∠MQP,同理∠EPO=∠CQP=90°﹣∠QPC,∴∠BMQ=∠EPO,又∠OEP=∠B=90°,∴△OEP∽△QBM,∴===,∴BM===,QB===,∵∠B=∠A=90°,∠NMQ=90°,∴∠BMQ=∠ANM=90°﹣∠AMN,在△QBM和△MAN中,,∴△QBM≌△MAN(AAS),∴AM=QB=,∴AB=BM+AM=.故答案为:.三.解答题(共7小题,满分52分)17.【解答】证明:∵BD平分∠ABC,∴∠DBE=∠CBD.∵BD2=BC•BE,∴,∴△BCD∽△BDE.18.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴AB=30.答:河的宽度AB为30米.19.【解答】解:(1)∵a:b:c=2:3:4,∴a=2k,b=3k,c=4k,∵a+b﹣c=3,∴2k+3k﹣4k=3,解得k=3,∴a=6,b=9,c=12;(2)∵m是a、b的比例中项,∴m2=ab,∴m2=6×9,∴x=3或x=﹣3(舍去),即线段m的长为3.20.【解答】解:(1)如图所示:△OA1B1即为所求;(2)如图所示:△OA2B2即为所求;(3)∵点D(a,b)∴变化(2)后点D的对应点D2的坐标为(﹣2a,﹣2b),故答案为:(﹣2a,﹣2b);(4)△OAB的周长=++=+,△OA2B2的面积=×5×(2+2)=10.21.【解答】(1)证明:∵四边形ABCD是正方形,AD=6,点E是边CD的中点,∴DE=3,∴AE==15,∵EG=3,∴=,,∴,∵∠AED=∠DEG,∴△ADE∽△DGE;(2)连接AC,过F作FH⊥AC,垂足为点H,设AD=3a,则AF=2a,DF=a,DE=a,∵四边形ABCD是正方形,∴∠CAD=45°,AC=3a,AE=,∴△AHF是等腰直角三角形,∴AH=FH=a,CH=2a,∴=2,=2,∴,∵∠CHF=∠ADE=90°,∴△CHF∽△ADE,∴∠HCF=∠DAE,∵∠AGF=∠GAC+∠ACG,∴∠AGF=∠GAC+∠DAE=∠CAD=45°.22.【解答】证明:(1)如图1,∵四边形ABCD是正方形,∴∠BAE=90°,∵AP⊥BE,∴∠BP A=90°,∴∠BP A=∠BAE,∵∠PBA=∠ABE,∴△BP A∽△BAE,∴=,∵点F是AB的中点,∴BA=2PF,∵BA=BC,∴=,∴BP•BE=2PF•BC.(2)∵△BP A∽△BAE,∴=,∴=,∴AE=AF,BA=BC,∴=,∵BC∥AD,∴∠CBP=∠BEA,∵∠BEA=∠F AP,∴∠CBP=∠F AP,∴△CBP∽△F AP,∴∠BPC=∠APF,∴∠FPC=∠BPF+∠BPC=∠BPF+∠APF=∠BP A=90°,∴CP⊥FP.23.【解答】解:(1)当EC=4时,则:CF=2,∴AB=FE=6,∵四边形ABCD为矩形,∴AB∥CD,∴∠F=∠BAG,∠ABG=∠FEG,∴△ABG≌△FEG(ASA),∴BG=EG=BE,在直角三角形BCE中,BC=8,CE=4,∴BE=4,∴BG=2;(2)如图,过点G作MN∥AD分别交AB,CD于点M,N,设CF=x,则:EF=3x,显然△ABG∽△FEG,∴=,设GN=h,则:MG=8﹣h,∴===,∴h=,∴S△GEF=y=×3x×=,∴y与x的关系式为:y=,∵x>0,2x≤6,∴0<x≤3,∵y==,∴y随x的增加而增加,∴当x=3时,y max=;(3)如图,在AB上取一点Q,使得BQ=2AQ,∵AB∥CD,∴△AQG∽△FCG,△BQG∽△DCG,∴==,==,∴点E在CD上运动总会有=,即点G在线段CQ上运动,∴当点E与点D重合时,CG最长,∵=,∴GC=,如图,作DM⊥CQ,GN⊥CD,当点G运动到点M时,此时DG即为最小值,∵DM•CG=CD•GN,∴DM•=×6×(×8),∴DM=,∴DG的最小值为.。

【期末复习】九年级上《第四章相似三角形》单元检测试卷有答案

期末专题复习:浙教版九年级数学上册第四章相似三角形单元检测试卷一、单选题(共10题;共30分)1.如图,△ABC中,AD⊥BC于D ,下列条件:①∠B+∠DAC=90°;②∠B=∠DAC;③ = ;④AB2=BD•BC .其中一定能够判定△ABC是直角三角形的有()A. 1B. 2C. 3D. 42.已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A. 32B. 8C. 4D. 163.在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为()A. 1:20B. 1:20000C. 1:200000D. 1:20000004.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB::3,则下列结论正确的是( )A. B. C. ∠∠ D. ∠∠5.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于()A. 5:7B. 3:5C. 2:3D. 2:56.如图,在△ABC中,点D、E分别在AB、AC边上,且DE∥BC,若= ,则的值等于()A. B.3 C. D.7.已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点的坐标为()A. (2,-1)或(-2,1)B. (8,-4)或(-8,4)C. (2,-1)D. (8,-4)8.如图,已知BC∥DE,则下列说法中不正确的是()A. 两个三角形是位似图形B. 点A是两个三角形的位似中心C. AE︰AD是位似比D. 点B与点E、点C与点D是对应位似点9.如图,▱ABCD中,AE∶ED=1∶2,S△AEF=6 cm2,则S△CBF等于( )A. 12 cm2B. 24 cm2C. 54 cm2D. 15 cm210.如图,已知矩形ABCD,AB=6,BC=8,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A. B. C. D.二、填空题(共10题;共30分)11.两个相似三角形的周长的比为,它们的面积的比为________.12.如图,点在的边上,请你添加一个条件,使得∽,这个条件可以是________.13.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则BD=________ .14.如图,点为△的边上一点,,.若∠∠,则________.15.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若,则________.16.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以4cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以3cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了________ s时,以C点为圆心,2cm为半径的圆与直线EF相切.17.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=________ .18.已知点P是边长为4的正方形ABCD内一点,且PB="3" , BF⊥BP,垂足是点B, 若在射线BF上找一点M,使以点B, M, C为顶点的三角形与△ABP相似,则BM为________ .19.如图,在平行四边形ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF∶CF=________ .20.如图,在一块直角三角板ABC中,∠C=90°,∠A=30°,BC=1,将另一个含30°角的△EDF的30°角的顶点D放在AB边上,E,F分别在AC,BC上,当点D在AB边上移动时,DE始终与AB垂直,若△CEF与△DEF 相似,则AD=________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.23.如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E、F.求证:四边形AFGE与四边形ABCD相似.24.如图,在△ABC中,AC=8cm,BC=16cm,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC 相似?25.如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.①试说明BE·AD=CD·AE;②根据图形特点,猜想可能等于哪两条线段的比?并证明你的猜想,(只须写出有线段的一组即可)26.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D 作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.27.如图所示,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.28.如图,在Rt△ABC中,AB=AC=4.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD 至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连接AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】B5.【答案】D6.【答案】D7.【答案】A8.【答案】C9.【答案】C10.【答案】C二、填空题11.【答案】4:912.【答案】∠C=∠ABP(答案不唯一)13.【答案】14.【答案】15.【答案】116.【答案】17.【答案】18.【答案】3或19.【答案】20.【答案】或三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE ,∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC .又∵∠B=∠D ,∴△ABC∽△ADE .22.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C223.【答案】证明:∵四边形ABCD是正方形,AC是对角线,∴∠DAC=∠BAC=45°.又∵GE⊥AD,GF⊥AB,∴EG=FG,且AE=EG,AF=FG.∴AE=EG=FG=AF,即四边形AFGE为正方形.∴===,且∠EAF=∠DAB,∠AFG=∠ABC,∠FGE=∠BCD,∠AEG=∠ADC. ∴四边形AFGE与四边形ABCD相似24.【答案】解:设经过x秒,两三角形相似,则CP=AC-AP=8-x,CQ=2x,①当CP与CA是对应边时,,即,解得x=4秒;②当CP与BC是对应边时,,即,解得x= 秒;故经过4或秒,两个三角形相似25.【答案】解:①∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠DAC=∠BAE,∵∠AEB=∠ADB+∠DAE,∠ADC=∠ADB+∠BDC,又∵∠DAE=∠BDC,∴∠AEB=∠ADC,∴△BEA∽△CDA,∴= ,即BE·AD=CD·AE;②猜想= 或(),由△BEA∽△CDA可知,= ,即= ,又∵∠DAE=∠BAC,∴△BAC∽△EAD,∴= 或()26.【答案】解:(1)∵∠ACB=90°,AC=3,BC=4,∴AB= =5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6﹣5=1.(2)∵EF=BC=4,G是EF的中点,∴GE=2.当AD<AE(即t<)时,DE=AE﹣AD=3+3t﹣5t=3﹣2t,若△DEG与△ACB相似,则或,∴=或=,∴t=或t= ;当AD>AE(即t>)时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,若△DEG与△ACB相似,则或,∴=或=,解得t=或t=;综上所述,当t=或或或时,△DEG与△ACB相似.27.【答案】(1)证明:连接OD,∵OA=OD,∴∠ODA=∠OAD,∵AD∥OC,∴∠OAD=∠COD,∠ODA=∠COD,∴∠COD=∠BOC,在△COD和△BOC中:∠∠,∴△COD≌△BOC,∴∠ODC=∠OBC=90°,∴CD为圆O的切线;(2)解:∵△COD≌△COB,∴BC=CD,∵DE=2BC,∴DE=2CD,∵AD∥OC,∴△DAE∽△COE,∴AD:OC=ED:AC=2:3.28.【答案】解:(1)当0<t≤4时,S=t2,当4<t≤时,S=-t2+8t-16,当<t<8时,S=t2-12t+48;(2)存在,理由:当点D在线段AB上时,∵AB=AC,∴∠B=∠C=(180°-∠BAC)=45°.∵PD⊥BC,∴∠BPD=90°,∴∠BDP=45°,∴PD=BP=t,∴QD=PD=t,∴PQ=QD+PD=2t.过点A作AH⊥BC于点H,∵AB=AC,∴BH=CH=BC=4,AH=BH=4,∴PH=BH-BP=4-t,在Rt△APH中,AP==;(ⅰ)若AP=PQ,则有=2t.解得:=,=(不合题意,舍去);(ⅱ)若AQ=PQ,过点Q作QG⊥AP于点G,如图(1),∵∠BPQ=∠BHA=90°,∴PQ∥AH.∴∠APQ=∠PAH.∵QG⊥AP,∴∠PGQ=90°,∴∠PGQ=∠AHP=90°,∴△PGQ∽△AHP,∴=,即=,∴PG=,若AQ=PQ,由于QG⊥AP,则有AG=PG,即PG=AP,即=.解得:t1=12-4,t2=12+4(不合题意,舍去);(ⅲ)若AP=AQ,过点A作AT⊥PQ于点T,如图(2),易知四边形AHPT是矩形,故PT=AH=4.若AP=AQ,由于AT⊥PQ,则有QT=PT,即PT=PQ,即4=×2t.解得t=4.当t=4时,A、P、Q三点共线,△APQ不存在,故t=4舍去.综上所述,存在这样的t,使得△APQ成为等腰三角形,即=秒或t2=(12-4)秒;(3)四边形PMAN的面积不发生变化.理由如下:∵等腰直角三角形PQE,∴∠EPQ=45°,∵等腰直角三角形PQF,∴∠FPQ=45°.∴∠EPF=∠EPQ+∠FPQ=45°+45°=90°,连接AP,如图(3),∵此时t=4秒,∴BP=4×1=4=BC,∴点P为BC的中点.∵△ABC是等腰直角三角形,∴AP⊥BC,AP=BC=CP=BP=4,∠BAP=∠CAP=∠BAC=45°,∴∠APC=90°,∠C=45°,∴∠C=∠BAP=45°,∵∠APC=∠CPN+∠APN=90°,∠EPF=∠APM+∠APN=90°,∴∠CPN=∠APM,∴△CPN≌△APM,∴S△CPN=S△APM,∴S=S△APM+S△APN=S△CPN+S△APN=S△ACP=×CP×AP=×4×4=8.四边形PMAN∴四边形PMAN的面积不发生变化,此定值为8.。

【易错题】浙教版九年级上《第四章相似三角形》单元试卷(教师用)

【易错题解析】浙教版九年级数学上册第四章相似三角形单元测试卷一、单选题(共10题;共30分)1.已知= ,则的值是()A. B. C. D.【答案】B【考点】比例的性质【解析】【解答】解:∵= ,∴= .故选:B.【分析】直接利用比例的性质将原式变形求出答案.2.如图1,△ABC和△GAF是两个全等的等腰直角三角形,图中相似三角形(不包括全等)共有()A. 1对B. 2对C. 3对D. 4对【答案】C【考点】相似三角形的判定,等腰直角三角形【解析】根据已知及相似三角形的判定方法即可找到存在的相似三角形。

【解答】∵△ABC和△GAF是两个全等的等腰直角三角形∴∠B=∠C=∠FAG=∠F=45°,∠BAC=∠FGA=90°∵∠ADC=∠ADE,∠AEB=∠C+∠EAC=∠DAE+∠EAC=∠DAC,∴△ADC∽△EDA△EDA∽△EAB△ADC∽△EAB∴共有3对.故选C.3.图中的两个三角形是位似图形,它们的位似中心是()A. 点PB. 点OC. 点MD. 点N【答案】A【考点】位似变换【解析】【解答】解:点P在对应点M和点N所在直线上,故选A.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.4.在△ABC和△DEF中,∠A=40°,∠D=60°,∠E=80°,,那么∠B的度数是()A.40°B.60°C.80°D.100°【答案】B【考点】相似三角形的性质【解析】【解答】解:∵,∴∠B与∠D是对应角,故∠B=∠D=60°.故答案为:B.【分析】根据题意,得知∠B与∠D为对应角,求出∠D的度数。

5.如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三角形有()A. 4个B. 3个C. 2个D. 1个【答案】B【考点】相似三角形的判定【解析】【分析】根据∠BDO=∠BEA=90°,∠DBO=∠EBA,易证△BDO∽△BEA,同理可证△BDO∽△CEO,△CEO∽△CDA,从而可以得到结果.【解答】∵∠BDO=∠BEA=90°,∠DBO=∠EBA,∴△BDO∽△BEA,∵∠BOD=∠COE,∠BDO=∠CEO=90°,∴△BDO∽△CEO,∵∠CEO=∠CDA=90°,∠ECO=∠DCA,∴△CEO∽△CDA,∴△BDO∽△BEA∽△CEO∽△CDA.故选B.【点评】相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.6.如图,在平行四边形ABCD中,AE:AD=2:3,连接BE交AC于点F,若△ABF和四边形CDEF的面积分别记为S1,S2,则S1:S2为()A. 2:3B. 4:9C. 6:11D. 6:13【答案】C【考点】平行四边形的性质,相似三角形的判定与性质【解析】【解答】解:∵在平行四边形ABCD中,AE:AD=2:3,∴,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△AEF∽△BCF,∴= ,∴S△BCF= S1∴S四边形ABCD=2(S1+ S1)=5S1,S△AEF= S1,∴S2= S四边形ABCD﹣S△AEF= S1,∴S1:S2= .故选C.【分析】由四边形ABCD是平行四边形,得到AD∥BC,AD=BC,根据相似三角形的性质得到= ,求得S△BCF= S1,S2= S1,即可得到结论.7.如图,在△ABC中,点D,E分别是AB,C的中点,则S△ADE:S△ABC=()A. 1:2B. 1:3C. 1:4D. 1:5【答案】C【考点】三角形中位线定理,相似三角形的判定与性质【解析】【解答】解:∵点D、E分别是AB、C的中点,∴DE是△ABC的中位线,∴DE∥BC,DE= BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2= ;故选:C.【分析】证出DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE= BC,证出△ADE∽△ABC,由相似三角形的面积比等于相似比的平方即可得出结论.8.(2017•淄博)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A. B. C. D.【答案】C【考点】全等三角形的判定与性质,角平分线的性质,勾股定理的应用,相似三角形的判定与性质【解析】【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC= = =10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴= ,即= ,解得:DF= ,则EF=DF﹣DE= ﹣2= ,故答案为:C.【分析】根据三角形角平分线的定理得出ED=EH=EG,再根据正方形的判定和性质得出全等三角形△DAE≌△HAE,同理△CGE≌△CHE,再根据勾股定理得出AD=4,再由△ADF∽△ABC得出EF的长.9.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()A. B. C. D.【答案】A【考点】相似三角形的性质【解析】【解答】∵点D是△ABC的边AC的上一点,且∠ABD=∠C,且∠BAD=∠CAB,∴△ABD∽△ACB,如果∴∵,∴AD=x,CD=3x,∴AB2=AC•AD,∴AB=2x∴故答案为:A【分析】先证得△ABD∽△ACB,再利用对应线段成比例及所设出AD与CD的长,可表示出AB长,从而可求得的值.10.如图,Rt△ABC中,BC=2 ,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A. B. C. D.【答案】C【考点】相似三角形的判定与性质,探索数与式的规律,探索图形规律【解析】规律型.【分析】首先由Rt△ABC中,BC=2 ,∠ACB=90°,∠A=30°,求得△ABC的面积,然后由D1是斜边AB 的中点,求得S1的值,继而求得S2、S3、S4的值,即可得到规律:S n=S△ABC;继而求得答案.【解答】∵Rt△ABC中,BC=2 ,∠ACB=90°,∠A=30°,∴AC==BC=6,∴S△ABC=AC•BC=6 ,∵D1E1⊥AC,∴D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,∵D1是斜边AB的中点,∴D1E1=BC,CE1=AC,∴S1=BC•CE1=BC×AC=×AC•BC=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=××AC•BC=S△ABC,∴D3E3=BC,CE2=AC,S3=S△ABC…;∴S n=S△ABC;∴S2013=×6= .故选:C.【点评】此题考查了直角梯形的性质、相似三角形的判定与性质以及三角函数等知识.此题难度较大,注意得到规律S n=S△ABC是解此题的关键.注意掌握数形结合思想的应用.二、填空题(共10题;共30分)11.如图,AB∥CD,AD与BC交于点O,已知AB=4,CD=3,OD=2,那么线段OA的长为________.【答案】【考点】平行线分线段成比例【解析】【解答】解:∵AB∥CD,∴OA:OD=AB:CD,即OA:2=4:3,∴OA= .故答案为:.【分析】根据平行线分线段成比例定理求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金华市第十八中学
九上第4章 相似三角形单元测试
一、精心选一选
1.把ad bc =写成比例式,错误的是( )
A .a:b=c:d
B .b :d=a :c
C .b:a=d:c
D .b:d=c:a
2.下列四组条件中,能判定△ABC 与△DEF 相似的是( ) A .∠A=45°,∠B=55°,∠D=45°,∠F=75° B .AB=5,BC=4,∠A=45°,DE=5,EF=4,∠D=45° C .AB=6,BC=5,∠B=40°,DE=12,EF=10,∠E=40°
D .AB=BC,∠A=50°,DE=EF,∠E=50°
3.如图1中的两个三角形是位似图形,它们的位似中心是( )
A .点P
B .点O
C .点M
D .点N
图1 图2 图3 4.下列多边形一定相似的为( )
A .两个矩形
B .两个菱形
C .两个正方形
D .两个平行四边形 5.如图2,ABCD 是平行四边形,则图中与DEF △相似的三角形共有( )
A .1个
B .2个
C .3个
D .4个
6.若矩形的半张纸与整张纸相似,则整张纸的长是宽的( )
A .2 倍
B .4 倍
C
D .1.5 倍
7.如图3,用两根等长的钢条AC 和BD 交叉构成一个卡钳,可以用来测量工作内槽的宽度.设
OA OB
m OC OD
==,且量得CD b =,则内槽的宽AB 等于( ) A .mb B .m b C .b m
D .1b
m +
8.如图4,矩形()ABCG AB BC <与矩形CDEF 全等,点B C D ,,在同一条直线上,
APE ∠的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数是( )
O
A .0
B .1
C .2
D .3
图4 图5 图6 二、细心填一填
9.两个相似三角形周长的比为2:3,则其对应的面积比为___________.
10.已知点P 是线段 AB 的黄金分割点,AP>P B .若 AB=2,则AP= . 11.如图5,DE ∥AC ,BE :EC=2:1,AC=12,则DE= .
12.如图6,若∠B=∠DAC ,则△ABC ∽ ,对应边的比例式是 . 13.如图7所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为_________米.
图7 图8
14.如图8,在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫格点三角形.在如图5×5的方格中,作格点△ABC 和△OAB 相似(相似比不为1),则点C 的坐标是____________. 三、耐心解一解
15.小明为了测量某一高楼 MN 的高,在离 N 点 200 m 的 A 处水平放置了一个平面镜,小明沿 NA 方向后退到点C 正好从镜中看到楼的顶点M ,若 AC=l5m ,小明的眼睛离地面的高度为 1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1 m).
D
16.如图,已知在△ABC 中,AD 是内角平分线,点E 在AC 边上,且∠AED=∠ADB . 求证:(1)求证:△ABD ∽△ADE ;(2)AD 2=AB·AE .
17.已知△ABC 的三个顶点坐标如下左表:
(1)将右表补充完整,并在直角坐标系中,画出△C B A ''';
(2)观察△ABC 与△C B A ''',写出有关这两个三角形关系的一个正确结论.
B
18.如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD.令MN=x,当x为何值时,矩形EMNH 的面积S有最大值?最大值是多少?
19.如图,△ABC 中,∠C= 90°,BC=8cm,5AC—3AB=0,点 P从B 出发,沿BC 方向以2 cm/s 的速度移动,点Q 从C 出发,沿 CA方向以1 cm /s 的速度移动. 若 P、Q分别从B、C 出发,经过多少时间△CPQ 与△CBA相似?
附加题
20.如图,在一个长40m、宽30m的长方形小操场上,王刚从A点出发,沿着A→B→C 的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出
发沿王刚走的路线追赶,当张华跑到距B地22
3
m的D处时,他和王刚在阳光下的影子
恰好重叠在同一条直线上,此时,A处一根电线杆在阳光下的影子也恰好落在对角线AC 上.
(1)求他们的影子重叠时,两人相距多少米(DE的长)?
(2)求张华追赶王刚的速度是多少(精确到0.1m/s)?
参考答案
一、精心选一选
1.D 2.C 3.A 4.C 5.B 6.C 7.A 8.C 二、细心填一填
9.4:9 101 11.8 12.△DAC ,AB AC BC
AD DC AC
==
13.22.5 14.(4,0)或(3,2) 三、耐心解一解
15.∴BC ⊥CA ,MN ⊥AN ,∴∠C=∠N=90°,∵∠BAC=∠MAN..∴△BCA ∽△MNA. ∴
BC AC MN AN =,即1.615
200
MN =
, 1.620015213()MN m =⨯÷≈⋅. 16.略
17.解(1)
(2)写出有关两三角形形状、大小、位置等关系,如△ABC ∽△C B A '''、周长比、相似比、
位似比等均可.
18.解:∵矩形MFGN ∽矩形ABCD ,∴
MN MF
AD AB
=. ∵AB=2AD ,MN=x ,∴MF=2x ,∴EM=EF-MF=10-2x .
∴S=x (10-2x )=-2x 2
+10x=-2(x-52)2+252,∴当x=52时,S 有最大值为252
. 19.设经过 t(s)时,△CPQ 与△CBA 相似,此时,BP= 2t ,CQ = t ,则 CP =8一2t. 又Rt △ABC 中,5AC —3AB=0,222AC BC AB +=,∴AB= 10 ,AC= 6. (1)当 PQ ∥AB 时,△CPQ ∽△CBA ,则PC CQ CB CA =,即8286
t t
-=,∴t =2.4
(2)当
PC CQ CA CB =时,△CPQ ∽△CAB ,则8268
t t
-=,解得3211t =
(0<t<4) 答:经过 2.4s 或32
11
s 时,△CPQ 与△CAB 相似. 20.(1)3
10
(2)7.3.。

相关文档
最新文档