最新版高考高三数学小题分层训练原卷含解析——模块15 简单几何体
高三数学立体几何第15课时作业练习 试题

心尺引州丑巴孔市中潭学校第15课时平面与平面垂直分层训练1.一条直线与两个平面所成角相等, 那么这两个平面的位置关系是( )A.平行B.相交C.平行或相交D.以上都不对2.设m 、n是两条不同的直线, α、β、γ①假设m⊥α, n //α, 那么m⊥n ;②假设α//β, β//γ, m⊥α, 那么m⊥γ;③假设m //α, n //α, 那么m // n ;④假设α⊥γ, β⊥γ, 那么α//β.A. ①②B. ②③C. ③④D. ①④3.在空间四边形ABCD中AD⊥BC,BD⊥AD,且三角形BCD是锐角三角形,那么必有( )A.平面ABD⊥平面ADCB. 平面ABD⊥平面ABCC. 平面ADC⊥平面BCDD. 平面ABC⊥平面BCD4.平面α⊥β, α∩β= l , P是空间一点, 且P到α、β的距离分别是1、2 , 那么点P到l 的距离为_____________ .5.点A(3 , 2) , B(-2 , -3), 沿y轴把直角坐标平面折成90°的二面角后, AB的长为____________ .6.如图, α⊥β,α∩β= l, ABα, AB⊥l,BCβ, DEβ, BC⊥DE , 求证: AC⊥DE .7在正方体ABCD-A1B1C1D1中, 求证: 平面B1AC⊥面B1D1DB .拓展延伸⊥平面ABC,DB⊥平面ABC,EC、DB在平面ABC的同侧,M为EA的中点,CE=CA=2BD。
求证:(1).DE=DA;(2).平面BDM⊥平面ECA(3).平面DEA⊥平面ECAABECDαβlDAC1DCEAMB.。
高三数学-2018年高考数学小题训练卷(15) 精品

高考数学小题训练卷(15)一、选择题:(本大题共12小题;每小题5分,共60分).(1)已知集合}{}{圆抛物线==,N M ,则N M 的元素个数为A .0个B .1个C .2个D .4个(2)函数)(x f y =的值域为],[b a ,则)(a x f y +=的值域为A .[2b a a +,]B .[a b -,0]C .],[b aD .[—b a a +,](3)已知函数xx f ⎪⎭⎫⎝⎛=21)(,其反函数为)(x g ,则)(2x g 是A .偶函数,在区间)0,(-∞上单调递增B .奇函数,在区间)0,(-∞上单调递减C .奇函数,在区间),0(+∞上单调递减D .偶函数,在区间),0(+∞上单调递增(4)设复数z 满足关系11=+z z ,则200320031zz +的值是A .1 B .—1 C .2 D .—2(5)双曲线1422=+ky x 的离心率)2,1(∈e ,则k 的取值范围是 A .(0,12)B .(8,20)C .(—12,0)D .(—20, —8)(6)给出如下几个变换:①横坐标伸长到原来的2倍,纵坐标不变. ②横坐标缩短到原来的21倍,纵坐标不变.③向左平行移动3个单位长度. ④向右平行移动3个单位长度. ⑤向左平行移动23个单位长度.则由函数x y cos 2=的图象得到)32cos(2+=x y 的图象,可实施的方案为A .①→③ B .②→③ C .②→④ D .②→⑤(7)将两邻边长分别为3和4的长方形ABCD 沿对角线AC 折成一个二面角,则四点D C B A ,,,所共球的面积是A .100πB .25πC .20πD .15π(8)有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有A .36种B .48种C .72种D .96种(9)如图,已知正四棱锥ABCD V -的侧棱长与底面边长相等,E 是VA 的中点,O 是底面中心,则异面直线EO 与BC 所成的角是A .6πB .4πC .3πD .2π(10)若b a ,是实数,则b a >是||b a >的( )条件ABCVE ODA .充分非必要B .必要非充分下C .充要D .既非充分也非必要(11)与圆5)5(22=++y x 相切,且在两坐标轴上截距相等的直线有A .6条B .4条C .3条D .2条(12)正方体的直观图如图所示,则其展开图是二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上(13)在等差数列}{n a 中,若,10,2963741=++=++a a a a a a 则=++852a a a .(14)在103)1)(1(x x +-的展开式中,5x 的系数是 .(15)某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有____________种.(以数字作答)(16)下列四个命题.①若函数)(x f 满足)()(x a f a x f -=-,则函数)(x f 的图象关于y 轴对称;②若函数)(x f 满足)()(x a f a x f -=-,则函数)(x f 的图象关于直线a x =对称; ③函数=y )(a x f -与)(x a f y -=的图象关于y 轴对称;④函数=y )(a x f -与)(x a f y -=的图象关于a x =对称.其中正确的...命题是 (注:把你认为正确的命题的序号都填上).答题卡13.____________________________; 14.______________________; 15.____________________________; 16._______________________;参考答案一、选择题:本大题共12小题;每小题5分,共60分.二、填空题:本大题共4小题;每小题4分,共16分.(13)6(14)218(15)120(16)①④。
高三数学立体几何练习题及答案

高三数学立体几何练习题及答案第一题:已知一个长方体的长、宽、高分别为3cm、4cm、5cm,求该长方体的体积和表面积。
解答:长方体的体积可以通过公式V = lwh 计算,其中l、w、h分别为长、宽、高。
根据题目给出的数据,代入公式可得 V = 3cm × 4cm × 5cm = 60cm³。
因此,该长方体的体积为60立方厘米。
长方体的表面积可以通过公式 S = 2lw + 2lh + 2wh 计算。
根据题目给出的数据,代入公式可得 S = 2 × 3cm × 4cm + 2 × 3cm ×5cm + 2 × 4cm × 5cm = 94cm²。
因此,该长方体的表面积为94平方厘米。
答案:体积:60立方厘米表面积:94平方厘米第二题:一个正方体的棱长为a,求该正方体所有顶点到一个固定点之间的最短距离之和。
解答:正方体的每个顶点到固定点的最短距离为正方体的对角线长。
对于正方体而言,其对角线的长度可以通过勾股定理求解。
设每个边长为a,则对角线长d满足 d² = a² + a² + a² = 3a²。
因此,每个顶点到固定点的最短距离之和为 8 × 3a² = 24a²。
答案:每个顶点到固定点的最短距离之和为24a²。
第三题:一个球体的直径为10cm,求该球体的体积和表面积(结果保留π)。
解答:球体的体积可以通过公式V = 4/3πr³ 计算,其中r为球体的半径。
根据题目给出的数据,直径d为10cm,因此半径r = d/2 = 5cm。
代入公式可得V = 4/3 × π × (5cm)³ ≈ 523.6cm³。
因此,该球体的体积约为523.6立方厘米。
球体的表面积可以通过公式S = 4πr² 计算,其中r为球体的半径。
浙江省宁波市九校(余姚中学2024学年高三数学试题学生分层训练题

浙江省宁波市九校(余姚中学2024学年高三数学试题学生分层训练题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={y |y 21x =-},B ={x |y =lg (x ﹣2x 2)},则∁R (A ∩B )=( ) A .[0,12) B .(﹣∞,0)∪[12,+∞) C .(0,12) D .(﹣∞,0]∪[12,+∞) 2.一个几何体的三视图如图所示,则该几何体的表面积为( )A .48122+B .60122+C .72122+D .843.已知数列{}n a 的前n 项和为n S ,且()()()212*111N ()n n n S S S n ++++=+∈,121,2a a ==,则n S =( ) A .()12n n + B .12n + C .21n - D .121n ++4.设n S 为等差数列{}n a 的前n 项和,若33a =-,77S =-,则n S 的最小值为( )A .12-B .15-C .16-D .18-5.已知平面向量,,a b c ,满足||2,||1,b a b c a b λμ=+==+且21λμ+=,若对每一个确定的向量a ,记||c 的最小值为m ,则当a 变化时,m 的最大值为( )A .14B .13C .12D .16.函数()2sin()f x x ωϕ=+(0,0)ωϕπ><<的部分图像如图所示,若5AB =,点A 的坐标为(1,2)-,若将函数()f x 向右平移(0)m m >个单位后函数图像关于y 轴对称,则m 的最小值为( )A .12B .1C .3πD .2π 7.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( ) A . B . C .D . 8.等腰直角三角形ABE 的斜边AB 为正四面体ABCD 侧棱,直角边AE 绕斜边AB 旋转,则在旋转的过程中,有下列说法:(1)四面体E -BCD 的体积有最大值和最小值;(2)存在某个位置,使得AE BD ⊥;(3)设二面角D AB E --的平面角为θ,则DAE θ≥∠;(4)AE 的中点M 与AB 的中点N 连线交平面BCD 于点P ,则点P 的轨迹为椭圆.其中,正确说法的个数是( )A .1B .2C .3D .49.在直角ABC ∆中,2C π∠=,4AB =,2AC =,若32AD AB =,则CD CB ⋅=( ) A .18- B .63-C .18 D .6310.设集合{}2560A x x x =--<,{}20B x x =-<,则AB =( ) A .{}32x x -<<B .{}22x x -<<C .{}62x x -<<D .{}12x x -<<11.下列说法正确的是( )A .“若1a >,则1a >”的否命题是“若1a >,则21a <”B .在ABC 中,“A B >”是“sin sin A B >”成立的必要不充分条件C .“若tan 1α≠,则4πα≠”是真命题D .存在0(,0)x ∈-∞,使得0023x x <成立12.过点6(26)2P ,的直线l 与曲线213y x =-交于A B ,两点,若25PA AB =,则直线l 的斜率为( ) A .23-B .23+C .23+或23-D .23-或31-二、填空题:本题共4小题,每小题5分,共20分。
高三数学 专题训练直线、平面、简单几何解析 试题

卜人入州八九几市潮王学校仲元高三数学专题训练测试系列(直线、平面、简单几何)时间是:120分钟分值:150分一、选择题(每一小题5分,一共60分)1.过空间一点与平面垂直的直线有() A.0条B.1条C.0条或者1条D.无数条解析:根据线面垂直的定义及其性质定理可知过空间一点与平面垂直的直线只有1条,应选B.答案:B2.平面α⊥平面β的一个充分条件是() A.存在一条直线l,使得l⊥α,l⊥βB.存在一个平面γ,使得γ⊥α,γ⊥βC.存在一个平面γ,使得γ∥α,γ∥βD.存在一条直线l,使得l⊥α,l∥β解析:对于A,由l⊥α,l⊥β得α∥β,因此A不正确;对于B,假设直线l⊥γ,那么任意一个经过直线l的平面都与平面γ垂直,显然可以找到两个都经过直线l但互不垂直的平面α、β,因此B不正确;对于C,由γ∥α,γ∥β只能得出α∥β,因此C不正确;对于D,由l⊥α,l∥β可得α⊥β,因此D正确.答案:D3.(2021·二检)设a、b是两条直线,α、β是两个平面,那么a⊥b的一个充分条件是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:依题意易知A,D中的位置关系不确定,故A、D错误;对于B,易知a∥b,故B错误;对于C,因为b⊥β,α∥β,故b⊥α,又a⊂α,所以a⊥b,故C正确.答案:C4.(2021·八校联考)直线a,假设直线b同时满足条件①a与b异面;②a与b成定角;③a与b的间隔为定值,那么这样的直线b() A.唯一确定B.有2条C.有4条D.有无数条解析:找出模型,如墙角处考虑D正确.答案:D5.正方体A′B′C′D′-ABCD的棱长为a,EF在AB上滑动,且|EF|=b(b<a),Q点在D′C′上滑动,那么四面体A′-EFQ的体积为()图1A.与E、F位置有关B.与Q位置有关C.与E、F、Q位置都有关D.与E、F、Q位置均无关,是定值解析:V A′-EFQ=V Q-A′EF.答案:D6.设M是正四面体ABCD的高线AH上一点,连结MB、MC,假设∠BMC=90°,那么的值是()A. B.C. D.1解析:设正四面体的棱长为a,MH=x,那么MC2=MB2=MH2+BH2=x2+a2,在Rt△BMC中,由MB2+MC2=BC2,得2(x2+a2)=a2,解得x=a,∴AM=MH=AH,即=1.答案:D7.球O的半径为1,A、B、C三点都在球面上,且每两点间的球面间隔均为,那么球心O到平面ABC的间隔为()A. B.C. D.解析:设球心O到平面ABC的间隔为h,由等体积法可知,V O-ABC=V C-AOB,即h·S△ABC=OC·S△AOB,即h===.答案:B8.将正方形ABCD沿对角线BD折成一个120°的二面角,点C到达点C1,这时异面直线AD与BC1所成的角的余弦值是()A. B.C. D.解析:由题意易知∠ABC1即为AD与BC1所成的角,解△ABC1,得余弦为.答案:D9.(2021·调研)在正四面体S—ABC中,E为SA的中点,F为△ABC的中心,那么直线EF与平面ABC所成的角的大小为() A.arccos B.45°C.arctan D.arctan解析:连接SF,那么SF⊥平面ABC.连接AF并延长交BC于H,取线段AF的中点G,连接EG,由E为SA 的中点,那么EG∥SF,∴EG⊥平面ABC,∴∠EFG即为EF与平面ABC所成的角.图2设正四面体的边长为a,那么AH=a,且AF=AH=a;在Rt△AGE中,AE=,AG=AF=a,∠EGA=90°,∴EG==a.在Rt△EGF中,FG=AF=a,EG=a,∠EGF=90°,∴tan∠EFG==,∴∠EFG=arctan,即EF与平面ABC所成的角为arctan,应选C.答案:C10.(2021·五校联考)如图3,矩形ABCD中,AB=3,BC=4,沿对角线BD将△ABD折起,使A点在平面BCD内的射影O落在BC边上,假设二面角C—AB—D的平面角大小为θ,那么sinθ的值等于()图3A. B.C. D.解析:由题意可知,折起后平面ABC⊥平面BCD,又∵DC⊥BC,∴DC⊥平面ABC,∴DC⊥AB,又∵AB⊥AD,AD∩DC=D,∴AB⊥平面ACD,∴AB⊥AC,∴∠CAD即为二面角C—AB—D的平面角θ,在直角三角形ACD中,易求得sinθ=,应选C.答案:C11.(2021·全国卷Ⅱ)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.如今沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,那么标“△〞的面的方位是图4() A.南B.北C.西D.下解析:将展开图复原成原来的正方体可知选B.答案:B12.(2021·一调)如图5,在棱长为4的正方体ABCD—A′B′C′D′中,E、F分别是AD、A′D′的中点,长为2的线段MN的一个端点M在线段EF上运动,另一个端点N在底面A′B′C′D′上运动,那么线段MN 的中点P的轨迹(曲面)与二面角A—A′D′—B′所围成的几何体的体积为()图5A. B. C. D.解析:依题意可知|FP|=|MN|=1,因此点P的轨迹是以点F为球心、1为半径的球面,于是所求的体积是×(π×13)=π,选C.答案:C二、填空题(每一小题4分,一共16分)假设一个平面内有一条直线与另一个平面内的一条直线平行,那么这两个平面平行;②假设解析:对于①,相应的两个平面可能相交,因此①不正确;对于②,其中的两条直线可能是两条平行直线,此时相应的两个平面不一定平行,因此②不正确;对于③④,显然正确.答案:③④14.设球O的半径为R,A、B、C为球面上三点,A与B、A与C的球面间隔为,B与C的球面间隔为,那么球O在二面角B-OA-C内的这局部球面的面积是__________.解析:如图6所示.图6∵A与B,A与C的球面间隔都为,∴OA⊥OB,OA⊥OC.从而∠BOC为二面角B-OA-C的平面角.又∵B与C的球面间隔为,∴∠BOC=.这样球O在二面角B-OA-C的局部球面的面积等于×4πR2=R2.答案:R215.如图7,∠BAD=90°的等腰直角三角形ABD与正三角形CBD所在平面成60°的二面角,那么AB与平面BCD所成角的大小为________.图7解析:作AE⊥BD,连结CE,那么CE⊥BD,∠AEC=60°.作AO⊥EC,那么AO⊥面BCD,连结BO,∠ABO即为AB与面BCD所成的角.设AB=a,那么AE=a,AO=AE sin60°=a×=a.∴sin∠ABO==.∴∠ABO=arcsin.答案:arcsin16.(2021·东北三校一模)如图8,将∠B=,边长为1的菱形ABCD沿对角线AC折成大小等于θ的二面角B—AC—D,假设θ∈[,],M、N分别为AC、BD的中点,那么下面的四种说法:图8①AC⊥MN;②DM与平面ABC所成的角是θ;③线段MN的最大值是,最小值是;④当θ=时,BC与AD所成的角等于.其中正确的说法有__________(填上所有正确说法的序号).解析:如图9(1),AC⊥BM,AC⊥MD⇒AC⊥平面BMD,所以AC⊥MN,①正确;因为θ∈[,],且线与面所成角的范围为[0,],所以DM与平面ABC所成的角不一定是θ,②错;BM=DM=,MN⊥BD,∠BMD=θ,所以MN=BM·cos=·cos,所以线段MN的最大值是,最小值是,③正确;当θ=时,过C作CE∥AD,连接DE(如图9(2)),且DE∥AC,那么∠BCE(或者补角)即为两直线的夹角,BM⊥DM,BM=DM=,BD2=,又DE∥AC,那么DE⊥平面BDM,∴DE⊥BD,BE2=+1=,cos BCE==-≠0,所以④错.图9答案:①③17.(12分)(2021·质检)如图10,在正方体ABCD-A1B1C1D1中,E、F分别为A1B1、A1D1的中点,G、H分别为BC、B1D1的中点.图10(1)指出直线GH与平面EFDB的位置关系,并加以证明;(2)求异面直线GH与DF所成角的大小.解:(1)连结EH,易知EH=BG且EH∥BG,所以四边形EHGB为平行四边形,所以GH∥BE,所以GH∥平面EFDB.(2)取BD中点M,连结MF,易知MF∥BE,所以MF∥GH,所以∠DFM为异面直线GH与DF所成的角,设正方体棱长为2,可得,MF=,DF=,MD=,在三角形MDF中,由余弦定理可得cos∠MFD=,∴异面直线GH与DF所成的角的大小为arccos.18.(12分)如图11,在△ABC中,AC=BC=1,∠ACB=90°,点D在斜边AB上,∠BCD=α(0<α<).把△BCD沿CD折起到△B′CD的位置,使平面B′CD⊥平面ACD.图11(1)求点B′到平面ACD的间隔(用α表示);(2)当AD⊥B′C时,求三棱锥B′-ACD的体积.解:(1)作B′E⊥CD于E.∵平面B′CD⊥平面ACD,∴B′E⊥平面ACD.∴B′E的长为点B′到平面ACD的间隔.B′E=B′C·sinα=sinα.图12(2)∵B′E⊥平面ACD,∴CE为B′C在平面ACD内的射影.又AD⊥B′C,∴AD⊥CD(CE).∵AC=BC=1,∠ACB=90°,∴D为AB中点,且α=.∴S△ACD=·AC·BC=,B′E=sin=.∴V B′-ACD=··=.19.(12分)(2021·联考)如图13,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC 的中点.(1)试在底面A1B1C1D1上找一点H,使EH∥平面FGB1;(2)求四面体EFGB1的体积.图13解:(1)取A1D1的中点P,D1P的中点H,连接DP、EH,那么DP∥B1G,EH∥DP,∴EH∥B1G,又B1G⊂平面FGB1,∴EH∥平面FGB1.即H在A1D1上,且HD1=A1D1时,EH∥平面FGB1.20.(12分)在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b.(1)设E,F分别为AB1,BC1的中点,求证:EF∥平面ABC;(2)求证:A1C1⊥AB;(3)求点B1到平面ABC1的间隔.图14解:(1)∵E,F分别为AB1,BC1的中点,∴EF∥A1C1.∵A1C1∥AC,∴EF∥AC,∴EF∥平面ABC.(2)∵AB=CC1,∴AB=BB1.又三棱柱为直三棱柱,∴四边形ABB1A1为正方形,连结A1B,那么A1B⊥AB1.又∵AB1⊥BC1,∴AB1⊥平面A1BC1,∴AB1⊥A1C1.又A1C1⊥AA1,∴A1C1⊥平面A1ABB1,∴A1C1⊥AB.(3)∵A1B1∥AB,∴A1B1∥平面ABC1,∴A1到平面ABC1的间隔等于B1到平面ABC1的间隔,过A1作A1G⊥AC1于G.∵AB⊥平面ACC1A1,∴AB⊥A1G,从而A1G⊥平面ABC1,故A1G即为所求的间隔,求得A1G=.21.(12分)(2021·二模)如图15,三棱柱ABC-A1B1C1的侧棱与底面所成的角为60°,AB=BC,A1A=A1C =2,AB⊥BC,侧面AA1C1C⊥底面ABC.(1)证明:A1B⊥A1C1;(2)求二面角A-CC1-B的大小;(3)求经过A1、A、B、C四点的球的外表积.解:取AC中点为O,由A1A=A1C,AB=BC,知A1O⊥AC,BO⊥AC,又平面AA1C1C⊥平面ABC,所以A1O⊥OB.建立如图16所示的坐标系O-xyz,那么A(0,-1,0),B(1,0,0),A1(0,0,),C(0,1,0).(1)∵=(1,0,-),==(0,2,0),∴·=0,∴A1B⊥A1C1.(2)设n=(x,y,z)为面BCC1的一个法向量.∵=(-1,1,0),==(0,1,),又n·=n·=0,∴取n=(,,-1).又m=(1,0,0)是面ACC1的法向量,cos m,n===.由点B在平面ACC1内的射影O在二面角的面ACC1内,知二面角A-CC1-B为锐角,所以二面角A-CC1-B的大小为arccos.(3)设球心为O1,因为O是△ABC的外心,A1O⊥平面ABC,所以点O1在A1O上,那么O1是正三角形A1AC的中心.那么球半径R=A1A=,球外表积S=4πR2=π.22.(14分)(2021·东城模拟)如图17所示,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E为PD中点.图17(1)求证:PA⊥平面ABCD;(2)求二面角E-AC-D的大小;(3)在线段BC上是否存在点F,使得点E到平面PAF的间隔为?假设存在,确定点F的位置;假设不存在,请说明理由.解:(1)证明:∵底面ABCD为正方形,∴BC⊥AB,又BC⊥PB,∴BC⊥平面PAB,∴BC⊥PA.同理CD⊥PA,∴PA⊥平面ABCD.(2)建立如图18所示的空间直角坐标系A-xyz,图18那么A(0,0,0),C(2,2,0)、E(0,1,1).设m=(x,y,z)为平面AEC的一个法向量.那么m⊥,m⊥.又=(0,1,1),=(2,2,0),∴令x=1,那么y=-1,z=1,得m=(1,-1,1)又=(0,0,2)是平面ACD的一个法向量,设二面角E-AC-D的大小为θ,那么cosθ=cos m,===.∴二面角E-AC-D的大小为arccos.(3)设F(2,t,0)(0≤t≤2),n=(a,b,c)为平面PAF的一个法向量,那么n⊥,n⊥.又=(0,0,2),=(2,t,0),∴令a=t,那么b=-2,c=0,得n=(t,-2,0).又=(0,1,1).∴点E到平面PAF的间隔为=,∴=,解得t=1,即F(2,1,0).∴在线段BC上存在点F,且F为BC中点,使得点E到平面PAF的间隔为.。
高三数学高考一轮专练——简单几何体

高考一轮专练——简单几何体一、选择题: (每题5分, 共60分)1. 用一个平面去截正方体,所得的截面不可能...是 ( ) (A )六边形 (B )菱形 (C )梯形 (D )直角三角形 2. 已知一个简单多面体的各个顶点处都有三条棱,则顶点数V 与面数F 满足的关系式是 ( )(A )2F+V=4 (B )2F -V=4 (C )2F+V=2 (D )2F -V=2 3. 直三棱柱ABC -A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B -APQC 的体积为 ( ) (A )2V (B )3V (C )4V (D )5V4. 已知三棱锥D -ABC 的三个侧面与底面全等,且AB=AC=3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小是 ( ) (A )4π (B )3π (C )2π (D )32π 5. 斜棱柱底面和侧面中矩形的个数最多可有 ( ) (A )2个 (B )3个 (C )4个 (D )6个6. 已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是 ( ) (A )2∶π (B )1∶2π (C )1∶π (D )4∶3π7. 如图,在斜三棱柱A 1B 1C 1-ABC 中,∠BAC =900,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在 ( )(A )直线AB 上(B )直线BC 上(C )直线AC 上(D )△ABC 内部ABCA 1B 1C 1A B C DA 1B 1C 1D 1P Q(第7题图) (第8题图)8. 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是对角线A 1C 上的点,且PQ =2a ,则三棱锥P -BDQ 的体积为 ( ) (A )3363a (B )3183a (C )3243a (D )无法确定 9. 已知球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,则此球的体积为 ( )(A )33312cm π (B )33316cm π (C )3316cm π (D )3332cm π10. 如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为( )(A )61cm (B )157cm (C )1021cm (D )1037cm 11. 已知四棱锥P -ABCD 的底面为平行四边形,设x =2PA 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,则x ,y 之间的关系为 ( )(A )x >y (B )x =y (C )x <y (D )不能确定 12. 如图,三棱柱ABC -A 1B 1C 1的侧面A 1B ⊥BC ,且A 1C 与底面成600角,AB=BC =2,则该棱柱体积的最小值为 ( ) (A )34 (B )33 (C )4 (D )3ACA 1B 1C 1二、填空题: (每题4分, 共16分)13. 球面上有3个点, 其中任意两点的球面距离都等于大圆周长的61, 经过这3点的小圆的周长为4π, 那么这个球的半径为_____________14. 如图,在四棱锥P -ABCD 中,E 为CD 上的动点,四边形ABCD 为 时,体积V P -AEB 恒为定值(写上你认为正确的一个答案即可).AB CDEPA DEM(第14题图) (第15题图)15. 如图,在四棱锥E -ABCD 中,底面ABCD 为梯形,AB ∥CD ,2AB =3DC ,M 为AE 的中点,设E -ABCD 的体积为V ,则三棱锥M -EBC 的体积为 .16.如图,在透明材料制成的长方体容器ABCD —A 1B 1C 1D 1 内灌注一些水,固定容器底面一边BC 于桌面上,再将 容器倾斜度的不同,有下列命题:(1)水的部分始终呈棱柱形;(2)水面四边形EFGH 的面积不会改变;(3棱A 1D 1始终与水面EFGH 平行;(4)当容器倾斜如图 所示时,BE ·BF 是定值,其中所有正确命题的序号是 。
高三数学立体几何试题答案及解析
高三数学立体几何试题答案及解析1.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】几何体为一个三棱柱,底面为直角三角形,直角边长分别为6,8;三棱柱高为12.得到的最大球为直角三角形的内切球,其半径为,选B.【考点】三视图2.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形,则该几何体的体积等于()A.B.C.D.【答案】A【解析】由三视图知:,,∴.【考点】三视图.3.几何体的三视图如图所示,若从该几何体的实心外接球中挖去该几何体,则剩余几何体的表面积是(注:包括外表面积和内表面积)()A.133B.100C.66D.166【答案】D【解析】由三视图知,该几何体为底面半径为3,搞为8的圆柱.其外接球时半径为5的球.则剩余几何体的表面积是球的表面积与该圆柱表面积的和,即.故选D.【考点】多面体及与其外接球的关系及几何体表面积计算问题.4.(本小题满分12分)如图,已知五面体,其中内接于圆,是圆的直径,四边形为平行四边形,且平面.(1)证明:;(2)若,,且二面角所成角的正切值是,试求该几何体的体积.【答案】(1)见解析;(2)8.【解析】(1)将问题转化为证明平面,再转化为证明(由直径可证)与(由平面可证);(2)考虑建立空间直角坐标系,通过求两个法向量的夹角来确定二面角所成角的正切值,并确定的长,进而可求得几何体的体积.试题解析:(1)证明:是圆的直径,,又平面,又平面,且,平面又平面,(2)设,以所在直线分别为轴,轴,轴,如图所示则,,,由(Ⅰ)可得,平面,平面的一个法向量是设为平面的一个法向量由条件得,,即不妨令,则,,.又二面角所成角的正切值是,,得该几何体的体积是【考点】1、空间直线与直线、直线与平面的垂直的判定与性质;2、二面角;3、空间几何体的体积.【方法点睛】用空间向量处理某些立体几何问题时,除要有应用空间向量的意识外,关键是根据空间图形的特点建立恰当的空间直角坐标系.若坐标系选取不当,计算量就会增大.总之树立用数解形的观念,即用数形结合的思想解决问题,而建立空间直角坐标系通常考虑以特殊点为坐标原点(如中点、正方体的顶点),特殊直线(如有两两垂直的直线)为坐标轴来建立.5.如图,在多面体中,为菱形,,平面,平面,为的中点,若平面.(1)求证:平面;(2)若,求二面角的余弦值.【答案】(1)见解析;(2).【解析】(1)证明线面垂直,只要证明这条直线与平面内两条相交直线垂直即可,取中点,连接,可证,先证,即可证明,即可证明结论成立;(2)建立空间直角坐标系,求出平面与平面的法向量,由空间向量公式直接计算即可.试题解析:(1)取AB的中点M,连结GM,MC,G为BF的中点,所以GM //FA,又EC面ABCD, FA面ABCD,∵CE//AF,∴CE//GM,∵面CEGM面ABCD=CM,EG// 面ABCD,∴EG//CM,∵在正三角形ABC中,CM AB,又AF CM∴EG AB, EG AF,∴EG面ABF.(2)建立如图所示的坐标系,设AB=2,则B()E(0,1,1) F(0,-1,2)=(0,-2,1),=(,-1,-1),=(,1, 1),设平面BEF的法向量=()则令,则,∴=()同理,可求平面DEF的法向量 =(-)设所求二面角的平面角为,则=.【考点】1.线面垂直的判定与性质;2.空间向量的应用.【方法点睛】本题主要考查线面垂直的判定与性质、空间向量的应用,属中档题.解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;求二面角,则通过求两个半平面的法向量的夹角间接求解.此时建立恰当的空间直角坐标系以及正确求出各点的坐标是解题的关键所在.6.三棱锥及其三视图中的正视图和侧视图如下图所示,,则棱的长为.【答案】.【解析】由已知三视图可知,平面,且底面为等腰三角形.在中,,边上的高为,所以.在中,由可得,故应填.【考点】1、三视图.【易错点晴】本题主要考查了空间几何体的三视图及其空间几何体的面积、体积的计算,考查学生空间想象能力和计算能力,属中档题.其解题过程中容易出现以下错误:其一是不能准确利用已知条件的三视图得出原几何体的空间形状,即不能准确找出该几何体中线线关系、线面关系,导致出现错误;其二是计算不仔细,导致结果出现错误.解决这类问题的关键是正确地处理三视图与原几何体之间的关系.7.在三棱锥中,平面为侧棱上的一点,它的正视图和侧视图如图所示,则下列命题正确的是()A.平面且三棱锥的体积为B.平面且三棱锥的体积为C.平面且三棱锥的体积为D.平面且三棱锥的体积为【答案】C【解析】∵平面,∴,又,∴平面,∴,又由三视图可得在中,为的中点,∴平面.又平面.故.故选:C.【考点】1.直线与平面垂直的判定;2.命题的真假判断与应用;3.简单空间图形的三视图.8.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A.B.C.D.【答案】C【解析】题设三视图是下图中几何体的三视图,由三视图中的尺寸,知其体积为,故选C.【考点】三视图与几何体的体积.9.如图,在三棱柱ABC A1B1C1中,D,E分别为A1C1,BB1的中点,B1C⊥AB,侧面BCC1B1为菱形.求证:(Ⅰ)DE∥平面ABC1;(Ⅱ)B1C⊥DE.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)取AA1的中点F,连DF,FE,根据中点易证线线平行,从而平面DEF∥平面ABC1,又因为DE平面DEF,所以B1C⊥DE;(Ⅱ)在菱形中B1C⊥BC1,又B1C⊥AB,易证B1C⊥平面ABC1,再根据面面平行的性质,得:B1C⊥平面DEF,从而证明B1C⊥DE.试题解析:(Ⅰ)如图,取AA1的中点F,连DF,FE.又因为D,E分别为A1C1,BB1的中点,所以DF∥AC1,EF∥AB.因为DF平面ABC1,AC1平面ABC1,故DF∥平面ABC1.同理,EF∥平面ABC1.因为DF,EF为平面DEF内的两条相交直线,所以平面DEF∥平面ABC1.因为DE平面DEF,所以DE∥平面ABC1.(Ⅱ)因为三棱柱ABC A1B1C1的侧面BCC1B1为菱形,故B1C⊥BC1.……9分又B1C⊥AB,且AB,BC1为平面ABC1内的两条相交直线,所以B1C⊥平面ABC1.而平面DEF∥平面ABC1,所以B1C⊥平面DEF,因为DE平面DEF,所以B1C⊥DE.【考点】1、线面平行;2、面面平行;3、线面垂直;4、三角形中位线.【方法点晴】本题主要考查的是线面平行、线线平行、线线垂直和线面垂直,属于中档题.解题时一定要注意得线线平行的常用证明方法,构造中位线和平行四边形是最常用方法.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.10.已知,是两个不同的平面,,是两条不同的直线,则下列正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则【答案】C.【解析】A:或者,异面,故A错误;B:根据面面垂直的判定可知B错误;C:正确;D:或,故D错误,故选C.【考点】空间中直线平面的位置关系.11.已知三条不重合的直线和两个不重合的平面,下列命题正确的是()A.若,,则B.若,,且,则C.若,,则D.若,,且,则【答案】D【解析】A.若,,则,错,有可能;B.若,,且,则,错,有可能;C.若,,则,错,有可能,或异面;D.若,,且,则,正确【考点】空间直线与平面,平面与平面的位置关系12.如图,三角形是边长为4的正三角形,底面,,点是的中点,点在上,且.(1)证明:平面平面;(2)求直线和平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】(1)由底面,可得,又,可证的平面,问题得证;(2)在第一问证明的基础上,应用面面垂直的性质定理容易作出平面的垂线,即得斜线的射影,找出角,解直角三角形可得线面角的正弦.试题解析:(1)证明∵底面,底面,∴,又,,∴平面.又平面,∴平面平面.(2)解:过点作,连结.平面平面,平面平面,平面,∴平面,∴为直线和平面所成角.∵是边长为的正三角形,∴,.又∵,∴,,∴.即直线和平面所成角的正弦值为.【考点】空间垂直关系的应用和证明,直线与平面所成的角.【方法点晴】证明面面垂直只能证明线面垂直,而要证明线面垂直就得证明线线垂直,结合题中已知的垂直条件,分析容易找到哪个平面的垂线,逐步完成证明,组织步骤时一定要思路条理;对于直线与平面所成的角遵循作—证(指)—求—答的解题步骤,应当结合条件和前面证明的结论找到平面的垂线是解题的关键,本题中在第一问证明的基础上有了平面的垂面,利用面面垂直的性质定理过直线上一点作交线的垂线即为平面的垂线,连接垂足和斜足即得射影,找到线面角后解直角三角形得解.13.一个几何体的三视图如图所示,则这个几何体的外接球表面积为()A.B.C.D.【答案】A【解析】几何体为一个三棱锥S-ABC,其中D为AC中点,且SD垂直平面ABC,BD垂直AC,则球心在SD上,设球半径为R,则外接球表面积为,选A.【考点】三视图【方法点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.14.已知正三角形的三个顶点都在半径为的球面上,球心到平面的距离为,点是线段的中点,过点作球的截面,则截面面积的最小值是_________.【答案】【解析】因为过作球的截面,当截面与垂直时,截面圆的半径最小,所以当截面与垂直时,截面圆的面积有最小值.设正三角形的外接圆圆心为,在中,,所以.在中,,所以,所以截面面积为【考点】1、多面体的外接球;2、球的截面圆性质.【方法点睛】“切”“接”问题的处理规律:①“切”的处理:解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决;②“接”的处理:把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.15.(2015•金家庄区校级模拟)如图正方形BCDE的边长为a,已知AB=BC,将△ABE沿BE边折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:①AB与DE所成角的正切值是;②AB∥CE;③VB﹣ACE的体积是a2;④平面ABC⊥平面ADC;⑤直线EA与平面ADB所成角为30°.其中正确的有.(填写你认为正确的序号)【答案】①③④⑤【解析】①由于BC∥DE,则∠ABC(或其补角)为AB与DE所成角;②AB和CE是异面直线;③根据三棱锥的体积公式即可求VB ﹣ACE的体积;④根据面面垂直的判定定理即可证明;⑤根据直线和平面所成角的定义进行求解即可.解:由题意,AB=BC,AE=a,AD⊥平面BCDE,AD=a,AC= a①由于BC∥DE,∴∠ABC(或其补角)为AB与DE所成角∵AB=a,BC=a,AC=a,∴BC⊥AC,∴tan∠ABC=,故①正确;②由图象可知AB与CE是异面直线,故②错误.③VB﹣ACE的体积是S△BCE×AD=×a3=,故③正确;(4)∵AD⊥平面BCDE,BC⊂平面BCDE,∴AD⊥BC,∵BC⊥CD,AD∩CD=D,∴BC⊥平面ADC,∵BC⊂平面ABC,∴平面ABC⊥平面ADC,故④正确;⑤连接CE交BD于F,则EF⊥BD,∵平面ABD⊥平面BDE,∴EF⊥平面ABD,连接F,则∠EAF为直线AE与平面ABD所成角,在△AFE中,EF=,AE=a,∴sin∠EAF==,则∠EAF=30°,故⑤正确,故正确的是①③④⑤故答案为:①③④⑤【考点】命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.16.已知某几何体的三视图,则该几何体的体积是_______.【答案】.【解析】该几何体是一个四棱锥,底面是边长为2的正方形,高为,所以.【考点】1.空间几何体的表面积与体积;2.空间几何体的三视图与直观图.17.设三棱柱的侧棱垂直于底面,,且三棱柱的所有顶点都在同一球面上,则该球的表面积是.【答案】【解析】由题意可得:把三棱柱补成底面以2为边长的正方形,以为高的长方体,长方体的体对角线就是球的直径,所以,所以该球的表面积是;故填.【考点】空间几何体的表面积.18.某几何体的正视图与侧视图都是等腰梯形,则该几何体可以是下列几何体中的()①三棱台,②四棱台,③五棱台,④圆台.A.①②B.③④C.①③D.②④【答案】D【解析】由题意得,几何体的正视图和侧视图都是等腰梯形,则根据几何体的三视图的规则可知,该几何体可能为四棱台或圆台,故选D.【考点】空间几何体的三视图.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,只是给出了几何体的正视图和侧视图都是等腰梯形,从而可得这个几何体可能是四棱台或圆台.19.在直三棱柱中,,,且异面直线与所成的角等于,设.(1) 求的值;(2) 求三棱锥的体积.【答案】(1); (2)【解析】(1)由BC ∥B 1C 1可得∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,从而∠A 1BC =60°,再由AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,△A 1BC 为等边三角形, 由已知可得,即可求得 (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积,△的面积, 又可得平面,利用三棱锥的体积公式可求得.试题解析:(1)∵BC ∥B 1C 1,∴∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,即∠A 1BC =60°,又AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,∴△A 1BC 为等边三角形, 由,, ∴; (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积, 即:, △的面积,又平面,所以,所以.【考点】异面直线所成的角及三棱锥的体积的求法.20. 如图,在四棱锥中,已知棱,,两两垂直,长度分别为1,2,2.若(),且向量与夹角的余弦值为.(1)求的值;(2)求直线与平面所成角的正弦值.【答案】(1);(2).【解析】(1)以为坐标原点,、、分别为、、轴建立空间直角坐标系,写出,的坐标,根据空间向量夹角余弦公式列出关于的方程可求;(2)设岀平面的法向量为,根据,进而得到,从而求出,向量的坐标可以求出,从而可根据向量夹角余弦的公式求出,从而得和平面所成角的正弦值.试题解析:(1)依题意,以为坐标原点,、、分别为、、轴建立空间直角坐标系 ,因为,所以,从而,则由,解得(舍去)或. (2)易得,,设平面的法向量, 则,,即,且,所以,不妨取,则平面的一个法向量,又易得,故,所以直线与平面所成角的正弦值为.考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦.21.如图,在四棱锥中,平面,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.【答案】(1)详见解析(2)详见解析【解析】(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与证明,往往需结合平面几何条件,如本题利用三角形中位线性质定理得(2)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,需多次利用线面垂直的判定与性质定理:先由平行四边形为菱形得,再由平面得,即,从而得平面试题解析:(1)设,连结,因为,为的中点,所以,所以四边形为平行四边形,所以为的中点,所以又因为平面,平面,所以平面.(2)(方法一)因为平面,平面所以,由(1)同理可得,四边形为平行四边形,所以,所以因为,所以平行四边形为菱形,所以,因为平面,平面,所以平面因为平面,所以平面平面.(方法二)连结,因为平面,平面,所以因为,所以,因为平面,平面,所以因为为的中点,所以,由(1),所以又因为为的中点,所以因为,平面,平面所以平面,因为平面,所以平面平面.【考点】线面平行判定定理,面面垂直判定定理22.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A.B.C.D.【答案】A【解析】因为网格纸上小正方形的边长为,有三视图可知,该几何体是下面为底面半径为高为的圆柱体的一半、上面是底面半径为高为的圆锥体的一半,所以体积为,故选A.【考点】1、几何体的三视图;2、圆柱及圆锥的体积公式.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.23.已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,,,则球的体积为()A.B.C.D.【答案】C【解析】因为,,,所以的中点为的外心,连接,则,又和所在的平面互相垂直,所以平面,上的每一点到距离相等,因此正三角形的中心即是外接球球心,其半径也是外接球半径,所以球半径,求体积为,故选C.【考点】1、外接球的性质及勾股定理;2、面面垂直及球的体积公式.【方法点睛】本题主要考查外接球的性质及勾股定理、面面垂直及三棱锥外接球体积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.本题是根据方法④直接找出球心并求出半径进而得到求体积的.24.四棱锥的底面是正方形,,分别是的中点(1)求证:;(2)设与交于点,求点到平面的距离【答案】(1)证明见解析;(2).【解析】(1)要证明线面垂直,一般先证明线线垂直,本题中,由于是中点,因此有,而与垂直,从而与平面垂直,结论得证;(2)要求点到平面的距离,考虑三棱锥,的面积易求(为面积的一半),另外由(1)的结论,此三棱锥以为底时,是高,体积易求,从而所求距离易得.试题解析:(1)证明:连接,由于分别是的中点,所以,又,平面,故,又为正方形,故故,故(2)连接交于点,连接,则交线为,又,故,由于分别是的中点,故为的中点,又,故为三棱锥的高又故,又设点到平面的距离为,,所以【考点】线面垂直的判断,点到平面的距离.25.某几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】C【解析】由题意得,由几何体的三视图,知该几何体是上下底面为梯形的直棱柱,所以该几何体的体积为,故选C.【考点】几何体的三视图及几何体的体积.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,该几何体是上下底面为梯形的直棱柱是解答本题的关键,属于基础题.26.一个几何体的三视图如图,则这个几何体的表面积是()A.B.C.D.【答案】C【解析】由题意得,根据给定的几何体的三视图,可知,原几何体为正方体的一部分,如图所示的红线部分,是一个棱长为的正四面体,所以此几何体的表面积为,故选C.【考点】几何体的三视图与表面积.27.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是______cm3.【答案】80,40【解析】由三视图知该组合体是一个长方体上面放置了一个小正方体,,.【考点】三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.28.如图,在四棱锥中,平面平面,,,,,,.(Ⅰ)求证:平面;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.【答案】(Ⅰ)见解析;(Ⅱ);(Ⅲ)存在,.【解析】(Ⅰ)由面面垂直的性质定理知AB⊥平面,根据线面垂直的性质定理可知,再由线面垂直的判定定理可知平面;(Ⅱ)取的中点,连结,以O为坐标原点建立空间直角坐标系O-xyz,利用向量法可求出直线PB与平面PCD所成角的正弦值;(Ⅲ)假设存在,根据A,P,M三点共线,设,根据BM∥平面PCD,即(为平面PCD的法向量),求出的值,从而求出的值.试题解析:(Ⅰ)因为平面平面,,所以平面.所以.又因为,所以平面.(Ⅱ)取的中点,连结.因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系.由题意得,.设平面的法向量为,则即令,则.所以.又,所以.所以直线与平面所成角的正弦值为.(Ⅲ)设是棱上一点,则存在使得.因此点.因为平面,所以平面当且仅当,即,解得.所以在棱上存在点使得平面,此时.【考点】空间线面垂直的判定定理与性质定理;线面角的计算;空间想象能力,推理论证能力【名师】平面与平面垂直的性质定理的应用:当两个平面垂直时,常作的辅助线是在其中一个平面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.29.如图,在四棱锥中,底面是菱形,,平面,,点分别为和中点.(1)求证:直线平面;(2)求三棱锥的表面积.【答案】(1)证明见解析;(2).【解析】(1)要证线面平行,一般先证线线平行,考虑到,是中点,因此取的中点,可证得且,从而得平行四边形,因此有,最终得线面平行;(2)要求三棱锥的表面积,必须求得它的各个面的面积,由平面,得,三角形和的面积可求,由题设又可证,这样就有,另两个面的面积又可求得.试题解析:(1)证明:作FM∥CD交PC于M.∵点F为PD中点,∴. ∴,∴AEMF为平行四边形,∴AF∥EM,∵,∴直线AF平面PEC.(2)连结可知,,由此;;;;因此三棱锥的表面积.【考点】线面平行的判断,多面体的表面积.30.在棱长为3的正方体中,在线段上,且,为线段上的动点,则三棱锥的体积为()A.1B.C.D.与点的位置有关【答案】B【解析】由于是定值,点到平面的距离是,因此点平面的距离是.所以三棱锥的体积,应选B.【考点】三棱锥体积的运算.31.如图,在多面体中,底面是边长为2的正方形,四边形是矩形,且平面平面,,和分别是和的中点.(1)求证:平面;(2)求.【答案】(1)证明见解析;(2).【解析】(1)运用线面平行的判定定理求证;(2)借助题设条件及转化化归的思想求解即可. 试题解析:(1)证明:设,连接,在中,因为,,所以,又因为平面,平面,所以平面.(2)因为四边形是正方形,所以,又因为平面平面,平面平面,且平面,所以平面,则到平面的距离为的一半,又因为,所以,所以.【考点】直线与平面的位置关系及棱锥公式的运用.32.如图,在三棱柱中,,,,在底面的射影为的中点,是的中点.(1)证明:平面;(2)求二面角的平面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)设为的中点,连接,依题意有,,故平面.根据分析有,故平面;(2)以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,利用向量法求得余弦值为.试题解析:(1)设为的中点,连接.由题意得:平面,所以.因为,所以,,故平面.由分别为的中点,得且,从而且,所以为平行四边形,故,又因为平面,所以平面.(2)方法一:作,且,连结.由,,得,由,,得与全等.由,得,因此为二面角的平面角.由,,,得,,由余弦定理得.方法二:以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,如图所示,由题意知各点坐标如下:,因此,,,设平面的法向量为,平面的法向量为,由,即,可取.由,即,可取,于是.由题意可知,所求二面角的平面角是钝角,故二面角的平面角的余弦值为.【考点】空间向量与立体几何.33.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,从左往右为半个圆锥,一个圆柱,一个半圆,故体积为.【考点】三视图.34.如图,在四棱柱中,底面,为线段上的任意一点(不包括两点),平面与平面交于.(1)证明:;(2)证明:平面.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)要证线线垂直,一般可证线面垂直,观察题中垂直条件,平面,则有,题中又有,从而有平面,因此结论得证;(2)要证线面平行,就是要证线线平行,直线是平面与平面的交线,因此要得平行,就要有线面平行,而这由可得平面,从而,结论得证.试题解析:(1)证明:因为平面,平面,所以.又,所以平面,而平面,所以.(2)在四棱柱中,,平面,平面,所以平面,又平面,平面与平面交于,所以,因为,所以,而平面,平面,所以平面.【考点】线面垂直的判定与性质,线面平行的判定与性质.【名师】证明线面(面面)平行(垂直)时要注意以下几点:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
2024届新高考数学大题精选30题--立体几何含答案
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
高三数学专题资料 直线、平面与简单几何体试题
2021年地区高三数学专题资料 直线、平面与简单几何体本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
例1、〔1〕设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出以下四个命题:①假设γα⊥,γβ⊥,那么βα||;②假设α⊂m ,α⊂n ,β||m ,β||n ,那么βα||; ③假设βα||,α⊂l ,那么β||l ;④假设l =βα ,m =γβ ,n =αγ ,γ||l ,那么n m || 其中真命题的个数是 〔 B 〕A .1B .2C .3D .4 (2)下面是关于三棱锥的四个命题:① 底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥; ② 底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥; ③ 底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥;④ 侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥; 其中,真命题的编号是_______①④_______.〔写出所有真命题的编号〕例2、如图,在斜三棱柱111C B A ABC -中,a B A A A AC AB AC A AB A ===∠=∠1111,,,侧面11BCC B 与底面ABC 所成的二面角为 120,E 、F 分别 是棱A A C B 111、的中点.〔Ⅰ〕求A A 1与底面ABC 所成的角; 〔Ⅱ〕证明E A 1∥平面FC B 1〔Ⅲ〕求经过C B A A 、、、1四点的球的体积.〔Ⅰ〕解:过A 1作A 1H ⊥平面ABC ,垂足为H. 连结AH ,并延长交BC 于G ,连结EG ,于是∠A 1AH 为A 1A 与底面ABC 所成的角.∵∠A 1AB=∠A 1AC , ∴AG 为∠BAC 的平分线. 又∵AB=AC , ∴AG ⊥BC ,且G 为BC 的中点 因此,由三垂线定理,A 1A ⊥BC. ∵A 1A//B 1B ,且EG//B 1B , EG ⊥BC 于是∠AGE 为二面角A —BC —E 的平面角, 即∠AGE=120°由于四边形A 1AGE 为平行四边形,得∠A 1AG=60°, 所以,A 1A 与底面ABC 所成的角为60°,〔Ⅱ〕证明:设EG 与B 1C 的交点为P ,那么点P 为EG 的中点,连结PF.在平行四边形AGEA 1中,因F 为A 1A 的中点,故A 1E//FP. 而FP ⊂平面B 1FC ,A 1E//平面B 1FC ,所以A 1E//平面B 1FC.〔Ⅲ〕解:连结A 1C ,在△A 1AC 和△A 1AB 中,由于AC=AB ,∠A 1AC=∠A 1AB ,A 1A=A 1A ,那么△A 1AC ≌△A 1AB ,故A 1C=A 1B ,由得 A 1A=A 1B=A 1C=a . 又∵A 1H ⊥平面ABC , ∴H 为△ABC 的外心.设所求球的球心为O ,那么O ∈A 1H ,且球心O 与A 1A 中点的连线OF ⊥A 1A.在Rt △A 1FO 中, .3330cos 21cos 111a aH AA F A O A =︒== 故所求球的半径a R 33=,球的体积 3332734)33(3434a a R V πππ===例3、如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB=3,BC=1,PA=2,E 为PD 的中点. 〔Ⅰ〕求直线AC 与PB 所成角的余弦值;〔Ⅱ〕在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出N 点到AB 和AP 的间隔 .解:〔Ⅰ〕设AC ∩BD=O ,连OE ,那么OE//PB , ∴∠EOA 即为AC 与PB 所成的角或者其补角.在△AOE 中,AO=1,OE=,2721=PB ,2521==PD AE ∴.1473127245471cos =⨯⨯-+=EOA 即AC 与PB 所成角的余弦值为1473. 〔Ⅱ〕在面ABCD 内过D 作AC 的垂线交AB 于F ,那么6π=∠ADF .连PF ,那么在Rt △ADF 中.33tan ,332cos ====ADF AD AF ADF AD DF设N 为PF 的中点,连NE ,那么NE//DF ,∵DF ⊥AC ,DF ⊥PA ,∴DF ⊥面PAC ,从而NE ⊥面PAC.∴N 点到AB 的间隔 121==AP ,N 点到AP 的间隔 .6321==AF 例4、以下图〔1〕为一几何体的展开图.(1) 沿图中虚线将它们折叠后得到的是一个什么样的几何体? 试用文字描绘并画出示意图;有一条侧棱垂直于底面且底面为正方形的四棱锥〔2〕 需要 3 个这样的几何体才能拼成一个棱长为6cm 的正方体?试在棱长为6cm 的在正方体''''D C B A ABCD -〔图2〕示意图:中指出这个几何体的名称.〔2〕 练习:一个四面体的所有棱长都为2,四个顶点在同一球面上,那么此球的外表积为 〔 A 〕 〔A 〕 π3 〔B 〕π4 〔C 〕 π33 〔D 〕π6 练习题1.设γβα、、为平面,l n m 、、为直线,那么β⊥m 的一个充分条件是 〔 D 〕(A) l m l ⊥=⋂⊥,,βαβα (B) γβγαγα⊥⊥=⋂,,m (C) αγβγα⊥⊥⊥m ,,(D) αβα⊥⊥⊥m n n ,,2.如图,长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,E 、F 、G 分别是DD 1、AB 、CC 1的中点,那么异面直线A 1E 与GF 所成的角是 〔 D 〕〔A 〕arccos515 〔B 〕4π〔C 〕arccos510 〔D 〕2π 3.正方体ABCD-A 1B 1C 1D 1中,P ,Q ,R 分别是AB ,AD ,B 1C 1的中点.那么,正方体的过P ,Q ,R 的截面图形是 ( D ) 〔A 〕 三角形 〔B 〕 四边形 〔C 〕 五边形 〔D 〕六边形4.设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,那么四棱锥B —APQC〔2〕单位:〔厘米〕E GF D 1DC 1B 1A 1CBA的体积为〔 C 〕〔A 〕16V〔B 〕14V〔C 〕13V 〔D 〕12V5.假如把两条异面直线看成“一对〞,那么在长方体6个面的12条对角线所在的直线中,异面直线一共有 〔 D 〕 〔A 〕60对 〔B 〕 54对 〔C 〕 42对 〔D 〕30对6.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,那么四面体ABCD 的外接球的体积为 〔 C 〕〔A 〕π12125〔B 〕π9125〔C 〕π6125〔D 〕π31257.球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面间隔 为2π,那么球心O 到平面ABC的间隔 为 〔 B 〕 〔A 〕31 〔B 〕33 〔C 〕 32 〔D 〕36 8.在矩形ABCD 中,3=AB ,a BC =,A ABCD PA 于点平面⊥,假设BC 边上有且仅有两个点21Q Q ,满足条件:11DQ PQ ⊥、22DQ PQ ⊥,那么实数a 的取值范围是 〔 C 〕〔A 〕 60<<a 〔B 〕6>a 〔C 〕6≥a 〔D 〕60≤<a9.正三棱锥ABC S -的底面边长是a 2,E 、F 、G 、H 分别是SA 、SB 、BC 、AC 的中点,那么四边形EFGH 面积的取值范围是 〔 B 〕(A) ),0(+∞ (B) ),33(2+∞a (C) ),63(2+∞a (D) ),21(2+∞a 个内切球10.如图,在棱长为a 的正方体1111D C B A ABCD -内有一做直线,该O ,过正方体中两条互为异面直线的棱1AA 、BC 的中点P 、Q 直线被球面截在球内的线段MN的长为 〔 C 〕(A)a 41 (B)a 21(C)a 22 (D) ()a 12-11.在0120的二面角内放一个半径为5的球,使球与两个半 平面各有且仅有一个公一共点,那么这两点之间的球面间隔 等于 π3512.正四棱锥的侧棱长是底面边长的k 倍,那么k 的取值范围是 ),22(+∞ 13.正方体1111D C B A ABCD -的棱长为1,在正方体的侧面11B BCC 上到点A 间隔 为332的点的集合是一条曲线,那么这条曲线的形状是 以B 为圆心,半径为33 的41圆弧 ,它的长度是63π. 14.二面角βα--l 大小为600,点P 到α的间隔 为2,到β的间隔 为3,βα∈∈B A ,, 那么PAB ∆周长的最小值为 76 .15.如图,在长方体ABCD —A 1B 1C 1D 1,中,AD=AA 1=1, AB=2,点E 在棱AD 上挪动. 〔1〕证明:D 1E ⊥A 1D ;〔2〕当E 为AB 的中点时,求点E 到面ACD 1的间隔 ; 〔3〕AE 等于何值时,二面角D 1—EC —D 的大小为4π.〔1〕证明:∵AE ⊥平面AA 1DD 1,A 1D ⊥AD 1,∴A 1D ⊥D 1E〔2〕设点E 到面ACD 1的间隔 为h ,在△ACD 1中,AC=CD 1=5,AD 1=2, 故.2121,232152211=⋅⋅==-⋅⋅=∆∆BC AE S S ACE C AD 而 .31,23121,3131111=∴⨯=⨯∴⋅=⋅=∴∆∆-h h h S DD S V C AD AEC AEC D〔3〕过D 作DH ⊥CE 于H ,连D 1H 、DE ,那么D 1H ⊥CE ,∴∠DHD 1为二面角D 1—EC —D 的平面角. 设AE=x ,那么BE=2-x,,,1,.1,4,211x EH DHE Rt x DE ADE Rt DH DHD DH D Rt =∆∴+=∆=∴=∠∆中在中在中在 π.4,32.32543.54,3122π的大小为二面角时中在中在D EC D AE x x x x x x CE CBE Rt CH DHC Rt ---=∴-=⇒+-=+∴+-=∆=∆本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
2020高三第一轮复习训练题数学(15)(直线平面简单几何体1)
2020高三第一轮复习训练题数学(15)(直线平面简单几何体1)数学〔十五〕〔直线、平面、简单几何体1〕一、选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1. 二面角l αβ--的大小为060,,m n 为异面直线,且,m n αβ⊥⊥,那么,m n 所成的角为 A .030 B .060 C .090 D .01202.在空间四边形ABCD 中,AB 、BC 、CD 、DA 上分不取E 、F 、G 、H 四点,假如GH 、EF 交于一点P ,那么A .P 一定在直线BD 上B .P 一定在直线AC 上C .P 在直线AC 或BD 上 D .P 既不在直线BD 上,也不在AC 上3.如图S 为正三角形所在平面ABC 外一点,且SA =SB =SC =AB ,E 、F 分不为SC 、AB 中点,那么异面直线EF 与SA 所成角为A .90ºB .60ºC .45ºD .30º4..直线m 、n 与平面α、β,给出以下三个命题: ①假设m ∥α,n ∥α,那么m ∥n ;②假设m ∥α,n ⊥α,那么n ⊥m ;③假设m ⊥α,m ∥β,那么α⊥β.其中真命题的个数是A .0B .1C ..2D .35.假设a 、b 为空间两条不同的直线,α、β为空间两个不同的平面,那么a α⊥的一个充分条件是A .//a β且αβ⊥B .a β⊂且αβ⊥C .a b ⊥且//b αD .a β⊥且//αβ6.在北纬45°圈上有A 、B 两地,A 地在东经120°,B 地在西经150°,设地球半径为R ,那么A 、B 两地的球面距离为A .R π35B .R π21C .R π42 D .R π317.关于直线m 、n 和平面a ,下面命题 中的真命题是 A .假如,a m ⊂n ∥a ,n m 、共面,那么m ∥nB .假如,a m ⊂n 与a 相交,那么n m 、是面直线C .假如n m a n a m 、,,⊄⊂是异面直线,那么n ∥aD .假如m ∥a ,n ∥a ,n m 、共面,那么m ∥n8.P A 、PB 、PC 是从点P 引出的三条射线,每两条射线的夹角均为60º,那么直线PC 与平面APB 所成角的余弦值是A .12B .6 C .3 D .3 9.设直线m n 、和平面αβ、,那么以下命题中正确的选项是...... A .假设//m n m n αβ⊂⊂,,,那么//αβ B .假设//m n m n αβ⊂⊥,,,那么αβ⊥ C .假设m m n n αβ⊥⊥⊂,,,那么//αβ D .假设//m n m n αβ⊥⊥,,,那么αβ⊥ 10.设A 、B 、C 、D 是空间四个不同的点,在以下命题中,不正确的选项是....... A .假设AB=AC ,DB=DC ,那么AD=BC B .假设AC 与BD 是异面直线,那么AD 与BC 是异面直线C .假设AC 与BD 共面,那么AD 与BC 共面 D .假设AB=AC ,DB=DC ,那么AD ⊥BC 11.关于平面α和共面的直线m 、,n 以下命题中真命题是 A .假设,,m m n α⊥⊥那么n α∥ B .假设m αα∥,n ∥,那么m ∥nC .假设,m n αα⊂∥,那么m ∥nD .假设m 、n 与α所成的角相等,那么m ∥n12.如下图,b 、c 在平面α内,a ∩c=B ,b ∩c=A ,且a ⊥b ,a ⊥c ,b ⊥c ,假设C ∈a ,D ∈b ,E 在线段AB 上〔C ,D ,E 均异于A ,B 〕,那么△CDE 是 A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形A. 1B. 2C. 3D. 4 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:本大题共4小题;每题4分,共16分,把答案填在题中的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新版高考高三数学小题分层训练原卷含解析——模块15 简单几何体 第 1 页 共 33 页 模块15 简单几何体
一、单选题 1.(2018·上海普陀·曹杨二中高三开学考试)一个几何体的三视图如图所示,则该几何体的体积为( )
A.73 B.92 C.72 D.94 2.(2017·上海普陀·曹杨二中高三月考)有8个半径为2a的球,它们的体积之和为1V,表面积之和为1S;另
一个半径为a的球,其体积为2V,表面积为2S,则( ) A.12VV且12SS B.12VV且12SS C.12VV且12SS D.12VV且12SS 3.(2017·上海市向明中学高三期中)《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣
内角,下周八尺,高五尺,问:积及米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积及堆放的米各为多少?”已知一斛米的体积约为1.62立方尺,由此估算出堆放的米约有( )
A.21斛 B.34斛 C.55斛 D.63斛 4.(2016·上海嘉定·高三三模(文))某几何体的三视图如图所示,其中主视图和左视图都是边长为2的正
方形,俯视图中的曲线是半径为2的14圆弧,则该几何体的体积为 最新版高考高三数学小题分层训练原卷含解析——模块15 简单几何体 第 2 页 共 33 页 A.6 B.8 C.62 D.82 5.(2016·上海高三期中)已知三个球的半径1R、2R、3R满足12323RRR,则它们的表面积1S、2S、3S满
足的等量关系是( ) A.12323SSS B.12323SSS C.12323SSS D.12349SSS 6.(2016·上海浦东新·高三一模)若轴截面为正方形的圆柱的侧面积是S,则圆柱的体积为 A.2SS B.2πSS C.4SS D.4πSS 7.(2020·上海高三专题练习)如图,某几何体的主视图是平行四边形,侧视图和俯视图都是矩形,则几何
体的体积为( ).
A.63 B.93 C.123 D.183 8.(2020·上海高三专题练习)如图,已知三棱柱111ABCABC的体积为V,P,Q,R分别为侧棱1AA,1BB,
1CC上的点且1APCRAA,则QACRPV( ). 最新版高考高三数学小题分层训练原卷含解析——模块15 简单几何体
第 3 页 共 33 页 A.2V B.3V C.4V D.6V 9.(2020·宝山·上海交大附中高三开学考试)已知,,ABC为球O的球面上的三个点,⊙1
O为ABC的外接圆,
若⊙1O的面积为4π,1ABBCACOO,则球O的表面积为( ) A.64π B.48π C.36π D.32π 10.(2018·上海市奉贤区奉城高级中学高三期中)若一个圆柱的底面直径和高相等,表面积记为1S,一个球
的表面积记为2S,1223SS,则这个圆柱跟这个球的体积之比为( ) A.22:33 B.2:3 C.4:9 D.2:3 11.(2017·上海市七宝中学高三开学考试)若把半径为R的半圆卷成一个圆锥,则它的体积为( ) A.3324R B.338R C.3524R D.358R 12.(2019·上海市行知中学高三月考)鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结
构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经90榫卯起来,如图,若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为(容器壁的厚度忽略不计)
A.36 B.40 C.41 D.44 13.(2017·上海松江·高三一模)如图,在棱长为1的正方体1111ABCDABCD中,点P在截面1ADB上,则线段最新版高考高三数学小题分层训练原卷含解析——模块15 简单几何体 第 4 页 共 33 页 AP的最小值为( )
A.13 B.12 C.33 D.22 14.(2017·上海市市东实验学校(上海市市东中学)高三月考)某几何体的三视图如图所示,则该几何体的
体积为( )
A.188 B.248 C.1816 D.2416 15.(2020·上海高三专题练习)高为24的四棱锥SABCD的底面是边长为1的正方形,点,,,,SABCD均在
半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为( ) A.24 B.22 C.1 D.2 16.(2016·上海徐汇·高三模拟预测(理))如图,圆锥形容器的高为,h圆锥内水面的高为1,h且11,3hh若将
圆锥倒置,水面高为2,h则2h等于( ) 最新版高考高三数学小题分层训练原卷含解析——模块15 简单几何体
第 5 页 共 33 页 A.23h B.1927h C.363h D.3193h 17.(2021·上海黄浦·格致中学高三月考)已知三棱锥PABC的顶点都在半径为53的球面上,1AB,
3BC,2AC,则三棱锥PABC体积的最大值为( ) A.32 B.1 C.3 D.5318 18.(2020·上海高三专题练习)将直径分别为6,8,10的三个铁球熔铸成一个大铁球,则大铁球的表面积
是原来三个球表面积之和的( ). A.1825 B.2518 C.12 D.2倍 19.(2020·上海高三专题练习)若||yx和3y围成的封闭平面图形绕y轴旋转一周,则所得体积与绕x轴
旋转一周所得体积之比是( ). A.1:4 B.4:1 C.(12):(422) D.(422):(12) 20.(2020·上海高三专题练习)如果球、正方体与等边圆柱(轴截面为正方形的圆柱)的体积相等,那么它
们的表面积S球,S正方体,S柱的大小关系为( ). A.SSS球正方体柱 B.SSS球柱正方体 C.SSS柱球正方体 D.SSS正方体柱球 21.(2020·上海浦东新·华师大二附中高三月考)运用祖暅原理计算球的体积时,夹在两个平行平面之间的
两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆221916xy绕y轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( ) 最新版高考高三数学小题分层训练原卷含解析——模块15 简单几何体
第 6 页 共 33 页 A.64π B.48π C.16π D.32π 22.(2020·上海高三专题练习)棱长为4的立方体1111ABCDABCD中,P,Q是1CC上两动点,且1PQ,
则三棱锥PAQD的体积为( ). A.8 B.163 C.3 D.83 二、填空题 23.(2020·上海市新场中学高三月考)若一个圆锥的轴截面是边长为4的等边三角形,则这个圆锥的侧面积
为___________ 24.(2020·上海市松江二中高三期中)若体积为8的正方体的各个顶点均在一球面上,则该球的体积为______. 25.(2020·上海市洋泾中学高三期中)表面积为4的球的体积为__________. 26.(2021·上海杨浦·复旦附中高三月考)一个圆柱的侧面展开图是一个面积为4π2的正方形,则这个圆柱的
体积为___________; 27.(2020·上海市嘉定区第一中学高三月考)已知边长为1的正方形ABCD绕BC旋转形成一个圆柱,则该
圆柱的表面积为_____. 28.(2021·浦东新·上海师大附中高三月考)正四棱柱1111ABCDABCD的底面边长2AB,若直线1BC与底
面ABCD所成的角的大小为arctan2,则正四棱柱1111ABCDABCD的侧面积为________ 29.(2020·上海市青浦高级中学高三开学考试)已知某三棱锥的三视图如图所示,则该三棱锥的体积为__. 最新版高考高三数学小题分层训练原卷含解析——模块15 简单几何体
第 7 页 共 33 页 30.(2021·上海师范大学第二附属中学高三月考)若一个圆锥与一个球的体积相等且圆锥的底面半径是球半
径的3倍,则圆锥的高和球的半径之比为________. 31.(2021·上海市奉贤中学高三期中)已知ABC是面积为934的等边三角形,且其顶点都在球O的球面上,
若球O的表面积为16,则O到平面ABC的距离为______ 32.(2021·长宁·上海市延安中学高三月考)正三棱柱111ABCABC各个顶点都在一个半径2的球面上,若A,
B两点的球面距离为,则该正三棱柱的体积为______. 33.(2021·上海市向明中学高三月考)圆锥的底面积和侧面积分别为9和15,则该圆锥母线与底面所成
角为___________.(用反三角表示) 34.(2021·上海徐汇·南洋中学高三月考)将一个斜边长为4的等腰直角三角形以其一直角边所在直线为旋
转轴旋转一周,所得几何体的表面积为_________. 三、解答题 35.(2021·上海市嘉定区第一中学高三月考)如果一个正四棱柱与一个圆柱的体积相等,那么我们称它们是
一对“等积四棱圆柱”.将“等积四棱圆柱”的正四棱柱、圆柱的表面积与高分别记为1S、2S与1h、2
h.
(1)若121hh,1=30S,求2S的值; (2)若12hh,求证:12
SS.