初中数学解斜三角形相关习题
八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题11.1.1三角形的边一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有对.6.若等腰三角形的腰长为6,则它的底边长a的取值范围是.7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长.9.已知等腰三角形的周长是16cm.(1)若其中一边的长为4cm,求另外两边的长;(2)若其中一边的长为6cm,求另外两边的长.10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|.11.已知等腰三角形的周长为20cm,设腰长为xcm.(1)用含x的式子表示底边长.(2)腰长x能否为5cm,为什么?(3)求x的取值范围.二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示.小棒数目3 5 6 ……示意图……形状等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图.答案一、能力提升1.B2.B;由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x 可以是12,13,14.故选B.3.D;由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9.4.C由题意知三角形的三条边长分别为2,4,5或3,4,4,所以最长边可能取值的最大值为5.5.3;△BDC与△BEC,△BDC与△BAC,△BEC与△BAC,共3对.6.0<a<12.7.2.8.解:若腰长为3cm,则三边长分别为3cm,3cm,7cm,而3+3<7,此时不能构成三角形;若腰长为7cm,则三边长分别为3cm,7cm,7cm.此时能构成三角形,其周长为3+7+7=17(cm).故这个三角形的周长为17cm. 9.解:(1)若腰长为4cm,则底边长为16-4-4=8(cm).三边长分别为4cm,4cm,8cm,不符合三角形的三边关系,所以应该是底边长为4cm.所以腰长为(16-4)÷2=6(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长都为6cm.(2)若腰长为6cm,则底边长为16-6-6=4(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长分别为6cm 和4cm.若底边长为6cm,则腰长为(16-6)÷2=5(cm).三边长分别为6cm,5cm,5cm,符合三角形的三边关系.所以另外两边的长都为5cm.10.解:因为a,b,c是△ABC的三边长,所以a<b+c,b<c+a,c<a+b,即a-b-c<0,b-c-a<0,c-a-b<0.所以|a-b-c|+|b-c-a|+|c-a-b|=-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.11.解:(1)底边长为(20-2x)cm.(2)不能.理由如下:若腰长为5cm,则底边长为20-2×5=10(cm).因为5+5=10,不满足三角形的三边关系.所以腰长不能为5cm.(3)根据题意,得解得0<x<10.由三角形的三边关系,得x+x>20-2x,解得x>5.综上所述,x的取值范围是5<x<10.二、创新应用12.解:(1)4根小棒不能搭成三角形.(2)8根小棒能搭成一种三角形,示意图如图甲;12根小棒能搭成三种不同形状的三角形,示意图如图乙.11.1.2三角形的高、中线与角平分线一、能力提升1.若一个三角形中仅有一条高在三角形的内部,则该三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.直角三角形或钝角三角形2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.在△ABC中,边AC上的高是线段()A.AEB.CDC.BFD.AF3.如图,线段AE是△ABC的中线,已知EC=6,DE=2,则线段BD的长为()A.2B.3C.4D.64.如图,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.线段BC是△ABE的高B.线段BE是△ABD的中线C.线段BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.如图,在△ABC中,E,F分别是AB,AC的中点,△CEF的面积为2.5,则△ABC的面积为()A.6B.7C.8D.106.如图,BD和CE是△ABC的两条角平分线,且∠DBC=∠ECB=31°,则∠ABC=度,∠ACB=度.7.如图,线段AD,CE分别是△ABC中边BC,AB上的高.若AD=10,CE=9,AB=12,则BC的长是.8.如图,在△ABC中,AB=AC,线段AD是△ABC的中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.9.已知在等腰三角形ABC中,AB=AC,若腰AC上的中线BD将等腰三角形ABC的周长分成15和6两部分,求三角形ABC的腰长及底边长.10.如图,AD是△CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.二、创新应用11.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(画图即可)答案一、能力提升1.D;直角三角形和钝角三角形都只有一条高在三角形的内部.2.C3.C4.D5.D;∵F为AC的中点,∴线段EF为△AEC的中线,∴S△AEC=2S△CEF=5.∵E为AB的中点,∴线段CE为△ABC的中线,∴S△ABC=2S△AEC=10.6.62;62.7.10.8;S△ABC=BC·AD=AB·CE,则BC===10.8.8.解:∵线段AD是△ABC的中线,∴BC=2BD.∵AB=AC,△ABC的周长为34cm,∴2AB+2BD=34cm,即AB+BD=17cm.又△ABD的周长为30cm,即AB+BD+AD=30cm,∴AD=13cm.9.解:设AB=AC=2x,则AD=CD=x.当AB+AD=15,BC+CD=6时,有2x+x=15,所以x=5,AB=AC=2x=10,BC=6-5=1.当BC+CD=15,AB+AD=6时,有2x+x=6,所以x=2,AB=AC=2x=4,BC=13.因为4+4<13,所以不能组成三角形.故三角形ABC的腰长为10,底边长为1.10.解:DO是△EDF的角平分线.证明如下:∵AD是△CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,即DO是△EDF的角平分线.二、创新应用11.解:如图(答案不唯一).11.1.3三角形的稳定性一、能力提升1.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮2.下列不是利用三角形稳定性的是()A.伸缩晾衣架B.三角形房架C.自行车的三角形车架D.矩形门框的斜拉条3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.王师傅用四根木条钉成一个四边形木架.如图,要使这个木架不变形,他至少还要再钉上()根木条.A.0B.1C.2D.35.如图,要使四边形木条框架ABCD变“活”(具有不稳定性),应将木条拆除.6.伸缩铁门能自由伸缩,主要是应用了四边形的.7.我们所用的课桌和所坐的凳子,时间长了总是摇摇晃晃的,这是什么原因?要使自己用的桌凳不晃动应该怎么办?如图,如果有六边形木框,要使它不变形,应该怎么办?二、创新应用8.如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?要使七边形木架不变形,至少要钉几根木条?要使n边形木架不变形,又至少要钉多少根木条呢?答案一、能力提升1.C.2.A.3.A;打开的那一扇窗户下边的一部分OB、窗户框下边的一部分OA 及AB组成一个三角形,根据三角形的稳定性,知可用AB固定窗户.4.B.5.AC.6.不稳定性.7.解:这是因为课桌和凳子的四个侧面都是四边形木架,当交接处松动后就具有不稳定性.解决这类问题的方法是在每个侧面加上一根木条(或木板),使之成为三角形.要使六边形木框不变形,至少应加3根木条使其划分为三角形.二、创新应用8.解:要使五边形木架不变形,至少要钉2根木条;要使七边形木架不变形,至少要钉4根木条;要使n边形木架不变形,至少要钉(n-3)根木条.11.2.1三角形的内角一、能力提升1.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.50°B.75°C.100°D.125°2.如图,CD∥AB,∠1=120°,∠2=80°,则∠E等于()A.40°B.60°C.80°D.120°3.(2020·辽宁锦州中考)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°4.在△ABC中,若∠A=∠B+∠C,则∠A的度数是.5.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°.如果∠ECD=36°,那么∠A的度数是.6.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2的度数是.7.在△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又比另一个角大20°,则△ABC的三个角的度数分别是多少?8.如图,E是△ABC中边AC上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?9.如图,在△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于点E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.二、创新应用10.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点D.(1)若∠ABC+∠ACB=110°,则∠BDC=;(2)若∠A=100°,则∠BDC=;(3)若∠A=n°,求∠BDC的度数.答案一、能力提升1.B;设∠C的度数为x°,则∠B的度数为x°+25°,则55°+x°+x°+25°=180°,解得x=50,则∠B=75°.2.A;∵CD∥AB,∠1=120°,∴∠CDB=∠1=120°,∴∠EDC=60°.∵∠2=80°,∴∠E=180°-80°-60°=40°.3.C∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=100°.又CD平分∠ACB,∴∠ACD=∠ACB=50°.∴∠ADC=180°-∠A-∠ACD=100°.4.90°.5.54°.6.270°.由三角形三内角之间的关系,得∠3+∠4=90°,所以∠1+∠2=(180°-∠3)+(180°-∠4)=2×180°-(∠3+∠4)=360°-90°=270°.7.解:设∠C=x°,则∠A=2x°,∠B=2x°-20°,根据三角形的内角和定理,有2x+(2x-20)+x=180,解得x=40,即∠C=40°.所以2x=80,∠A=80°,2x-20=60,∠B=60°.故△ABC的三个角的度数分别为∠A=80°,∠B=60°,∠C=40°.8.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴∠1+∠A=90°.又∠1=∠2,∴∠2+∠A=90°.∴△ABC是直角三角形.9.解:在△EDC中,∠EDC=180°-(∠C+∠DEC)=180°-(59°+47°)=74°.∴∠FDB=180°-∠EDC=180°-74°=106°.在△BDF中,∠F=180°-(∠B+∠FDB)=180°-(42°+106°)=32°.二、创新应用10.解:(1)125°.(2)140°.(3)∵∠A=n°,∴∠ABC+∠ACB=180°-n°.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×(180°-n°)=90°-.∴∠BDC=180°-(∠DBC+∠DCB)=180°-=90°+.11.2.2三角形的外角一、能力提升1.一副三角尺有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.如图,在△ABC中,AD为边BC上的中线,在△ABD中,AE为边BD上的中线,在△ACD中,AF为边DC上的中线,则下列结论错误的是()A.∠1>∠2>∠3>∠CB.BE=ED=DF=FCC.∠1>∠4>∠5>∠CD.∠1=∠3+∠4+∠53.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°4.(2020·湖北中考)将一副三角尺按如图摆放,点E在AC上,点D在BC 的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.如图,∠ABC的平分线与∠ACD的平分线相交于点P.若∠A=60°,则∠P等于()A.30°B.40°C.50°D.60°6.(2020·湖北黄冈中考)如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=.7.如图,已知在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BDC=,∠BFC=.8.如图,D,E,F分别是△ABC三边延长线上的点,求∠D+∠E+∠F+∠1+∠2+∠3的度数.9.如图,在△ABC中,E是AC延长线上的一点,D是BC上的一点.求证:(1)∠BDE=∠E+∠A+∠B.(2)∠BDE>∠A.10.如图,在△ABC中,D是边BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.二、创新应用11.如图①,有一个五角形图案ABCDE,你能说明∠A+∠DBE+∠C+∠D+∠E=180°吗?如果点B向下移动到AC上(如图②)或AC的另一侧(如图③),上述结论是否依然成立?请说明理由.答案一、能力提升1.A如图,∵∠2=90°-45°=45°,∴∠1=∠2-30°=15°.∴∠α=180°-∠1=165°.2.C由三角形的一个外角大于与它不相邻的内角,知∠1>∠2>∠3>∠C,故选项A正确;根据三角形中线的定义,知BE=ED=DF=FC,故选项B正确;∠4与∠5的大小不能判定,故选项C错误;根据三角形的一个外角等于与它不相邻两个内角的和,知∠1=∠2+∠4,∠2=∠3+∠5,所以∠1=∠3+∠4+∠5,故选项D正确.3.B4.A5.A利用三角形的外角性质,得∠P=∠PCD-∠PBD=(∠ACD-∠ABC)=∠A=30°.6.30°.7.97°;117°.8.解:∵∠D+∠3=∠CAB,∠E+∠1=∠ABC,∠F+∠2=∠ACB,∴∠D+∠E+∠F+∠1+∠2+∠3=∠CAB+∠ABC+∠ACB=180°.9.证明:(1)∵∠BDE,∠DCE分别是△CDE,△ABC的一个外角,∴∠BDE=∠E+∠DCE,∠DCE=∠A+∠B,∴∠BDE=∠E+∠A+∠B.(2)由(1)得∠BDE=∠E+∠A+∠B,∴∠BDE>∠A.10.解:∵∠3是△ABD的外角,∴∠3=∠1+∠2.∵∠1=∠2,∠3=∠4,∴∠4=2∠2.在△ABC中,∵∠2+∠4=180°-∠BAC=180°-63°=117°,∴∠1=∠2=117°÷(1+2)=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.二、创新应用11.解:在题图①中,∠A+∠C=∠DNM, ①∠DBE+∠E=∠DMN, ②①+②,得∠A+∠DBE+∠C+∠E=∠DNM+∠DMN.∵∠D+∠DNM+∠DMN=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°.在题图②、题图③中,上述结论仍然成立,理由与题图①完全相同.11.3.1多边形一、能力提升1.在下列关于正多边形的特征说法中,错误的是()A.每一条边都相等B.每一个内角都相等C.每一个外角都相等D.所有对角线都相等2.过多边形的一个顶点可以引2017条对角线,则这个多边形的边数是()A.2017B.2018C.2019D.20203.如果过多边形的一个顶点的对角线把多边形分成8个三角形,那么这个多边形的边数为()A.8B.9C.10D.114.将一个四边形截去一个角后,它不可能是()A.三角形B.四边形C.五边形D.六边形5.在n边形的一边上任取一点(不包含顶点)与各顶点相连,可得三角形的个数是()A.nB.n-2C.n-1D.n+16.过m边形的一个顶点有7条对角线,n边形没有对角线,则m n=.7.已知一个多边形的边数恰好是从这个多边形的一个顶点出发所作的对角线的条数的2倍,求此多边形的边数.二、创新应用8.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整.边数 3 4 5 6 7 …n对角线条0 2 5 …数答案一、能力提升1.D2.D3.C4.D一个多边形截去一个角后,可能出现三种情况:少一个角、角的个数不变或多一个角.5.C6.1000;从m边形的一个顶点出发有(m-3)条对角线,由m-3=7,得m=10. n边形没有对角线,所以n=3.所以m n=103=1000.7.解:设这个多边形的边数为n,则从多边形的一个顶点出发所作的对角线的条数为n-3.依题意,得n=2(n-3),解得n=6.二、创新应用8.解:(1)(2)边数 3 4 5 6 7 …n对角线条数0 2 5 9 14 …n(n-3)11.3.2多边形的内角和一、能力提升1.如果一个正多边形的每一个外角都是锐角,那么这个正多边形的边数一定不小于()A.3B.4C.5D.62.(2020·山东济宁中考)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.63.若一个多边形的边数由5增加到11,则内角和增加的度数是()A.1080°B.720°C.540°D.360°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.7.如图,在四边形ABCD中,∠A+∠B=210°,且∠ADC的平分线与∠DCB的平分线相交于点O,则∠COD的度数是.8.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.9.如图,求∠A+∠B+∠OCD+∠ODC+∠E+∠F的度数.二、创新应用10.在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.答案一、能力提升1.C每个外角都是锐角,即小于90°,设边数为n,则这些锐角的和一定小于n×90°.而外角和为360°,所以360°<n×90°,n>4,即n不小于5.2.B设这个多边形的边数是n,则(n-2)×180°=1080°,解得n=8.3.A因为每增加一条边,内角和增加180°,所以增加6条边,内角和增加180°×6=1080°.4.D由题意知∠AED的补角为80°,则∠AED=100°.5.D多边形的外角和是360°,内角和等于外角和的一半,则内角和是180°,可知此多边形为三角形.6.6因为凸n边形的内角和为1260°,所以(n-2)×180°=1260°,得n=9.故从一个顶点出发引的对角线的条数为9-3=6.7.105°∵四边形的内角和为360°,∠A+∠B=210°,∴∠ADC+∠BCD=360°-210°=150°.∵DO,CO分别为∠ADC与∠BCD的平分线,∴∠ODC=∠ADC,∠OCD=∠BCD.∴∠ODC+∠OCD=(∠ADC+∠BCD)=×150°=75°.∴∠COD=180°-75°=105°.8.解:由题意知这个多边形的内角和为3×360°-180°=900°.设这个多边形的边数为n,根据题意,得(n-2)×180°=900°,解得n=7.故这个多边形的边数为7.9.解:如图,连接BE,则在△COD与△BOE中,∠ODC+∠OCD+∠COD=180°,∠OBE+∠OEB+∠BOE=180°.∵∠COD与∠BOE是对顶角,∴∠COD=∠BOE.∵∠ODC+∠OCD=180°-∠COD,∠OBE+∠OEB=180°-∠BOE,∴∠ODC+∠OCD=∠OBE+∠OEB.∴题图中的∠A+∠B+∠OCD+∠ODC+∠E+∠F等于上图中的∠A+∠F+∠ABC+∠DEF+∠OBE+∠OEB=∠A+∠F+∠ABE+∠BEF=360°,即所求六个角的和为360°.二、创新应用10.解:(1)设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.(2)存在.设边数为n,这个外角的度数是x°,则(n-2)×180-(180-x)+x=600,整理得x=570-90n.因为0<x<180,即0<570-90n<180,并且n为正整数,所以n=5或n=6.故这个多边形的边数是6,这个外角的度数为30°.。
(必考题)初中八年级数学上册第十一章《三角形》经典练习题

一、选择题1.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6 B.3 C.2 D.11A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.2.下列说法正确的是()A.射线AB和射线BA是同一条射线B.连接两点的线段叫两点间的距离C.两点之间,直线最短D.七边形的对角线一共有14条D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.3.若过六边形的一个顶点可以画n条对角线,则n的值是()A.1 B.2 C.3 D.4C解析:C【分析】根据从一个n边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可.【详解】解:6-3=3(条).答:从六边形的一个顶点可引出3条对角线.故选:C.【点睛】本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3.4.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是()A.12 B.10 C.9 D.6D解析:D【分析】要先根据题意,画出图形,通过对图形观察,思考,得出需要小木棍的根数,然后图形对比,选出最少需要小木棍的根数.【详解】图1没有共用部分,要6根小木棍,图2有共用部分,可以减少小木棍根数,仿照图2得到图3,要7根小木棍,同法搭建的图4,要9根小木棍,如按图5摆放,外围大的等边三角形,可以得到5个等边三角形,要9根小木棍,如按图6摆成三棱锥(西面体)就可以得到4个等边三角形,∴搭建4个等边三角形最少需要小木棍6根.故选:D【点睛】此题考查的是组成图形的边的条数,解答此题需要灵活利用立体空间思维解答.∠=∠,D为BC边上的一点,点E在AC边上,5.如图,在ABC中,B CADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°A解析:A【分析】 先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90°C解析:C【分析】根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠.【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠,∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒,解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒,∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.7.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形B解析:B【分析】根据角的度数之比,求得最大角的度数,根据最大角的性质判断即可.【详解】∵三个内角的度数之比为11:13:24, ∴最大角的度数为°24180111324⨯++=90°, ∴三角形是直角三角形,故选B.【点睛】 本题考查了三角形按角的分类,根据度数之比求得最大角的度数是解题的关键. 8.三角形的两条边长为3和7,那么第三边长可能是( )A .1B .4C .7D .10C解析:C【分析】根据三角形的两边之和大于第三边,确定第三边的取值范围即可.【详解】解:三角形的两条边长为3和7,设第三边为x ,则第三边的取值范围是:7-3<x <7+3,解得,4<x <10,故选:C .【点睛】本题考查了三角形的三边关系,根据两边长确定第三边的取值范围是解题关键.∠9.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则BDC 的度数是()A.65︒B.75︒C.85︒D.105︒B解析:B【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA=60︒,∠BAE=45︒,∴∠ADE= 180︒−∠CEA−∠BAE=75︒,∴∠BDC=∠ADE=75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.10.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是()A.43°B.47°C.30°D.60°A解析:A【分析】延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【详解】如图,延长BC交刻度尺的一边于D点,∵AB ∥DE ,∴∠β=∠EDC ,又∵∠CED =∠α=47°,∠ECD =90°,∴∠β=∠EDC =90°﹣∠CED =90°﹣47°=43°.故选:A .【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.二、填空题11.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.102°【分析】首先根据∠DFC =3∠B =117°可以算出∠B =39°然后设∠C =∠D =x°根据外角与内角的关系可得39+x +x =117再解方程即可得到x =39再根据三角形内角和定理求出∠BED 的度解析:102°【分析】首先根据∠DFC =3∠B =117°,可以算出∠B =39°,然后设∠C =∠D =x°,根据外角与内角的关系可得39+x +x =117,再解方程即可得到x =39,再根据三角形内角和定理求出∠BED 的度数.【详解】解:∵∠DFC =3∠B =117°,∴∠B =39°,设∠C =∠D =x°,39+x +x =117,解得:x =39,∴∠D =39°,∴∠BED =180°−39°−39°=102°.故答案为:102°.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.12.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.13.如图1,ABC 纸片面积为24,G 为ABC 纸片的重心,D 为BC 边上的一个四等分点(BD CD <)连结CG ,DG ,并将纸片剪去GDC ,则剩下纸片(如图2)的面积为__________.18【分析】连接BG 根据重心的性质得到△BGC 的面积再根据D 点是BC 的四等分点得到△GDC 的面积故可求解【详解】连接BG ∵G 为纸片的重心∴S △BGC=S △ABC=8∵D 为边上的一个四等分点()∴S △解析:18【分析】连接BG ,根据重心的性质得到△BGC 的面积,再根据D 点是BC 的四等分点得到△GDC 的面积,故可求解.【详解】连接BG ,∵G 为ABC 纸片的重心,∴S △BGC =13S △ABC =8 ∵D 为BC 边上的一个四等分点(BD CD <) ∴S △DGC =34S △BGC =6 ∴剪去GDC ,则剩下纸片的面积为24-6=18 故答案为:18.【点睛】此题主要考查重心的性质,解题的关键是熟知重心的性质及面积的换算关系. 14.设三角形三内角的度数分别为,,x y z ︒︒︒,如果其中一个角的度数是另一个角的度数的2倍、那我们称数对(,)()y z y z <是x 的和谐数对,当150x =时,对应的和谐数对有一个,它为(10,20);当66x =时,对应的和谐数对有二个,它们是__________.当对应的和谐数对(,)y z 有三个时,请写出此时x 的范围_______.(3876)(3381)【分析】根据和谐数对的定义求出当x=66时的两组数对;再分当时当时当时三种情况讨论从而得出结论【详解】解:当时180-66=114则114÷3=3838×2=76此时和谐数对解析:(38,76),(33,81) 060x ︒<<︒【分析】根据“和谐数对”的定义求出当x=66时的两组数对;再分当060x ︒<<︒时,当60120x ︒<︒时,当120180x ︒<︒时,三种情况讨论,从而得出结论.【详解】解:当66x =时,180-66=114,则114÷3=38,38×2=76,此时和谐数对为(38,76),或66÷2=33,114-33=81,此时和谐数对为(33,81),若对应的和谐数对(,)y z 有三个,当060x ︒<<︒时,它的和谐数对有(1803,2)x x ︒-,3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-; 当60120x ︒<︒时,它的和谐数对有3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-,当120180x ︒<︒时,它的和谐数对有180(3x ︒-,2(180))3x ︒-, ∴对应的和谐数对(,)y z 有三个时,此时x 的范围是060x ︒<<︒,故答案为:(38,76),(33,81);060x ︒<<︒.【点睛】本题考查三角形内角和定理,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.15.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD 折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.25°【分析】先求出∠A 的度数再根据折叠的性质可得∠E 的度数根据平行线的性质求出∠ADE 的度数进而即可求解【详解】∵∴∠A=40°∵沿折叠后点B 落在点E 处∴∠E=∠B=50°∵∴∠ADE=∠E=50解析:25°【分析】先求出∠A 的度数,再根据折叠的性质可得∠E 的度数,根据平行线的性质求出∠ADE 的度数,进而即可求解.【详解】∵90,50ACB B ︒︒∠=∠=, ∴∠A=40°,∵BCD △沿CD 折叠后,点B 落在点E 处,∴∠E=∠B=50°,∵//CE AB ,∴∠ADE=∠E=50°,∴∠BDC=∠EDC=(180°-50°)÷2=65°,∴∠ACD=∠BDC-∠A=65°-40°=25°,故答案是:25°.【点睛】本题主要考查折叠的性质,三角形外角的性质,平行线的性质,直角三角形的性质,掌握平行线的性质以及三角形外角的性质,是解题的关键.16.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.17.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠, ∴11683422CAD BAC ︒︒∠=∠=⨯=, ∵AE 是ABC ∆的高, ∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.18.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称, ∴1MBF FBE ∠=∠=∠,∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠, ∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 19.如图,在ABC 中,E 、D 、F 分别是AD 、BF 、CE 的中点,若DEF 的面积是1,则ABC S =______.7【分析】连接CDBEAF 由三角形中线等分三角形的面积求得S △AEC=2S △DEFS △ABD=2S △DEFS △BFC=2S △DEF 由S △ABC=S △AEC+S △ABD+S △BFC+S △DEF 即可得出解析:7【分析】连接CD ,BE ,AF ,由三角形中线等分三角形的面积,求得S △AEC =2S △DEF ,S △ABD =2S △DEF ,S △BFC =2S △DEF ,由S △ABC =S △AEC +S △ABD +S △BFC +S △DEF 即可得出结果.【详解】解:连接CD ,BE ,AF ,如图所示:∵AE=ED ,由三角形中线等分三角形的面积,可得S △AEF =S △DEF ,同理S △AEF =S △AFC ,∴S △AEC =2S △DEF ;同理可得:S △ABD =2S △DEF ,S △BFC =2S △DEF ,∴△ABC =S △AEC +S △ABD +S △BFC +S △DEF =2S △DEF +2S △DEF +2S △DEF +S △DEF =7S △DEF =7cm 2,故答案为:7.【点睛】本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,解答关键是通过作辅助线,运用三角形中线等分三角形的面积得出结果.20.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.【分析】直接根据高相等的三角形面积之比等于底之比【详解】解:∵是边上的中线∴BD=DC 又∵的面积是2和的高相等∴∵和的高相等∴∴又∴同理:故答案为:【点睛】此题主要考查根据高相等的三角形面积之比等于解析:49【分析】直接根据高相等的三角形,面积之比等于底之比.【详解】解:∵AD 是BC 边上的中线∴BD=DC又∵ABC ∆的面积是2,D AB ∆和D A C ∆的高相等∴D DC S =S =1AB A ∆∆∵13AE AD =E AB ∆和BDE ∆的高相等 ∴E BDE ABD 11S =S =S 23AB ∆∆∆ ∴BDE 2S =3∆ 又12BF EF =,∴1B 3BF E =,同理: DEF BFD BDE 24S =2S =S =39∆∆∆ 故答案为:49. 【点睛】此题主要考查根据高相等的三角形,面积之比等于底之比求三角形的面积,解题的关键是正确理解高相等的三角形之间的关系.三、解答题21.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.解析:(1)72︒;(2)40︒.【分析】(1)根据角平分线的定义可得∠ADP=12ADC ∠ ,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF ,∠CBP=∠PBA ,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,所以∠A+∠C=2∠P ,即可得解.【详解】解:(1)∵DP 平分∠ADC ,∴∠ADP=∠PDF=12ADC ∠, ∵60ADC ∠=︒,∴30ADP ∠=︒,∴304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠ADP=∠PDF ,∠CBP=∠PBA ,∵∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,∴∠A+∠C=2∠P ,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°. 【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.22.已知AB ∥CD ,CF 平分∠ECD .(1)如图1,若∠DCF =25°,∠E =20°,求∠ABE 的度数.(2)如图2,若∠EBF =2∠ABF ,∠CFB 的2倍与∠CEB 的补角的和为190°,求∠ABE 的度数.解析:(1)∠ABE=30°;(2)∠ABE=30°【分析】(1)假设CE 与AB 相交于点G ,由题意易得∠DCE=50°,则有∠CGA=∠BGE=130°,然后根据三角形内角和可求解;(2)假设CE 与AB 、BF 相交于点M 、N ,设∠ABF=x ,∠DCF=∠FCE=y ,则有∠EBF=2x ,∠ABE=3x ,∠DCE=2y ,根据题意可得∠AMC=180°-2y ,∠E=2y-3x ,2∠CFB-∠CEB=10°,进而根据三角形内角和及角的和差关系可求解.【详解】解:(1)假设CE 与AB 相交于点G ,如图所示:∵CF 平分∠DCE ,∠DCF=25°,∴∠DCE=50°,∵AB ∥DC ,∴∠DCE+∠AGC=180°,∴∠AGC=130°,∴∠EGB=∠AGC=130°,∵∠E=20°,∴∠ABE=30°;(2)假设CE 与AB 、BF 相交于点M 、N ,如图所示:设∠ABF=x ,∠DCF=y ,∵∠EBF=2∠ABF ,CF 平分∠DCE ,∴∠EBF=2x ,∠ABE=3x ,∠FCE=y ,∠DCE=2y ,∵AB ∥DC ,∴∠DCE+∠AMC=180°,∴∠EMB=∠AMC=180°-2y ,∵∠E+∠EMB+∠ABE=180°,∴∠E=2y-3x ,∵∠E+∠ENB+∠FBE=180°,∴∠ENB=180°+x-2y ,∵∠CFB+∠CNF+∠FCE=180°,∴∠CFB=y-x ,∵∠CFB 的2倍与∠CEB 的补角的和为190°,∴2∠CFB-∠CEB=10°,∴()()22310y x y x ---=︒,解得:10x =︒,∴∠ABE=30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.23.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.解析:(1)EG ⊥FG ,证明见解析;(2)A .45;B .2EOF EPF ∠=∠(在A 、B 两题中任选一题即可)【分析】(1)由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的定义可得90GEF GFE ∠+∠=︒,由三角形内角和定理可得∠G =90︒,则EG FG ⊥; (2)A .由(1)可知90BEG DFG ∠+∠=︒,根据角平分线的定义可得45MEG MFG ∠+∠=︒,故135MEF MFE ∠+∠=︒,根据三角形的内角和即可求出EMF ∠=45︒;B .设OEF α∠=,OFE β∠=,故EOF ∠=180αβ︒--,再得到180BEO DFO αβ∠+∠=--︒,根据角平分线的定义可得190122PEO PFO αβ︒-∠+∠=-,则119022PEF PFE αβ∠+∠=︒++,再求出EPF ∠,即可比较得到结论.【详解】解:(1)由题意可得,求证:“EG ⊥FG”,证明过程如下∵//AB CD∴∠BEF +∠EFD=180° EG 平分BEF ∠,FG 平分DFE ∠,12GEF BEF ∴∠=∠,12GFE DFE ∠=∠, 1111()180902222GEF GFE BEF DFE BEF DFE ∴∠+∠=∠+∠=∠+⨯︒∠==︒. 在EFG 中,180GEF GFE G ∠+∠+∠=︒,180()1809090G GEF GFE ∴∠=-∠+∠=-︒=︒︒︒,EG FG ∴⊥.(2)A .由(1)可知=90BEG DFG GEF GFE ∠+∠=∠+∠︒,∵BEG ∠的平分线与DFG ∠的平分线交于点M∴∠MEG=12∠BEG ,∠MFG=12∠DFG ∴()111190452222MEG MFG BEG DFG BEG DFG ∠+∠=∠+∠=∠+∠=⨯︒=︒ 则4591350MEF MFE ︒+∠︒=+∠=︒, ∴EMF ∠=180135︒-︒=45︒故答案为:A ,45;B.设OEF α∠=,OFE β∠=,∴EOF ∠=180αβ︒--,∵//AB CD∴∠BEF +∠EFD=180°则180BEO DFO αβ∠+∠=--︒∵BEO ∠的平分线与DFO ∠的平分线交于点P∴190122PEO PFO αβ︒-∠+∠=-, ∴111190902222PEF PFE αβαβαβ∠+∠=︒--++=︒++, ∴EPF ∠=111809022αβ⎛⎫︒-︒++ ⎪⎝⎭=121902αβ︒--, ∵EOF ∠=1118029022αβαβ⎛⎫︒--=︒-- ⎪⎝⎭, 故2EOF EPF ∠=∠故答案为:B ,2EOF EPF ∠=∠.(在A 、B 两题中任选一题即可)【点睛】本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握平行线的性质和角平分线的定义是解题的关键.24.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.解析:21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 25.如果一个多边形的内角和是它的外角和的4倍,求这个多边形的对角线总数. 解析:35条【分析】一个多边形的内角和等于外角和的4倍而任何多边形的外角和是360°,因而多边形的内角和等于1440°.n 边形的内角和可以表示成(n-2)•180°,设这个正多边形的边数是n ,就得到方程,从而求出边数,即可求出答案.【详解】解:设这是一个n 边形,依题意得:(n-2).180°=4×360°,解得n=10故这个多边形的总条数为()10103352⨯-=(条)答:对角线的总数为35条.【点睛】本题主要考查多边形内角与外角的知识点,此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解即可.26.如图,已知在ABC 中,90C ∠=︒,BE 平分ABC ∠,且//BE AD ,20BAD ∠=︒,求AEB ∠的度数.解析:110°【分析】根据平行线的性质和三角形外角的性质即可得到结论.【详解】∵BE∥AD,∴∠ABE=∠BAD=20°,∵BE平分∠ABC,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.【点睛】考查了三角形的外角的性质、平行线的性质和角平分线的定义,解题关键是正确识别图形得出图中角之间的关系.27.如图,AB∥CD,点E是CD上一点,连结AE.EB平分∠AED,且DB⊥BE,AF⊥AC,AF与BE交于点M.(1)若∠AEC=100°,求∠1的度数;(2)若∠2=∠D,则∠CAE=∠C吗?请说明理由.解析:(1)40°;(2)∠CAE=∠C,理由见解析.【分析】(1)根据邻补角的定义可求∠AED,再根据角平分线的定义和平行线的性质可求∠1的度数;(2)根据三角形内角和定理可求∠BED=∠C,根据平行线的判定可知AC∥BE,根据平行线的性质可得∠CAE=∠AEB,根据角平分线的定义和等量关系即可求解.【详解】(1)∵∠AEC=100°,∴∠AED=80°,∵EB平分∠AED,∴∠BED=40°,∵AB∥CD,∴∠1=∠BED=40°;(2)∵DB⊥BE,AF⊥AC,∴∠EBD=∠CAF=90°,∵∠2=∠D,∴∠BED =∠C ,∴AC ∥BE ,∴∠CAE =∠AEB ,∵EB 平分∠AED ,∴∠AEB =∠BED ,∴∠CAE =∠C .【点睛】本题考查平行线的判定和性质,邻补角的定义,角平分线的定义,三角形内角和定理.熟悉相应的性质和定义是解答本题的关键.28.如图,在ABC 中,60,80,BAC C AD ︒︒∠=∠=是ABC 的角平分线,点E 是边AC 上一点,且12ADE B ∠=∠,求CDE ∠的度数.解析:50︒【分析】根据角平分线的性质求出∠BAD 的度数,利用三角形内角和求出∠B 的度数,由此得到∠ADE 的度数,利用三角形外角性质求出∠ADC ,即可得到答案.【详解】解:∵AD 平分BAC ∠,∴1302BAD DAC BAC ∠=∠=∠=︒, ∵180180608040B BAC C ∠=︒-∠-∠=︒-︒-︒=︒,∴403070ADC B BAD ∠=∠+∠=︒+︒=︒, ∴1202ADE B ∠=∠=︒, ∴702050CDE ADC ADE ∠=∠-∠=︒-︒=︒.【点睛】 此题考查三角形内角和定理,角平分线的性质,三角形外角定理,正确分析图形掌握各角直角的位置关系是解题的关键.。
三角形相关线段习题精选(含答案)

三角形相关线段习题精选1、如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO=60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有个.2、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1+S2=3、如图,在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为6,△BCF的面积为9,△CEF的面积为6,则四边形ADFE的面积为.4、直角三角形两直角边长分别为5和12,则它的斜边上的高为.5、如图,中,,,,点D是BC的中点,将沿AD翻折得到,联结CE,那么线段CE的长等于.第5题图第6题图第7题图第9题图6、如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE上的中点,且S△ABC=4,则S△BFF=_______7、如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE的面积为S2,若S△ABC=6,则S1-S2的值为_________.8、在△ABC中,AB=5,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9、如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条10、已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为( )A.2 B.3 C.5 D.1311、如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是()A.10 B.11 C.16 D.2612、小华要画一个有两边长分别为7cm和8cm的等腰三角形,则这个等腰三角形的周长是()A.16cm B.17cm C.22cm或23cm D.11cm13、下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm,7cm,10cm B.5cm,7cm,13cmC.7cm,10cm,13cm D.5cm,10cm,13cm14、若等腰三角形的两边长分别为4和9,则它的周长为()A.22 B.17 C.13 D.17或2215、如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是()A.9 B.8 C.7 D.616、如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.617、已知三角形的两边分别为4和9,则此三角形的第三边可能是()18、如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的().A.高B.角平分线C.中线D.无法确定19、.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半20、下列长度的三条线段能组成三角形的是(),2cm,3cm ,2cm,3cm ,6cm,8cm ,12cm,6cm21、若某三角形的三边长分别为3,5,,则的取值范围是()A.0<<9 B.3<<9C.0<<7 D.3<<722、若△ABC的边长都是整数,周长为11,且有一边长为4,则这个三角形的最大边长为()A.7 B.6 C.5 D.423、、如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S=()△OACA.1:1:1 B.1:2:3 C.2:3:4 D.3:4:524、设△ABC的面积为1,如图①将边BC、AC分别2等份,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等份,BE1、AD1相交于点O,△AOB的面积记为S2;……,依此类推,则S5的值为()A.B.C.D.25、如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,点D到AB的距离是()A.2B.C.D.26、下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,1127、已知在ΔABC中,AB=AC,周长为24,AC边上的中线BD把ΔABC分成周长差为6的两个三角形,则ΔABC各边的长分别变为______。
解斜三角形的一般思路分析

解斜三角形的一般思路分析解斜三角形的一般思路是通过添加辅助线(如作高),将斜三角形转化为直角三角形来解.本文试就几种情况下辅助线的作法列举几例加以剖析.一、等腰三角形:对于等腰三角形,一般是作底边(或腰)上的高, 将问题转化为直角三角形来解.例1.⑴等腰三角形的顶角为30°,腰长为4,则三角形的面积为_____;解:如图1,作高BD,则可得BD =2,从而,S△ABC =×4×2 = 4;⑵等腰三角形的顶角为120°,腰长为4,那么三角形的面积为___;解:如图2,作高AD,则可得S△ABC = ×4√3×2 =4√3二、对于含有30°、45、60°角的斜三角形,可通过作高,将原三角形分割成含有已知特殊角的直角三角形(注意不要将条件中的特殊角分割.)例2.已知△ABC中,∠B=60°,AB=6,BC=8,则△ABC的面积是()(A)12√3; (B)12; (C) 24√3; (D) 12√2解:如图3,过A作AD⊥BC于D,则AD = AB·sinB = 6·sin60°= 6×= 3√3那么S△ABC = ×8×3√3 = 12√3 .故,选(A).例3.在△ABC中,若∠B=30°,AB=2√3,AC=2,则△ABC的面积S是____.解:△ABC的顶点除B外,A、C有两种可能,如图4、5所示.⑴如图4,过A作AD⊥BC于D.在Rt△ABD中,∠B=30°,∴ AD = AB = √3 ,∴ BD = 3;在Rt△ACD中,由勾股定理可得:CD2 = AC2-AD2=22-(√3)2= 1,∴ CD = 1,CD = AC,∴∠CAD=30°,∠C=60°,∴△ABC为Rt△.∴ S =×2√3 ×2 = 2√3 .⑵如图5,作CD⊥AB于D,设CD=x,BC=2x,BD=2x·cos30°=√3x,从而AD = 2√3 -√3 x,在Rt△ACD中,AD2+CD2 =AC2,那么可得:x2-3x +2 = 0, ∴x1 = 1 , x2 =2 (舍去),,于是S =×2√3×1 =√3 .解法2:仿例6,做AD⊥BC于D,列方程求解.评注:本题起点低,着手易,通过画图,容易发现两种情况,体现了分类讨论的思想,克服了思维定势的影响,培养了学生分析问题解决问题的能力.例4.求sin15°·sin75°的值(数形结合)解:如图6,作Rt△ACD,使∠ACD = 30°,∠D = 90°,令AD = 1, 则AC = 2,CD =√3 ,延长DC到B,使CB=CA,则∠ABC=∠BAC=15°,那么在Rt△ABD中,sin15°= sin∠B==== ,sin 75°= sin∠BAD== ,∴sin15°·sin75°= ·= .三、当条件中三角形的边长为某些勾股数组中的数时,可通过作高将三角形分割(或添补)成以这些数为边的直角三角形.例5.如图7,△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.解:过点A作AD⊥BC于D,设BD=x,则CD=14-x, 设AD = y,那么,Rt△ABD和Rt△ACD中,分别由勾股定理可得解此方程组得∴ S△ABC = ×14×12 = 84 . 故,选(A).例6.已知:如图8,△ABC中,AB =17,AC =10 ,BC=9,求S△ABC. (第七届希望杯初二试题)略解:如图,设AD = x,CD = y,则:解得∴ S△ABC = ×9×8 =36 .例7.如图9,在△ABC中,AB = 5cm,AC = 3cm ,D是BC的中点,且AD⊥AC,求AD的长.略解:延长AD至E,使DE = AD,设AD = DE = x,则(2x)2 + 32 = 52 ,解得x = 2,即AD = 2.四、对于四边形,其一般方法也是将其割(补)成直角三角形例8.如图10,在四边形ABCD中,∠B=90°,AB=2,BC=2√3,CD=5,AD=3,则四边形ABCD的面积为____;提示:分割图形:在△ABC和△中分别运用勾股定理和勾股定理的逆定理,可得S四边形ABCD =2√3+6例9.如图11,在四边形ABCD中,∠A= 60°,∠B=∠D=90°,AB=2,CD =1,求BC和AD的长.答:AD=4-√3,BC=2√3-2.解略.例10.如图12,在四边形ABCD中,AB=,CD =2√3, AD=3-√3, ∠A=135°,∠D=120°,求BC 边的长.解法1:分别过点B、C 向AD作垂线(略);解法2:过点C 作CE⊥AD于E,连结AC.则∠CDE =60°,∴∠DCE =30°,由CD=2√3,∴ CE = 3,DE =√3∴ AE = AD + DE =(3-√3)+√3 = 3,∴ AE = CE,∴∠CAE= 45°,那么△ACE为等腰直角三角形又∠A=135°,∴∠BAC=90°,附练习题1.等腰三角形的顶角为120°,底边长为6,则三角形的面积为_____;2.如图13,在△ABC中,已知∠B=30°,∠C=45°,AB = 8,求S△ABC.3.已知:如图14,在ABCD中,AB= AD = 8,∠A=60°,∠D =150°,四边形ABCD的周长为32,求BC和CD的长.4.已知:如图15,△ABC中,D是BC上一点,若∠B = 45°,AD=5,AC=7,DC=3,求AB的长.5.如图16,在△ABC中,AB=5,AC=7,∠B= 60°.求BC的长.答案:1. ;2. 8+ 8;3. BC =10, CD =6;4.5. 8。
北师大版初三数学下册平面直角坐标系中求斜三角形的面积

数学九年级北师大版八年级下册利用平面直角坐标系中点的坐标求斜三角型的面积问题荥阳市高山镇第一初级中学王丽卿学习内容:利用平面直角坐标系中点的坐标求斜三角型的面积问题学习目标:通过学习能够快速求解坐标系中斜三角形的面积问题。
学习重点:两种方法几何法和代数法,或是补全法和切割法来求解三角形面积。
学习难点:代数法求解三角形面积。
也就是切割法求三角形面积。
学习过程:已知平面直角坐标系中三角形OAB,O(0,0) A(2,1) B(4,4),求三角形OAB的面积。
方法一:我们可以用几何法,补全法,先把这个不规则的图形通过做平行线补全成我们学过的容易求解的图形。
然后再去掉多余的部分,就是我们需要求解的部分。
(4,4)B O y 4321 123 4A (2,1)xE (4,1)F (4,0)26442144=-⨯⨯-⨯=G(0,4)S OAB OBG OFBG OFBAS ∆∆-正方形四边形方法二:可以用代数法,切割法把所要求的三角形切割成两个三角形,这里就要应用到函数求出那个割点的坐标,进而得出线段的长度,这条割线就是所得两个三角形的公共底边。
进而求解。
(4,4)B ()121211221114222AC AC AC h h h h =+=+=⨯⨯=O y 4321 123 4A (2,1)x G(0,4)C (2,2)有没有其他办法呢?S 1S 2BAC S S S ∆=+h 1h 2OB X Y =C (1,1)作业:方法二中的第二种变形学生自己独立解决。
初中九年级数学 解直角三角形 9.解斜三角形

CD 2
Байду номын сангаас在Rt△BDA中,∠B=300
tan 30o AD 2 BD 2 3
BD BD
BC BD BC 2 3 2
再显身手
变式2:如图,已知在△ABC中,∠B=600,∠C=750, AB=2,求AC的长.
C
方法总结:
75°
?
在解直角三角形的问题中, 当所给的线段不是直角三角 形的边时,通常用方程思想
60°
B
D
A
来解答。
2
问题解决
如图所示,一天灰太儿狼在自家城堡顶部A处用望眼镜
观察到懒羊羊在草原B处睡觉,然后它下到城堡的C处,测
得B处的俯角为450,并立刻驾着自己新研发的飞行器沿着CB
的方向去抓懒羊羊,已知AC=40米,∠A=300,灰太狼的速
度为20米/秒,问几秒后能抓到懒羊羊?
A
40
C 450
(3)B
6c 0o5,
2
b
2
3,则a
1;
tan 60o b 3 aa
(4)A 45o, c 3 2,则a 3 .
sin 45o a a c 32
A
bc
C aB
情境引入
如图所示,一天灰太儿狼在自家城堡顶部A处用望眼镜
观察到懒羊羊在草原B处睡觉,然后它下到城堡的C处,测
得B处的俯角为450,并立刻驾着自己新研发的飞行器沿着CB
复习回顾
1、解直角三角形: 在直角三角形中,由已知元素求出未知元素的
过程,叫做解直角三角形。 2、解直角三角形有哪些类型:
①已知两条边; ②已知一条边和一个锐角.
复习回顾
3、直角三角形中的边角关系:
初中数学三角形经典测试题及答案解析
一、选择题1.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数( )A .28°B .22°C .32°D .38°【答案】B【解析】【分析】 延长AB 交CF 于E ,求出∠ABC ,根据三角形外角性质求出∠AEC ,根据平行线性质得出∠2=∠AEC ,代入求出即可.【详解】解:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC-∠1=22°,∵GH ∥EF ,∴∠2=∠AEC=22°,故选B .【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.2.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-,解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.3.△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =4cm ,则最长边AB 的长为( )cm A .6B .8C 5D .5【答案】B【解析】【分析】根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可.【详解】设∠A =x ,则∠B =2x ,∠C =3x ,由三角形内角和定理得∠A+∠B+∠C =x+2x+3x =180°,解得x =30°,即∠A =30°,∠C =3×30°=90°,此三角形为直角三角形,故AB =2BC =2×4=8cm ,故选B .【点睛】本题考查了三角形内角和定理,含30度角的直角三角形的性质,熟练掌握“直角三角形中30°的角所对的直角边等于斜边的一半”是解题的关键.4.如图,点O 是ABC ∆的内心,M 、N 是AC 上的点,且CM CB =,AN AB =,若100ABC ∠=︒,则MON ∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 根据题意,连接OA ,OB ,OC ,进而求得BOC MOC ∆≅∆,AOB AON ∆≅∆,即∠CBO =∠CMO ,∠OBA =∠ONA ,根据三角形内角和定理即可得到∠MON 的度数.【详解】如图,连接OA ,OB ,OC ,∵点O 是ABC ∆的内心,∴BCO MCO ∠=∠,∵CM =CB ,OC =OC ,∴()BOC MOC SAS ∆≅∆,∴CBO CMO ∠=∠,同理可得:AOB AON ∆≅∆,∴ABO ANO ∠=∠,∵100CBA CBO ABO ∠=∠+∠=︒,∴100CMO ANO ∠+∠=︒,∴180()80MON CMO ANO ∠=︒-∠+∠=︒,故选:C.【点睛】本题主要考查了三角形全等的性质及判定,三角形的内角和定理及角度的转换,熟练掌握相关辅助线的画法及三角形全等的判定是解决本题的关键.5.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m 【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m ,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.6.如图,在ABC ∆中,33B ∠=︒,将ABC ∆沿直线m 翻折,点B 落在点D 的位置,则12∠-∠的度数是( )A .33︒B .56︒C .65︒D .66︒【答案】D【解析】【分析】 由折叠的性质得到∠D=∠B ,再利用外角性质即可求出所求角的度数.【详解】解:如图,由折叠的性质得:∠D=∠B=33°,根据外角性质得:∠1=∠3+∠B ,∠3=∠2+∠D ,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+66°,∴∠1-∠2=66°.故选:D .【点睛】此题考查了翻折变换以及三角形外角性质的运用,熟练掌握折叠的性质是解本题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC∥DE,故①正确;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC∥DE,AC⊥BC,∴DE⊥BC,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB,故③正确,④错误;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.8.如图11-3-1,在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC【答案】D【解析】【分析】【详解】设∠ADE=x,∠ADC=y,由题意可得,∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以13x y =,即∠ADE=13∠ADC . 故答案选D .考点:三角形的内角和定理;四边形内角和定理.9.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( )A .4B .3C .6D .2【答案】B【解析】【分析】 首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:AD 是△ABC 中∠BAC 的平分线,∠EAD=∠FADDE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF=DE ,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4,11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.10.如图,在ABC ∆中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.11.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B.一个图形经过中心对称后得到的图形,与原来的图形全等C.一个图形放大后得到的图形,与原来的图形全等D.一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,在□ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论中:①DE=DF;②AG=GF;③AF=DF;④BG=GC;⑤BF=EF,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,即AB∥CE,∴∠ABF=∠E,∵DE=CD,∴AB=DE,在△ABF和△DEF中,∵===ABF EAFB DFEAB DE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABF≌△DEF(AAS),∴AF=DF,BF=EF;可得③⑤正确,故选:B.【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.13.如图,90ACB∠=︒,ACCD=,过D作AB的垂线,交AB的延长线于E,若2AB DE=,则BAC∠的度数为()A.45°B.30°C.°D.15°【答案】C【解析】【分析】连接AD,延长AC、DE交于M,求出∠CAB=∠CDM,根据全等三角形的判定得出△ACB≌△DCM,求出AB=DM,求出AD=AM,根据等腰三角形的性质得出即可.【详解】解:连接AD,延长AC、DE交于M,∵∠ACB=90°,AC=CD,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE⊥AB,∴∠DEB=90°=∠ACB=∠DCM,∵∠ABC=∠DBE,∴∠CAB=∠CDM,在△ACB和△DCM中CABCDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM ,114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】 本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.14.如图,已知A ,D,B,E 在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC ≌△DEF 的是( )A .BC = EFB .AC 【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .15.如图:AD AB ⊥,AE AC ⊥,AD AB =,AE AC =,连接BE 与DC 交于M ,则:①DAC BAE ∠=∠;②DAC BAE ∆∆≌;③DC BE ⊥;正确的有( )个A .0B .1C .2D .3【答案】D【解析】【分析】利用垂直的定义得到90DAB EAC∠=∠=︒,则ADC BAE∠=∠,于是可对①进行判断;利用“SAS”可证明DAC BAE∆≅∆,于是可对②进行判断;利用全等的性质得到ADC ABE∠=∠,则根据三角形内角和和对顶角相等得到90DMB DAB∠=∠=︒,于是可对③进行判断.【详解】解:AD AB⊥,AE AC⊥,90DAB∴∠=︒,90EAC∠=︒,DAB BAC EAC BAC∴∠+=∠+∠,即ADC BAE∠=∠,所以①正确;在DAC∆和BAE∆中,DA ABDAC BAEAC AE=⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS∴∆≅∆,所以②正确;ADC ABE∴∠=∠,∵∠AFD=∠MFB,90DMB DAB∴∠=∠=︒,DC BE∴⊥,所以③正确.故选:D.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.16.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()A.1倍B.2倍C.3倍D.4倍【答案】B【解析】设原直角三角形的三边长分别是,且,则扩大后的三角形的斜边长为,即斜边长扩大到原来的2倍,故选B.17.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条().A.0根B.1根C.2根D.3根【答案】B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B18.一个等腰三角形的顶角为钝角,则底角a的范围是()A.0°<a<9 B.30°<a<90° C.0°<a<45° D.45°<a<90°【答案】C【解析】:∵等腰三角形顶角为钝角∴顶角大于90°小于180°∴两个底角之和大于0°小于90°∴每个底角大于0°小于45°故选:C19.如图,在ABC中,分别以点A和点B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.已知CDE△的面积比CDB△的面积小4,则ADE的面积为()A.4B.3C.2D.1【答案】A【解析】【分析】由作图步骤可知直线MN为线段AB的垂直平分线,根据三角形中线的性质可得S △CDA =S △CDB ,根据△CDE 的面积比△CDB 的面积小4即可得答案.【详解】由作图步骤可知直线MN 为线段AB 的垂直平分线,∴CD 为AB 边中线,∴S △CDA =S △CDB ,∵△CDE 的面积比△CDB 的面积小4,∴S △ADE =S △CDA -S △CDE =S △CDB -S △CDE =4.故选:A .【点睛】本题考查尺规作图——垂直平分线的画法及三角形中线的性质,三角形的中线,把三角形分成两个面积相等的三角形;熟练掌握三角形中线的性质是解题关键.20.如图,在ABC 中,90C ∠=︒,60CAB ∠=︒,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若4CE =,则AE 的值为( ) A .6B .2C .43D .8 【答案】D【解析】【分析】根据垂直平分线的作法得出PQ 是AB 的垂直平分线,进而得出∠EAB =∠CAE =30°,即可得出AE 的长.【详解】由题意可得出:PQ 是AB 的垂直平分线,∴AE =BE ,∵在△ABC 中,∠C =90°,∠CAB =60°,∴∠CBA =30°,∴∠EAB =∠CAE =30°, ∴CE =12AE =4, ∴AE =8.故选D .【点睛】此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.·。
经典精选--初中数学三角形专题训练及例题解析
知识点梳理考点一、三角形1、三角形的定义 : 由不在同一条直线上的三条线段首尾按序相接所构成的图形叫做三角形 .2、三角形的分类 .锐角三角形直角三角形钝角三角形不等边三角形三角形(按边分 )等腰三角形 (等边三角形 )3、三角形的三边关系:三角形随意两边之和大于第三边 , 随意两边之差小于第三边 . 4、三角形的重要线段①三角形的中线:极点与对边中点的连线 , 三条中线交点叫重心②三角形的角均分线:内角均分线与对边订交 , 极点和交点间的线段, 三个角的角均分线的交点叫心里③三角形的高:极点向对边作垂线 , 极点和垂足间的线段 . 三条高的交点叫垂心( 分锐角三角形 , 钝角三角形和直角三角形的交点的地点不一样 )5、三角形拥有稳固性6、三角形的内角和定理及性质定理:三角形的内角和等于 180°. 推论 1:直角三角形的两个锐角互补。
推论 2:三角形的一个外角等于不相邻的两个内角的和。
推论 3:三角形的一个外角大于与它不相邻的任何一个内角。
7、多边形的外角和恒为 360° 8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边 形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为 凹多边形。
③多边形的对角线的条数 :A.从 n 边形的一个极点能够引( n-3)条对角线,将多边形分红( n-2)个三角形。
B.n 边形共有n(n3)条对角线。
29、边形的内角和公式及外角和①多边形的内角和等于( n-2)×180°(n ≥3) 。
②多边形的外角和等于 360°。
10、平面镶嵌及平面镶嵌的条件。
①平面镶嵌:用形状同样或不一样的图形关闭平面,把平面的一部分既无空隙,又不重叠地所有覆盖。
②平面镶嵌的条件:有公共极点、公共边;在一个极点处各多边形的内角和为 360°。
初中数学三角形专题训练50题含答案
初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知AO=OB ,OC=OD ,AD 和BC 相交于点E ,则图中全等三角形有( )对.A .1对B .2对C .3对D .4对 2.两个同心圆的半径分别是 5 和 4,则长为 6 的大圆的弦一定和小圆( ) A .相交 B .相切 C .相离 D .无法确定 3.在△ABC 中,AB =8,BC =15,AC =17,则下列结论正确的是( ) A .△ABC 是直角三角形,且△A =900B .△ABC 是直角三角形,且△B =900 C .△ABC 是直角三角形,且△C =900D .△ABC 不是直角三角形 4.若菱形ABCD 的对角线8AC =,60ABC ∠=,则菱形ABCD 的面积为( ) A .16 B .C .D .5.用10根等长的火柴棒拼成一个三角形(火柴棒不允许剩余,重叠和折断),这个三角形一定是( )A .等边三角形B .等腰三角形C .直角三角形D .不等边三角形 6.下列命题:△任何实数的0次幂都等于1;△有两个角相等的等腰三角形是等边三角形;△三角形三条边垂直平分线的交点到三角形三条边的距离相等;△若三角形一个外角的平分线平行于三角形的一边,则这个三角形是等腰三角形.正确的个数有( )A .0个B .1个C .2个D .3个 7.菱形的两条对角线分别是12和16,则该菱形的边长是( )A .10B .8C .6D .5 8.如图,下列条件中,不能证明△ABC △△DCB 的是( )A .AB =DC ,AC =DBB .AB =DC ,△ABC =△DCB C .△ACB =△DBC ,△A =△D D .AB =DC ,△DBC =△ACB 9.如图,把ABC 纸片沿EG 折叠,当点A 落在ABC 外部的点F 处,此时测得2104∠=︒,30A ∠=︒,则1∠的度数为( )A .40︒B .44︒C .46︒D .48︒ 10.如图,在边长为4的正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,DE 、AF 交于点G ,AF 的中点为H ,连接BG 、DH .给出下列结论:△AF DE ⊥;△85DG =;△HD BG ∥;△ABG 与DFH 相似.其中正确的结论有( )个.A .1B .2C .3D .411.下列条件中,能判定△ABC△△DEF 的是( )A .AB=DE ,BC=EF ,△A=△EB .△A=△E ,AB=EF ,△B=△DC .△A=△D ,△B=△E ,△C=△F D .△A=△D ,△B=△E ,AC=DF 12.在Rt ABC △中,90A ∠=︒,6AB =,8AC =,点P 是ABC 所在平面内一点,则222PA PB PC ++取得最小值时,下列结论正确的是( )A .点P 是ABC 三边垂直平分线的交点B .点P 是ABC 三条内角平分线的交点 C .点P 是ABC 三条高的交点D .点P 是ABC 三条中线的交点13.下列命题中,真命题是( ) A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等14.已知直角三角形两边的长分别为6和8,则此三角形的周长为( )A .24B .14C .14+24D .14+15.如图,点A 的坐标为(﹣3,2),△A 的半径为1,P 为坐标轴上一动点,PQ 切△A 于点Q ,在所有P 点中,使得PQ 长最小时,点P 的坐标为( )A .(0,2)B .(0,3)C .(﹣2,0)D .(﹣3,0) 16.如图1,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图2,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依次规律,第n 个图形中有全等三角形的对数是( ).A .nB .21n -C .(1)2n n +D .3(1)n + 17.如图,若 AC 、BD 、EF 两两互相平分于点O ,那么图中的全等三角形共有( )A .3对B .4对C .5对D .6对 18.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为( )A .27cmB .228cmC .242cmD .249 cm 19.如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE △AB ,垂足E 在线段AB上,连接EF 、CF ,则下列结论中:△△DCF =12△BCD ;△EF =CF ;△S △BEC <2S △CEF ;△△DFE =4△AEF .一定成立的有( )个.A .1B .2C .3D .420.如图,等边ABC 内部有一点D ,3DB =,4DC =,150BDC =∠︒,在AB 、AC 上分别有一动点E 、F ,且AE AF =,则DE DF +的最小值是( )A .5B .C .D .7二、填空题21.等腰三角形的两边长为2和3,则等腰三角形的周长为________.22.若3,m ,5=______. 23.如图,点P 是正方形ABCD 对角线BD 上的一点,且BP =BC ,则△DPC =______°.24.如图,在ABC 中,90C ∠=︒,70B ∠=︒,D ,E 分别是边AB 、AC 上的点,将A ∠沿DE 折叠,使点F 落在AB 的下方,当FDE 的边EF 与BC 平行时,ADE ∠的度数是_________.25.《九章算术)是我国古代数学名著,书中有下列问题:“今有户高多于广六尺,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺,门对角线距离恰好为1丈,问门高、宽各是多少?(1丈=10尺)如图,设门高AB 为x 尺,根据题意,可列方程为___________(将方程化简并写成一般形式).26.如图,ABC ∆和ABE 关于直线AB 对称,ABC ∆和ADC ∆关于直线AC 对称,CD 与AE 交于点F ,若32ABC ∠=︒,18ACB ∠=︒,则CFE ∠的度数为______.27.如图,有6个条形方格图,在由实线围成的图形中,全等图形有:(1)与__;(2)与__.28.如图,在△ABC 中,AB =AC ,△A =40°,CD ∥AB ,则△BCD 的度数是______.29.如图△ABC 中,△A =96°,延长BC 到D ,△ABC 的平分线与△ACD 的平分线交于点A 1,△A 1BC 的平分线与△A 1CD 的平分线交于点A 2,以此类推,△A 4BC 的平分线与△A 4CD 的平分线交于点A 5,则△A 5的大小是___30.ABC 中,AB 15=,BC 12=,AC 9=,圆O 是ABC 的内切圆,则图中阴影部分的面积为________.(结果不取近似值)31.如图所示,一水库迎水坡AB 的坡度1:2i =,则求坡角α的正弦值sin α______.32.一根旗杆在离地面4.5 m 的地方折断,旗杆顶端落在离旗杆底部6 m 外,则旗杆折断前的高度是________.33.如图,O 的弦AB 长为2,CD 是O 的直径,30,15ADB ADC ∠=︒∠=︒.△O 的半径长为_________.△P 是CD 上的动点,则PA PB +的最小值是_________.34.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为___________.35.如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是____.36.在等边ABC 中,点D 在BC 边上,若4AB =,AD =BD 的长为______.37.如图,已知△MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 1=2,则△A 5B 5A 6的边长为________.38.已知点G是面积为227cm的ABC的重心,那么AGC的面积等于____39.图示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,和2′,…,依次类推,若正方形7的边长为1cm,则正方形1的边长为__________cm.40.如图,平行四边形ABCD中,点P为边AD上一个动点,连接BP,将线段PB绕点B逆时针旋转60°得到BQ,连接AQ,若△ABC=60°,AB=2,BC=6,则线段AQ 的取值范围是______.三、解答题41.如图,已知ACB DBC AC BD,,求证:A D∠=∠=∠=∠.∠交AC于点D,E为AB中点,过点A作42.已知:如图ABC中,BD平分ABCAF BD,交DE延长线于点F.∥(1)求证:AF BD=(2)当ABC满足什么条件时,四边形AFBD是矩形?请证明你的结论.43.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,△B=90°,连接AC.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?44.尺规作图=.(保留作图痕迹,不如图,ABC中,2B C∠=∠,在AC边上找一点P,使PB PC写作法)45.如图,在直角△ABC中,△ACB=90°,CD是高,△1=35°,求△2、△B与△A的度数.46.如图,在平行四边形ABCD中,E、F分别是AB、CD的中点.(1)求证:△AED△△CFB;(2)试判断四边形EBFD 的形状,并说明理由.47.如图,在△ABC 中,△ABC =△ACB ,E 为BC 边上一点,以E 为顶点作△AEF ,△AEF 的一边交AC 于点F ,使△AEF =△B .(1)如果△ABC =40°,则△BAC = ;(2)判断△BAE 与△CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求△AEF 与△BAE 的数量关系.48.如图,在平面直角坐标系内有一正方形OABC ,点C 坐标为(0,4),点D 为AB 的中点,直线142y x =-+经过点C ,D 并交x 轴于点E ,BCD △沿着CD 折叠,顶点B 恰好落在OA 边上方F 处,连接BE ,点P 为直线CD 上的一动点,点Q 是线段BE 的中点.连接BP ,PQ .(1)求点F 的坐标;(2)求出点P 运动过程中,PO PA +的最小值;(3)是否存在点P ,使其在运动过程中满足EQP EBC △∽△,若存在,求出点P 坐标;若不存在,请说明理由.49.在Rt ACB △中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连结CD ,将CD 绕C 点逆时针旋转90°至CE ,连结DE ,过C 作CF DE ⊥交AB 于F ,连结BE .(1)求证:AD BE=.(2)试探索线段AD,BF,DF之间满足的等量关系,并证明你的结论.(3)若15CD=,求BF.ACD=︒∠,1(注:在直角三角形中,30°所对的直角边等于斜边的一半)50.如图1,在ABC中,△A=90°,AB=AC+1,点D,E分别在边AB,AC 上,且AD=AE=1,连接DE.现将ADE绕点A顺时针方向旋转,旋转角为α(0°<α<180°),如图2,连接CE,BD,CD.(1)当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求BCD的面积的最大值,并写出此时旋转角α的度数.参考答案:1.D【分析】由条件可证△AOD △△BOC ,可得△A =△B ,则可证明△ACE △△BDE ,可得AE =BE ,则可证明△AOE △△BOE ,可得△COE =△DOE ,可证△COE △△DOE ,可求得答案.【详解】解:在△AOD 和△BOC 中OA OBAOD BOC OD OC=⎧⎪∠=∠⎨⎪=⎩ △△AOD △△BOC (SAS ),△△A =△B ,△OC =OD ,OA =OB ,△AC =BD ,在△ACE 和△BDE 中A BAEC BEDAC BD∠=∠⎧⎪∠=∠⎨⎪=⎩△△ACE △△BDE (AAS ),△AE =BE ,在△AOE 和△BOE 中OA OBA BAE BE=⎧⎪∠=∠⎨⎪=⎩△△AOE △△BOE (SAS ),△△COE =△DOE ,在△COE 和△DOE 中OE OECOE DOEOD OC=⎧⎪∠=∠⎨⎪=⎩△△COE △△DOE (SAS ),故全等的三角形有4对,故选:D .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.2.B【分析】连接OB,作OC AB⊥,根据垂径定理求出132BC AB==,根据勾股定理求出OC,即可得到判断.【详解】解:连接OB,作OC AB⊥,△6AB=,△132BC AB==,在Rt OBC中,4OC=,△点C在小圆上,△OC AB⊥,△长为6的大圆的弦和小圆相切,故选:B.【点睛】此题考查了垂径定理,勾股定理,直线与圆的位置关系,正确理解垂径定理是解题的关键.3.B【详解】22281517+=, △△ABC是直角三角形,△AC是斜边,△△B=900,故B正确;故选B.4.C【分析】过A作AE△BC于E,由菱形性质和△ABC=60°,可得△ABC是等边三角形,解Rt△ABE求得AE即可解答;【详解】解:由题意作图如下,过A作AE△BC于E,由菱形的性质可得:AB=BC,△△ABC=60°,△△ABC是等边三角形,△AB=BC=AC=8,Rt△ABE中,AE=AB sin△B=△菱形ABCD面积=BC•AE=故选:C.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,三角函数等知识;掌握菱形的性质是解题关键.5.B【分析】根据题意可知三角形的周长为10,再根据三角形的三边关系找到符合条件的三边,看符合哪类三角形即可.【详解】根据题意可知三角形的周长为10,又因为三角形任意两边之和大于第三边,△最大边要小于5,△三角形的三边可以为4,2,4或4,3,3.△这个三角形一定是等腰三角形.故选B.【点睛】此题考查了三角形的三边关系及等腰三角形的判定.三角形的三边关系:三角形任意两边之和大于第三边;任意两边之差小于第三边.6.B【分析】根据0指数幂的定义,等腰三角形三线合一,等边三角形的判定,线段垂直平分线性质逐个进行判断即可.【详解】解:△0的0次幂不存在,△△错误;△有一个角等于60°的等腰三角形是等边三角形,故△错误;△三角形三条边垂直平分线的交点到三角形三个顶点的距离相等,故△错误;△若三角形一个外角的平分线平行于三角形的一边,则这个三角形是等腰三角形,故△正确△正确的个数为:1个.故选:B .【点睛】本题考查了线段垂直平分线性质,0指数幂的定义,等腰三角形性质,等边三角形的判定的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等,任何不等于0的0次幂等于1,能理解性质和法则是解此题的关键.7.A【分析】首先根据题意画出图形,然后由菱形的两条对角线的长分别为12和16,求得OA 与OB ,再由勾股定理即可求得菱形的边长.【详解】如图,△菱形ABCD 中,A C=12,BD =16,△OA =12AC =6,OB =12BD =8,AC △BD ,△AB .即菱形的边长是10.故选:A.【点睛】此题考查了菱形的性质以及勾股定理.掌握菱形的对角线互相平分且垂直是解题的关键.8.D【详解】解:根据题意知,BC =BC .A 、由“SSS”可以判定△ABC △△DCB ,故本选项不符合题意;B 、由“SAS”可以判定△ABC △△DCB ,故本选项不符合题意;C 、由“AAS”可以判定△ABC △△DCB ,故本选项不符合题意;D 、由“SSA”不能判定△ABC △△DCB ,故本选项符合题意.故选:D .9.B【分析】设EF 与AB 交于D ,由折叠可得30F A ∠=∠=︒,根据三角形的外角性质得到21043074ADE A ∠=∠-∠=︒-︒=︒,1ADE F ∠=∠-∠,则由1ADE F ∠=∠-∠,即可求解.【详解】解:设EF 与AB 交于D ,如图,△21043074ADE A ∠=∠-∠=︒-︒=︒,又1ADE F ∠=∠-∠,1743044ADE F ∠=∠-∠=︒-︒=︒∴,故选:B .【点睛】本题考查三角形外角的性质,折叠的性质,熟练掌握三角形外角的性质与折叠的性质是解题的关键.10.B【分析】利用正方形的性质和线段中点性质,证明()SAS ADF DCE ≌,得到DAF CDE ∠=∠,即可判断△;利用勾股定理求AF =DG 的长,即可判断△;利用直角三角形的斜边中线等于斜边一半,得到DH HF =,进而得到HDF HFD ∠=∠,然后根据平行线的性质,得到HDF HFD BAG ==∠∠∠,由勾股定理求出AG =△;根据ABG DFH ∽,得到ABG DHF =∠∠,又因为AB AG ≠,得到ABG AGB ∠≠∠,进而得到AGB DHF ≠∠∠,即可判断△. 【详解】解:四边形ABCD 为正方形,90ADC BCD ,AD CD BC ==, E 、F 分别是BC 、CD 的中点,11222DF CD BC EC ∴====, 在ADF △和DCE 中,AD CD ADC BCD DF EC =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF DCE ∴≌,DAF CDE ∴∠=∠,90ADG CDE ADC ∠+∠=∠=︒,90ADG DAF ∴∠+∠=︒,90AGD ∴∠=︒,AF DE ∴⊥,△结论正确;4AD =,122DF CD ==,AF ∴=,1122ADF S AD DF AG DG =⋅=⋅,AD DF DG AF ⋅∴==△结论错误; H 为AF 的中点,90ADC ∠=︒,12DH HF AF ∴=== HDF HFD ∴∠=∠,AB CD ∥,HFD BAG ∠=∠∴,HDF HFD BAG ∠=∠=∠∴,AG AD ==4AB =,52AG DF ∴==AB AB DH HF ==, AB AG DH DF∴=, ABG DFH ∴∽,△结论正确;ABG DHF ∴∠=∠,4AB =,AG = AB AG ∴≠,ABG AGB ∠≠∠∴,AGB DHF ∴∠≠∠,HD ∴与BG 不平行,△结论错误,综上可知,正确的结论为:△△,故选B .【点睛】本题考查了三角形全等的证明与判定,相似三角形的性质与判定,勾股定理,直角三角形的斜边中线等知识,熟练掌握全等三角形的判定和性质,相似三角形的判定和性质是解题关键.11.D【详解】解:A .AB=DE ,BC=EF ,△A=△E ,SSA 不能确定全等;B .△A=△E ,AB=EF ,△B=△D ,AB 和EF 不是对应边,不能确定全等;C .△A=△D ,△B=△E ,△C=△F ,AAA 不能确定全等;D .△A=△D ,△B=△E ,AC=DF ,根据AAS ,能判断△ABC△△DEF .故选D .12.D【分析】以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,则222PA PB PC ++=()22820032333x y ⎛⎫-+-+ ⎪⎝⎭,可得P (2,83)时,222PA PB PC ++最小,进而即可得到答案.【详解】以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,如图,则A (0,0),B (6,0),C (0,8),设P (x ,y ),则222PA PB PC ++=()()22222268x y x y x y ++-+++-=22331216100x y x y +--+=()22820032333x y ⎛⎫-+-+ ⎪⎝⎭, △当x =2,y =83时,即:P (2,83)时,222PA PB PC ++最小, △由待定系数法可知:AB 边上中线所在直线表达式为:883y x =-+, AC 边上中线所在直线表达式为:243y x =-+, 又△P (2,83)满足AB 边上中线所在直线表达式和AC 边上中线所在直线表达式,△点P是ABC三条中线的交点,故选D.【点睛】本题主要考查三角形中线的交点,两点间的距离公式,建立合适的坐标系,把几何问题化为代数问题,是解题的关键.13.D【分析】根据三角形全等的判定方法对A、D进行判断;利用三角形高的位置不同可对B、C进行判断.【详解】A、有两边和它们的夹角对应相等的两个三角形全等,所以A选项错误;B、有两边和第三边上的高对应相等的两个锐角三角形全等,所以B选项错误;C、有两边和其中一边上的高对应相等的两个锐角三角形全等,所以C选错误;D、有两边和第三边上的中线对应相等的两个三角形全等,所以D选项正确;故选:D.【点睛】本题考查了判断命题真假,以及全等三角形的判定,熟练掌握全等三角形的判定,仔细分类讨论是解题关键.14.C【分析】先设Rt△ABC的第三边长为x,由于8是直角边还是斜边不能确定,故应分8是斜边或x为斜边两种情况讨论.【详解】解:设Rt△ABC的第三边长为x,△当8为直角三角形的直角边时,x为斜边,由勾股定理得,10x=,此时这个三角形的周长=6+8+10=24;△当8为直角三角形的斜边时,x为直角边,由勾股定理得,22x8627,此时这个三角形的周长=△此三角形的周长为:24.故选:C.【点睛】本题考查的是勾股定理,二次根式的化简,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.D【分析】连接AQ、P A,如图,利用切线的性质得到△AQP=90°,再根据勾股定理得到PQ=AP△x轴时,AP的长度最小,利用垂线段最短可确定P点坐标.【详解】解:连接AQ、P A,如图,△PQ切△A于点Q,△AQ△PQ,△△AQP=90°,△PQ当AP的长度最小时,PQ的长度最小,△AP△x轴时,AP的长度最小,△AP△x轴时,PQ的长度最小,△A(﹣3,2),△此时P点坐标为(﹣3,0).故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理,垂线段最短.16.C【分析】根据条件可得图1中△ABD△△ACD有1对三角形全等;图2中可证出△ABD△△ACD,△BDE△△CDE,△ABE△△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n个图形中全等三角形的对数.【详解】解:△AD是△BAC的平分线,△△BAD=△CAD.在△ABD与△ACD中,AB=AC,△BAD=△CAD,AD=AD,△△ABD△△ACD.△图1中有1对三角形全等;同理图2中,△ABE△△ACE,△BE=EC,△△ABD△△ACD.△BD=CD,又DE=DE,△△BDE△△CDE,△图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是()12n n+.故选:C.【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.17.D【分析】根据AC、BD、EF两两互相平分于点O,则有OE=OF,OA=OC,OB=OD;图中的对顶角有△AOB与△DOC,△AOE与△COF,△BOF与△DOE,△AOD与△BOC;根据两边和它们的夹角对应相等的两三角形全等(SAS)可得△AOB△△DOC;△AOE△△COF;再利用前面所证全等三角形,易证四边形ABCD是平行四边形,故△BOF△△DOE;△AOD△△BOC.【详解】解:△AC、BD、EF两两互相平分于点O△OE=OF,OA=OC,OB=OD;△△AOB=△DOC,△AOE=△COF,△BOF=△DOE,△AOD=△BOC;△△AOB△△DOC(SAS)△AOE△△COF(SAS)△OA=OC,OB=OD;△四边形ABCD是平行四边形,△ AD△BC,AD=BC△△EDO=△FBO,△AOD△△BOC△△BOF△△DOE故图中所有的全等三角形有6对,分别是△AOB△△DOC;△AOE△△COF;△BOF△△DOE;△AOD△△BOC;△ABD△△CDB;△ABC△△CDA.故选:D【点睛】本题考查了全等三角形的判定;找寻全等三角形时要从最明显的开始,由易到难,不重不漏.18.D【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积,从而可解决问题.【详解】解:△所有的三角形都是直角三角形,所有的四边形都是正方形,△正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又△a2+b2=x2,c2+d2=y2,△正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49(cm2).故选:D.【点睛】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方.19.C【分析】△先证出AF =FD =CD ,得到△DFC =△DCF ,再根据平行线性质得到△DFC =△FCB ,即可得到△DCF =△BCF ,可得△DCF =12 △BCD ,故△正确;△做辅助线延长EF ,交CD 延长线于M ,先证△AEF △△DMF (ASA ),得到FE =MF 即12FE EM =,再通过在Rt ECM 中斜边上的中线等于斜边的一半得到12FC EM =,即可得到CF =EF ,故△正确;△根据EF =FM ,可得EFC CFM S S =,那么2ECM CFE S S =△△,再通过MC >BE ,得到BEC ECM S S △△<,即2BEC CEF S S △△<,故△的正确;△先证FC =FE ,设△FCE =x ,那么90DCF x ∠=︒-,再通过证△DCF =△DFC ,那么90DCF DFC x ∠=∠=︒-,则1802EFC x ∠=︒-,进一步证得9018022703EFD x x x ∠=︒-+︒-=︒-,即可证得3DFE AEF ∠=∠,故△错误.【详解】解:△△F 是AD 的中点,△AF =FD ,△在ABCD 中,AD =2AB ,△AF =FD =CD ,△△DFC =△DCF ,△//AD BC ,△△DFC =△FCB ,△△DCF =△BCF ,△△DCF =12△BCD ,故△正确;△延长EF ,交CD 延长线于M ,△四边形ABCD 是平行四边形,△//AB CD ,△△A =△MDF ,△F 为AD 中点,△AF =FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠∠⎧⎪⎨⎪∠∠⎩=== , △△AEF △△DMF (ASA ),△FE =MF ,即12FE EM =,△AEF =△M , △CE △AB ,△△AEC=90°,△△AEC =△ECD =90°, △12FC EM =△12FE EM =, △CF =EF ,故△正确;△△EF =FM ,△EFC CFM S S =,△2ECM CFE S S =△△,△MC >BE ,△BEC ECM S S △△<△2BEC CEF S S △△<故△正确;△设△FEC =x ,△CE △AB ,//AB CD ,△90ECD BEC ∠=∠=︒,△F 是EM 的中点,△FC =FE ,△△FCE =x ,△90DCF x ∠=︒-,△//AD BC△△FCB =△DFC△△DCF =△FCB ;△△DCF =△DFC△90DCF DFC x ∠=∠=︒-△1802EFC x ∠=︒-,△9018022703EFD x x x ∠=︒-+︒-=︒-,△90AEF x ∠=︒-,△△DFE =3△AEF ,故△错误.综上所述正确的是:△△△.故选:C .【点睛】此题主要考查了平行四边形的性质、全等三角形的判定与性质、直角三角形性质等知识,能准确找到边与边之间、角与角之间的关系是解答此题的关键.20.A【分析】过C 作HC CD ⊥于C ,使CH BD =,连接DH ,FH ,根据SAS 证明BED CFH ≅△△,得出FH DE =,则DE DF FH DF +=+,当FH DF +的最小时,DE DF +最小,当D 、F 、H 在同一条直线时,FH DF +最小,根据勾股定理算出结果即可.【详解】解:如图,过C 作HC CD ⊥于C ,使CH BD =,连接DH ,FH ,90HCA ACD ∴∠+∠=︒,150BDC ∠=︒,18015030DBC DCB ∴∠+∠=︒-︒=︒,()ABD ACD ABC ACB DBC DCB ∴∠+∠=∠+∠-∠+∠,△ABC 为等边三角形,60ABC ACB ∴∠=∠=︒,AB AC =,1203090ABD ACD ∴∠+∠=︒-︒=︒,HCA ABD ∴∠=∠, =AE AF ,BE CF ∴=,△在BED 和FCH 中BE CF HCA ABD CH BD =⎧⎪∠=∠⎨⎪=⎩,()SAS BED CFH ∴≅△△,FH DE ∴=,DE DF FH DF ∴+=+,∴当FH DF +的最小时,DE DF +最小,∴当D 、F 、H 在同一条直线时,FH DF +最小,在Rt DCH △中,3CH =,4DC =,5DH ∴,△DE DF +的最小值是5,故A 正确.故选:A .【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,勾股定理,余角的性质,解题的关键是作出辅助线,证明BED CFH ≅△△.21.7或8【分析】根据等腰三角形的性质,分两种情况:△当腰长为2时,△当腰长为3时,解答出即可.【详解】解:根据题意,△当腰长为2时,周长=2+2+3=7;△当腰长为3时,周长=3+3+2=8,故答案为:7或8.【点睛】本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.22.3m ﹣18.【分析】先根据三角形三边关系确定m 的取值范围,然后利用二次根式的性质化简即可.【详解】△三角形的三边长分别为3、m 、5,△2<m <8,=|2﹣m |﹣2|m ﹣8|=m ﹣2﹣2(8﹣m )=3m ﹣18.故答案为:3m ﹣18.【点睛】本题主要考查三角形三边关系和二次根式的性质,掌握三角形三边关系和二次根式的性质是解题的关键.23.112.5【分析】根据正方形的性质,可以得到△PBC 的度数,再根据等腰三角形的性质和三角形内角和,求得△BPC 的度数,即可求得△DPC 的度数.【详解】解:△点P 是正方形ABCD 的对角线BD 上一点,△△PBC =45°,△BP =BC ,△△BPC =△BCP =180452︒-︒=67.5°, △△DPC =180°-△BPC =112.5°,故答案为:112.5.【点睛】本题考查正方形的性质、等腰三角形的性质,利用数形结合的思想解答是解答本题的关键.24.25︒或25度【分析】根据三角形内角和,得A ∠的角度,根据折叠得,A F ∠=∠,ADE EDF ∠=∠;又根据EF BC ∥,得90FEC C ∠=∠=︒,再根据三角形内角和,求出EGF ∠,最后根据三角形的外角和,即可求出ADE ∠.【详解】△ABC 中,90C ∠=︒,70B ∠=︒△18020A C B ∠=︒-∠-∠=︒△DEF 是DEA △折叠得到的△20A F ∠=∠=︒,ADE EDF ∠=∠△EF BC ∥△90FEC C ∠=∠=︒△18070EGF FEC F ∠=︒-∠-∠=︒△70EGF DGC ∠=∠=︒△70A ADG ∠+∠=︒△270A ADE ∠+∠=︒△25ADE ∠=︒.故答案为:25︒或25度.【点睛】本题考查三角形的知识,解题的关键是掌握三角形内角和、外角和定理. 25.26320x x --=【分析】先表示出BC 的长,再利用勾股定理建立方程即可.【详解】解:由题可知 1丈=10尺,门的对角线距离恰好为1丈,∴门的对角线距离恰好为10尺,△高比宽多6尺,设门高 AB 为x 尺,△()6BC x =-尺,△可列方程为:()222610x x +-=,整理得:26320x x --=故答案为:26320x x --=.【点睛】本题属于数学文化题,考查了勾股定理及其应用,解决本题的关键是读懂题意,能将文字语言转化为几何语言,能用含同一个未知数的式子表示出直角三角形的两条直角边,再利用勾股定理建立方程即可.26.118【分析】根据轴对称的性质得出角的度数,进而利用三角形外角的性质解答即可.【详解】解:∵△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,∴∠DCA=∠ACB=18°,∠BAC=∠BAE,∵∠ABC=32°,∴∠BAC=180°-18°-32°=130°=∠BAE,∴∠EAC=360°﹣∠BAC﹣∠BAE=360°﹣130°﹣130°=100°,∴∠CFE=∠ACD+∠EAC=18°+100°=118°,故答案为:118°.【点睛】此题考查轴对称的性质,关键是根据轴对称的性质求出相关角的度数.27.(6)(3)(5)【分析】利用全等图形的概念可得答案.【详解】解:(1)与(6)是全等图形,(2)与(3)(5)是全等图形,故答案为:(6),(3)(5).【点睛】本题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.28.110°##110度【分析】根据等腰三角形性质,可得△B=△ACB=70°,再根据平行线的性质,即可求出△BCD的度数.【详解】解:△AB=AC,△A=40°,△△B=△ACB=12(180°-40°)=70°,△CD AB∥,△△B+△BCD=180°,△△BCD=110°.故答案为:110°【点睛】此题主要考查了等腰三角形的性质和平行线的性质,解题关键是熟练运用已知条件,进行正确的推理计算.29.3°##3度【分析】先利用外角等于不相邻的两个内角之和,以及角平分线的性质求△A1=12△A,再依此类推得,△A 2=212△A ;…△A 5=512 △A ;找出规律,从而求△A 5的值. 【详解】△BA 1C +△A 1BC =△A 1CD ,2△A 1CD =△ACD =△BAC +△ABC ,△2(△BA 1C +△A 1BC )=△BAC +△ABC ,2△BA 1C +2△A 1BC =△BAC +△ABC ,而2△A 1BC =△ABC ,△2△BA 1C =△BAC ,同理,可得2△BA 2C =△BA 1C ,2△BA 3C =△BA 2C ,2△BA 4C =△BA 3C ,2△BA 5C =△BA 4 C ,△△BA 5C =12 △BA 4C =14△BA 3C =18 △BA 2C =116 △BA 1C =132 △BAC =96°÷32=3°, 故△A 5=3°.故答案为:3°.【点睛】此题考查三角形的外角性质,解题关键在于找到规律30.549π-【分析】由15AB =,12BC =,9AC =,得到222AB BC AC =+,根据勾股定理的逆定理得到ABC 为直角三角形,于是得到ABC 的内切圆半径1291532+-==,图中阴影部分的面积等于直角三角形的面积减去圆的面积,分别利用它们的计算公式即可得到图中阴影部分的面积【详解】△ 15AB =,12BC =,9AC =,△ 222AB BC AC =+,△ ABC 为直角三角形,△ ABC 的内切圆半径1291532+-==, △ 图中阴影部分的面积2112935492ππ=⨯⨯-⋅=-. 故答案为549π-【点睛】本题考查了三角形的内切圆与内心、勾股定理的逆定理,对于不规则图形的面积要灵活转化为规则图形的求法是解题的关键31 【分析】过点A 作AC BC ⊥于C ,根据坡度与坡角的概念得1tan 2AC BC α==,设AC x =,2BC x =,根据勾股定理求出AB 的长,再根据锐角三角函数的概念即可求出答案.【详解】过点A 作AC BC ⊥于C ,△AB 的坡度1:2i =, △1tan 2AC BC α==, 设AC x =,2BC x =,△AC BC ⊥,△AB ,△sinAC AB α==【点睛】本题考查了坡度坡角的知识与解直角三角形的知识,熟练掌握坡度坡角的概念与勾股定理的应用是解本题的关键.32.12米【详解】解:如图所示,AC=6米,BC=4.5米,由勾股定理得,AB= =7.5(米). 故旗杆折断前高为:4.5+7.5=12(米).故答案为:12米.33. 2 【分析】△连接,OA OB ,易证AOB 是等边三角形,弦AB 长为2,2OA OB ==,即可得到答案;△先证90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,再用勾股定理求出AE 即可.【详解】解:△连接,OA OB ,△30,ADB ∠=︒△60AOB ∠=︒,△OA OB =,△AOB 是等边三角形,△弦AB 长为2,△2OA OB ==,即O 的半径长为2,故答案为:2△△15ADC ∠=︒,△230AOC ADC ︒∠=∠=,△90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,△60BAO ∠=︒,△2OA OE ==,△30OAE AEB ︒∠=∠=,△90BAE BAO OAE ∠=∠+∠=︒,△AE ==即PA PB+的最小值是故答案为:【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键.34.6【分析】利用勾股定理求解出另一条直角边,即可求解.【详解】解:△直角三角形斜边长是5,一直角边的长是3,△.×3×4=6.该直角三角形的面积S=12故答案为6.【点睛】本题考查了了勾股定理,解题的关键是掌握利用勾股定理求直角边.35.36°【分析】如图所示,△ABF中,根据内角和外角的关系,△2=△A+△B;△EDG中,△1=△D+△E;根据三角形内角和等于180°,得到△1+△2+△C=180度.于是△A+△B+△C+△D+△E=180°,由于五个角的度数是相同,即可求得每一个角的度数.【详解】△△2=△A+△B;△1=△D+△E,△1+△2+△C=180°,△△A+△B+△C+△D+△E=180°,△五个角的度数是相同,则每一个角的度数都是180°÷5=36°,故答案为36°【点睛】本题考查三角形的外角性质及三角形内角和定理,结合三角形内角和外角的关系,将所有角转化到一个三角形内,体现了数形结合思想和转化思想在解决数学问题时的魅力.36.1或3。
初中数学直角三角形斜边中线性质应用专项练习题(附答案详解)
初中数学直角三角形斜边中线性质应用专项练习题(附答案详解)1.如图,在ABC 中,∠B=60°,CD 为AB 边上的高,E 为AC 边的中点,点 F 在BC 边上,∠EDF=60°,若 BF=3,CF=5,则AC 边的长为 .2.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F .(1)若AB =2,AD =3,求EF 的长;(2)若G 是EF 的中点,连接BG 和DG ,求证:DG =BG .3.如图所示,在ABC ∆中,BD AC ⊥于D ,CE AB ⊥于E ,点M ,N 分别是BC ,DE 的中点,求证:MN DE ⊥.4.△ABC 中,AC=BC ,∠ACB=90°,CD=BD ,∠1=∠2,求证:CM ⊥AD 。
5.如图所示,ABC ∆中,90BAC ∠=︒,延长BA 到D ,使12AD AB =,点E 是AC 的中点,求证:2BC DE .6.如图所示,CDE ∆中,135CDE ∠=︒,CB DE ⊥于V ,EA CD ⊥于A ,求证:2CE AB =.7.如图所示,四边形ACBD 中,90ADB ACB ∠=∠=︒,60DBC ∠=︒,点E 是AB 的中点,求DCE ∠的度数.8.如图所示,90DBC BCE ∠=∠=︒,M 为DE 的中点,求证:MB MC =.9.如图所示,ABC ∆中,,90,AB AC BAC D =∠=为BC 延长线上一点,过D 作DE AD ⊥,且DE AD =,求DBE ∠的度数.10.如图所示,ABC ∆中,,90,AB AC BAC D =∠=是AC 的中点,,DE DF DE ⊥交BA 的延长线于点,E DF 交AC 的延长线于点F ,求证:BE AF =.11.如图所示,ABC ∆中,,90,AB AC BAC D =∠=为BC 的中点,G 为AC 上一点,AE BG ⊥于点E ,连结DE .求证:2BE AE DE -=.12.如图所示,BCD ∆和BCE ∆中,90BDC BEC ∠=∠=︒,O 为BC 的中点,BD ,CE 交于A ,120BAC ∠=︒,求证:DE OE =.13.如图所示,E ,F 分别是正方形ABCD 的边AD ,CD 上的两个动点,且AE DF =,BE 交AF 于点H ,2AB =,连DH .求线段DH 长度的最小值.14.如图所示,ABC ∆中,2B A ∠=∠,CD AB ⊥于D ,E 为AB 的中点,求证:2BC DE =.15.如图所示,四边形ACBD 中,90ADB ACB ∠=∠=︒,60DBC ∠=︒,点E 是AB 的中点,求CE CD的值.16.如图,正方形ABCD 中,对角线AC 上有一点P ,连接BP 、DP ,过点P 作PE ⊥PB 交CD 于点E ,连接BE .(1)求证:BP=EP;(2)若CE=3,BE=6,求∠CPE的度数;(3)探究AP、PC、BE之间的数量关系,并给予证明.参考答案1.【解析】【分析】如图(见解析),先根据直角三角形的性质、勾股定理得出,4D B F D ==,再根据等边三角形的判定与性质得出4,60DH BDH =∠=︒,然后根据三角形的中位线定理、平行线的性质得出60EHD BDH ∠=∠=︒,从而可得EHD B ∠=∠,BDF HDE ∠=∠,最后根据三角形全等的判定定理与性质得出DE DF ==据此根据直角三角形斜边上的中线等于斜边的一半即可得.【详解】如图,过点D 作DG BC ⊥于点G3,5BF CF ==8BC BF CF ∴=+=在Rt BCD 中,60B ∠=︒,9030BCD B ∠=︒-∠=︒142BD BC ∴== 在Rt BDG 中,60B ∠=︒,9030BDG B ∠=︒-∠=︒12,2BG BD DG ∴====1GF BF BG ∴=-=,DF ==取BC 的中点H ,连接DH 、EH142DH BH BC BD ∴==== BDH ∴是等边三角形60BDH ∴∠=︒点E 是AC 边的中点∴EH 是ABC 的中位线//EH AB ∴60EHD BDH ∴∠=∠=︒60EHD B ∴∠=∠=︒又60BDF FDH BDH ∠+∠=∠=︒,60HDE FDH EDF ∠+∠=∠=︒BDF HDE ∴∠=∠在HDE 和BDF 中,EHD B DH DB HDE BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩()HDE BDF ASA ∴≅13DE DF ∴==则在Rt ACD △中,12DE AC =,即2213AC DE == 故答案为:213.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质、三角形的中位线定理等知识点,通过作辅助线,构造等边三角形和全等三角形是解题关键. 2.(1)EF 2;(2)见解析【解析】【分析】(1)由AE 平分∠BAD ,可得∠DAF =45°,从而∠F =45°,可证△ADF ,△ECF 都是等腰直角三角形,求出CF 的长,最后根据勾股定理即可求出EF 的长;(2)连结CG ,易证∠BEG =∠DCG =135°,根据“SAS ”可证△BEG ≌△DCG ,从而可得DG =BG .【详解】解:(1)在矩形ABCD 中∵AE 平分∠BAD ,∴∠DAF =45°, ∴∠F =45°,∴△ADF,△ECF都是等腰直角三角形,∴DF=AD=3, CF=DF-CD= 1.在Rt△CEF中,∴EF=2.(2)连结CG,∵G是EF中点,∴CG⊥EF,∠ECG=∠CEF=45°.∴∠BEG=∠DCG=135°.∴EG=12EF=CG.∵AB=BE=CD,∴BE=CD.∴△BEG≌△DCG,∴DG=BG.【点睛】本题考查了矩形的性质,角平分线的定义,等腰直角三角形的判定与性质,勾股定理,以及全等三角形的判定与性质,证明△ADF,△ECF都是等腰直角三角形是解(1)的关键,证明△BEG≌△DCG是解(2)的关键.3.见解析【解析】【分析】连接ME、MD,根据直角三角形斜边上的中线等于斜边的一半可得MD=ME=12BC,再根据等腰三角形三线合一的性质证明即可;【详解】证明:连结MD ,ME ,点M 分别是Rt EBC ∆和Rt DBC ∆斜边的中点,MD ME ∴==1BC 2,又N 是DE 的中点, MN DE ∴⊥.【点睛】本题主要考查直角三角形和等腰三角形的性质,遇到直角三角形斜边上的中点时,往往连结斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得DM =EM 是解题的关键. 4.见解析.【解析】【分析】 过点C 作CE ⊥AB 交AB 于点E ,交AD 于点F ,AD 与CM 交于点G ,根据∠B=∠BCE=45°,CD=BD ,∠1=∠2证明△CDF ≌△BDM ,得到CF=BM ,然后再由AC=BC 及通过SAS 证明△ACF ≌△CBM ,得到∠CAF=∠BCM ,再根据角之间的等量代换可证明∠CFG+∠ECM=90°,问题得证.【详解】证明:过点C 作CE ⊥AB 交AB 于点E ,交AD 于点F ,AD 与CM 交于点G ,∵AC=BC ,∠ACB=90°,∴∠B=∠BCE=45°,在△CDF 和△BDM 中,,∴△CDF ≌△BDM (ASA ),∴CF=BM ,在△ACF 和△CBM 中,,∴△ACF ≌△CBM (SAS ),∴∠CAF=∠BCM,∵∠BCM +∠ECM =∠CAF+∠EAF=45°,∴∠ECM =∠EAF,∵∠AFE=∠CFG,且∠AFE+∠EAF=90°,∴∠CFG+∠ECM=90°,即∠CGF=90°,∴CM⊥AD.【点睛】本题主要考查等腰直角三角形的性质、全等三角形的判定和性质,正确作出辅助线,寻找合适的全等三角形是解题关键,有一定难度.5.见解析【解析】【分析】可知EF是△ABC的中位线,根据三角形中位线的性质,可得EF∥AB,EF=12AB,又由AD=12AB,即可得AD=EF,根据有一组对边平行且相等的四边形是平行四边形,可证得四边形AEFD是平行四边形.DE=AF,由在Rt△ABC中,∠BAC=90°,点E边BC的中点,根据直角三角形斜边的中线等于斜边的一半,可求得AF=12BC.所以DE=2BC.【详解】证明:取BC的中点F,连EF,AF,∵点E、F分别为边BC,AC的中点,即EF是△ABC的中位线,∴EF∥AB,EF=12 AB,即EF∥AD,∵AD=12 AB,∴EF=AD,∴四边形AEFD是平行四边形;∴AF=DE.∵在Rt△ABC中,∠BAC=90°,点E边BC的中点,∴AF=12 BC,∵四边形AFED是平行四边形,∴BC=2DE.【点睛】此题考查了平行四边形的判定与性质、三角形中位线的性质、直角三角形斜边上的中线的性质.灵活运用中点的有关性质解题是解题关键.6.见解析【解析】【分析】取CE的中点F,连接AF、BF,根据直角三角形斜边上的中线等于斜边的一半可得AF=EF=BF=CF,根据三角形的内角和等于180°求出∠ACE+∠BEC=45°,然后求出∠AEC+∠BCE=135°,再根据等腰三角形两底角相等求出∠BFC+∠AFE=90°,然后求出∠AFB=90°,从而判断出△ABF是等腰直角三角形,然后根据等腰直角三角形的直角边等于斜边的2可得AF=2AB,然后证明即可.【详解】证明:如图,取CE的中点F,连接AF、BF,∵CB⊥DE,EA⊥CD,∴AF=EF=BF=CF=12 CE,在△CDE中,∵∠CDE=135°,∴∠ACE+∠BEC=180°-135°=45°,∴∠AEC+∠BCE=(90°-∠ACE)+(90°-∠BEC)=180°-45°=135°,∴∠BFC+∠AFE=(180°-2∠BCE)+(180°-2∠AEC)=360°-2(∠AEC+∠BCE)=360°-2×135°=90°,∴∠AFB=180°-(∠BCF+∠AFE)=180°-90°=90°,∴△ABF是等腰直角三角形,∴AF=22AB,∴CE=2AF=2×22AB=2AB,即CE=2AB.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形两底角相等的性质,三角形的内角和定理,等腰直角三角形的判定与性质,熟记各性质是解题的关键,作出图形更形象直观.7.30【解析】【分析】连接DE,根据直角三角形的性质得到DE=12AB=BE,CE=12AB=BE,根据三角形的外角性质计算即可;【详解】证明:连接DE,∵∠ACB=∠ADB=90°,E是AB的中点,∴DE=12AB =BE ,CE =12AB =BE , ∴ED =EC ,∠EDB =∠EBD ,∠ECB =∠EBC ,∴∠DEC =∠AED +∠AEC =2∠DBC =120°,∵ED =EC ,∴∠DCE =12×(180°-120°)=30°; 【点睛】本题主要考查直角三角形和等腰三角形的性质,遇到直角三角形斜边上的中点时,往往连结斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得DE =CE 是解题的关键. 8.见解析【解析】【分析】延长BM 交CE 于N ,易得DBM ENM ∆∆≌,BM =MN ,由直角三角形斜边中线性质可得CM =MN =BM .【详解】证明:延长BM 交CE 于N ,∵90DBC BCE ∠=∠=︒,∴CE ∥DB ,∴∠D =∠E ,在DBM ∆和ENM ∆中D=E DM=EMDMB=EMN ∠∠⎧⎪⎨⎪∠∠⎩∴DBM ENM ∆∆≌,BM MN =∴,∵∠BCE =90°,12CM BN BM ∴==. 【点睛】本题主要考查了直角三角形斜边中线的性质,解题的关键是正确作出辅助线.构造直角三角形.9.45°【解析】【分析】分别过点A 、E 分别作于AF BD ⊥于F ,EG BD ⊥于G ,由等腰直角三角形的性质可得AF BF CF ==,由同角的余角相等得FAD FDE ∠=∠,结合已知可证ADF DEG ∆∆≌ ,由全等三角形的对应边相等得DF=EG ,AF=DG ,则EG FD FG GD FG AF FG BF BG ==+=+=+= ,即△BEG 为等腰直角三角形,即可得DBE ∠的度数.【详解】解:分别过点A 、E 分别作于AF BD ⊥于F ,EG BD ⊥于G ,则AF BF CF ==,90FAD ADF ADF FDE ∠+∠=∠+∠=︒,∴FAD FDE ∠=∠,AD DE ⊥ AD DE =,ADF DEG ∴∆∆≌,DF EG ∴=,AF DG =,EG FD FG GD FG AF FG BF BG ∴==+=+=+=,∴△BEG 为等腰直角三角形,45DBE BEG ∴∠=∠=︒.故答案为45°. 【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,本题中作辅助线证出△BEG 为等腰直角三角形是解题的关键.10.详见解析【解析】【分析】连结AD ,根据等腰直角三角形的性质得AD ⊥BC ,AD=BD ,由同角的余角相等得B FAD ∠=∠ ,证明BDE ADF ∆∆≌ ,即可得出结论.【详解】证明:连结AD ,AB AC =,90BAC ∠=︒,BD DC = AD BC ∴⊥AD BD ∴=90B BAD BAD FAD ∠+∠=∠+∠=︒B FAD ∴∠=∠BDE BDA ADE ∠=∠+∠ FDA FDE ADE ∠=∠+∠ 90BDA FDE ∠=∠=︒ BDE FDA ∴∠=∠BDE ADF ∴∆∆≌BE AF ∴=.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.11.详见解析【解析】【分析】连结AD ,过点D 作DF DE ⊥交BG 于点F ,由等腰直角三角形的性质可得AD BD =,AD ⊥BC ,由等角的余角相等得ADE BDF ∠=∠,DAE DBF ∠=∠,根据ASA 可证出ADE BDF ∆∆≌ ,由全等三角形的对应边相等得AE=BF ,DE=DF ,则△EDF 为等腰直角三角形,即可得BE 2EF BF BE AE DE ∴=-=-=.【详解】 证明:连结AD ,过点D 作DF DE ⊥交BG 于点F ,∵,90,AB AC BAC D =∠=为BC 的中点,∴AD BD =,AD ⊥BC ,∵DF DE ⊥,∠BAC=90°,AE BG ⊥∴ADE BDF ∠=∠,DAE DBF ∠=∠, ∴ADE BDF ∆∆≌(ASA )∴AE=BF ,DE=DF ,∵DF DE ⊥∴2EF DE =∴BE EF 2BE AE BF DE -=-==. 【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,本题中求证ADE BDF ∆∆≌是解题的关键.12.见解析【解析】【分析】连接OD.因为∠BDC=∠BEC=90°,O 为BC 的中点;所以有OE OD =OB=OC ,进而∠COD=2∠CBD ,∠BOE=2∠BCE ;又因为∠BAC=120°;所以有∠CBD+∠BCE=60°,∠COD+∠BOE=120°;所以∠DOE=60°;从而证得△DOE 是等边三角形,所以DE=OE.【详解】连OD ,∵O为BC的中点,∵OE OD=OB=OC,∴∠COD=2∠CBD,∠BOE=2∠BCE.∵∠BAC=120°,∴∠CBD+∠BCE=60°,∴∠COD+∠BOE=120°,∴∠DOE=60°,∴△DOE是等边三角形,∴DE=OE.【点睛】此题考查了等边三角形的判定和性质,直角三角形斜边的中线等于斜边的一半,等腰三角形的性质及三角形外角的性质,解答此题的关键是要掌握分析题中的各种信息条件,找到相应的知识来解决问题,然后根据以往做题经验找出解决问题的方法.13.DH51【解析】【分析】根据正方形性质可得AB=DA,∠BAD=∠ADF=90°,又根据AE=DF,利用SAS可证得△ABE≌△DAF,于是∠ABE=∠DAF;由于∠DAF+∠BAH=∠ABE+∠BAH=90°,从而∠AHB=90°,取AB的中点O,连接OH、OD,则OH=12AB=1,在Rt△AOD中,根据勾股定理计算出OD的值;根据三角形的三边关系,可得OH+DH>OD,于是当O、D、H三点共线时,DH的长度最小为OD-OH,据此解答.【详解】解:∵四边形ABCD是正方形,∴AB=DA,∠BAD=∠ADF=90°,又∵AE=DF,∴∠ABE=∠DAF.∴∠DAF+∠BAH=∠ABE+∠BAH=90°,∴∠AHB=90°,取AB的中点O,连OH、OD,∴112OH AB==,225OD OA AD=+=,在OHD∆中有DH OD OH>-,即51DH>-.故O、H、D三点共线时DH最小,∴DH最小值为51-.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边的中线等于斜边的一半,勾股定理及三角形三条边的关系,确定出点H的位置是解答本题的关键.14.见解析【解析】【分析】取AC中点F,连接EF、DF,则EF为△ABC的中位线,结合条件可得到∠FEA=2∠A,结合直角三角形的性质可得到∠FDE=∠EFD,得到DE=EF,可得出结论.【详解】证明:取AC的中点F,连EF,DF,则EF为中位线,∴∠FEA=∠B=2∠A ,在直角三角形ACD 中,F 是斜边BC 的中点,∴DF=CF=AF ,∴∠FDA=∠A ,即有2∠FDA=∠FEA ,∵∠FEA=∠FDA+∠DFE ,∴∠DFE=∠FDA ,∴DE=EF ,∴BC=2DE .【点睛】本题考查了三角形中位线的判定与性质,直角三角形斜边的中线等于斜边的一半,三角形外角的性质,等腰三角形的判定等知识,正确作出辅助线是解答本题的关键.15.33CE CD = 【解析】【分析】根据直角三角形斜边上中线等于斜边的一半,可得出DE=CE=BE ,根据三角形外角的性质及等腰三角形的性质可求出30DCE ∠=︒,过E 作EM CD ⊥于M ,设1EM =,可求出CE 、CM 、CD 的值.【详解】证明:连结DE ,在Rt △ACB 和Rt △ADB 中,∵E 是AB 的中点,∴12DE AB =,12CE AB =, ∴DE CE EB ==,∴2DEA DBE ∠=∠,2AEC EBC ∠=∠,∴2120DEC DBC ∠=∠=︒,30DCE ∠=︒.过E 作EM CD ⊥于M ,设1EM =,则2CE =,CM =,∴CD =,∴CE CD =【点睛】本题考查了含30°角的直角三角形的性质,三角形外角的性质,等腰三角形的性质,勾股定理等知识,正确作出辅助线是解答本题的关键.16.(1)证明见解析;(2)∠EBC=30°;(3)BE 2=AP 2+PC 2,理由见解析.【解析】【分析】(1)利用正方形的性质得出△CBP ≌△CDP ,得出BP =DP ,利用四边形的内角和,得出EP =DP ,从而得出结论;(2)取BE 的中点F ,得出△CEF 是等边三角形,利用撒尿行内角和定理,得出∠EPC =30°; (3)过点P 作PC /⊥AC ,得出△BPC ≌△EPC /, 近而得出四边形ABEC /为平行四边形,在Rt △APC /中,利用勾股定理得出结论即可.【详解】(1)∵ 四边形ABCD 是正方形,∴CB =CD ,AC 平分∠BCD , 即 ∠BCP =∠DCP , 又CP 是公共边 所以△CBP ≌△CDP ∴ BP =DP , ∠PBC =∠PDC∵ ∠BPE -∠BCE =90°,∠BPE +∠BCE +∠PBC +∠PEC =360°∴∠PBC +∠PEC =90°∵ ∠PED +∠PEC =90°∴∠PED =∠PBC ∴∠PED =∠PDC ∴EP =DP ,∴ BP =DP .(2)取BE 的中点F ,连CF ,则CE =CF -EF =3, ∴△CEF 是等边三角形,则∠BEC =60°,∵∠BCE =90°,∴∠EBC +∠BEC =90°, ∴∠EBC =30°, ∵∠EBC +∠BCP =∠PEB +∠EPC , ∠PEB =∠BCP =45°∴∠EBC =∠EPC =30°﹒(3)过点P作PC/⊥AC,交CD的延长线于C/,得△BPC≌△EPC/, CP=C/P,BC=EC/, ∵AB=BC,∴AB=EC/∵AB∥EC/∴四边形ABEC/为平行四边形,∴AC/=BE,∵在Rt△APC/中,C/A2=AP2+C/P2∴BE2=AP2+PC2﹒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7已知:如图,在Rt△ADC中,∠D=90°,∠A=,∠CBD=,AB=a.用含a及、的三角函数的式子表示CD的长.
8如图,在△ABC中,∠A=300, ,BC= ,求AB的长。
9如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)
4已知:如图,Rt△ABC中,∠D=90°,∠B=45°,∠ACD=60°.BC=10cm.求AD的长.
5如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)
A. B. C. D.
2如图,△ABC中,∠A=45°,∠B=30°,AC=10cm.求AB及BC的长.
3如图,△ABC中,∠A=30°,∠B=135°,AC=10cm.求AB及BC的长.
4已知,在△ABC中,∠A=600,∠B=450,AC=2,则AB的长为。
5Байду номын сангаас 中, ,则 等于( )
A. B. C. D.
2如图,在高楼前 点测得楼顶的仰角为 ,向高楼前进60米到 点,又测得仰角为 ,则该高楼的高度大约为( )
A.82米B.163米C.52米D.70米
3如图,在某建筑物AC上,挂着“美丽家园”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为 ,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为 ,求宣传条幅BC的长,(小明的身高不计,结果精确到0.1米)
(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)
SSS
1在△ABC中,若BC= ,AB= ,AC=3,则cosA=________.
四边形
1如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=()(A)4(B)5(C) (D)
10周末,小亮一家在东昌湖游玩,妈妈在湖心岛P处观看小亮与爸爸在湖中划船(如图),小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)?
ASA
1如图,在△ABC中,∠A=30°,∠B=45°,AC= ,求AB的长,
4“曙光中学”有一块三角形形状的花圃ABC,现可直接测量到 ,AC=40米,BC=25米,请你求出这块花圃的面积。
5已知:如图,四边形ABCD中,∠A=60 ,CB⊥AB,CD⊥AD,CB=2,CD=1.求:AC的长.
SSA
1如图,△ABC中,∠C=90º,点D在AC上,已知∠BDC=45º,BD=10 ,AB=20.求∠A的度数.
2已知:△ABC中,∠A=30°,AC=10, ,求AB的长.
3已知:△ABC中,∠A=45 ,AB= ,BC=2,求AC及∠ACB.
2如图公园里有一块形如四边形ABCD的草地,测得BC=CD=10米,∠B=∠C=120°,∠A=45°.请你求出这块草地的面积.
3如图,已知四边形ABCD中,AB=BC=2,∠ABC=1200,∠BAD=750,∠D=600,求CD的长。
4已知:如图,四边形ABCD中,∠A=∠C=90°,∠D=60°, .AB=3,求BC的长.
解斜三角形
SAS
1重庆市“旧城改造”中,计划在市内一块如图所示的三角形空地上种植某种草皮,以美化环境。已知这种草皮每平方米售价 元,则购买这种草皮至少需要()
A. 元B. 元
C. 元D. 元
2在△ABC中,∠A=120°,AB=4,AC=2,则 的值是( )
A. B. C. D.
AAS
1如图,在 中 , , ,则 的长是( )