直线与方程复习
直线与方程复习大全

直线与方程复习大全一、 直线与方程:1. 直线的倾斜角 x 轴正方向与直线向上方向之间所成的角叫做直线的倾斜角.当直线与x 轴平行或重合时, 我们规定它的倾斜角为0°. 因此,直线倾斜角的取值范围是[0°,180°).2. 直线的斜率 ①定义:倾斜角α不是90°的直线,α的正切叫做这条直线的斜率.直线的斜率通常用k 表示. 即tan k α=. 当α=0°时,k =0;当α∈(0°, 90°)时,k >0;当α∈(90°, 180°)时,k <0;当α=90°时,k 不存在.②经过两点P 1(x 1, y 1), P 2(x 2, y 2)的直线的斜率公式:)(211212x x x x y y k ≠--= (1).若直线过点(1,2),(4,2+3),则此直线的倾斜角是――――――( ) A 30° B 45° C 60° D 90°(2).直线1x =的倾斜角和斜率分别是( )A 045,1B 0135,1- C 090,不存在 D 0180,不存在 (3). 如图1,直线1l ,2l ,3l 的斜率分别为k 1、k 2、k 3,则必有( ) A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 13、 直线的方程a. 点斜式:)(11x x k y y -=-直线斜率为k ,且过点(x 1, y 1).注意:当直线的倾斜角为0°时直线的斜率k =0,直线的方程是y =y 1;当直线的倾斜角为90°时,直线的斜率不存在,直线的方程是x =x 1;b. 斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b (b ∈R )c. 两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线经过两点P 1(x 1, y 1), P 2(x 2, y 2) d. 截矩式:1x y a b += 直线l 过点(,0)a 和点(0,)b , 即l 在x 轴、y 轴上的截距分别为,a b(a ≠0且b ≠0)注意:直线l 在坐标轴上的截距相等时,斜率为-1或经过原点;直线l 在坐标轴上的截距互为相反数时,斜率为1或经过原点;e. 一般式:Ax +By +C =0(A , B 不全为0)注意: ①平行于x 轴的直线:y =b (b 为常数), 直线的斜率为0;②平行于y 轴的直线:x =a (a 为常数), 直线的斜率不存在;③直线在坐标轴上的截距可以为一切实数1.把直线l 的一般式方程2x-y+6=0化成斜截式方程是 .2.直线l:132=-+-y x 在x 轴上的截距是 .3.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 .4.线过原点且倾角的正弦值是54,则直线方程为 . 5.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A.213, B.--213, C.--123, D.-2,-3 6.mx +ny =1(mn ≠0)与两坐标轴围成的三角形面积为 .7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 8 设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A 1=+b a B 1=-b a C 0=+b a D 0=-b a9已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=010.已知直线1l 过点P (2,2)-,(1)若1l 的倾斜角是直线210l y ++=倾斜角的12,求直线1l 的方程; (2)若1l 在两坐标轴上的截距相等,求直线1l 的方程;(3)若1l 与两坐标轴构成单位面积的三角形,求直线1l 的方程。
高三文科数学直线与方程知识点复习

直线与方程一、倾斜角当直线与X轴相交时,取X轴为基准,叫做直线得倾斜角。
当直线与X轴平行或重合时,规定直线得倾斜角为,因此,直线得倾斜角得取值范围就是。
二、斜率(1)定义:一条直线得倾斜角得叫做这条直线得斜率;当直线得倾斜角时,该直线得斜率;当直线得倾斜角等于时,直线得斜率。
(2)过两点得直线得斜率公式:过两点得直线得斜率公式。
若,则直线得斜率,此时直线得倾斜角为。
练习:1、已知下列直线得倾斜角,求直线得斜率(1)(2)(3)(4)2、求经过下列两点直线得斜率,并判断其倾斜角就是锐角还就是钝角(1) (2)(3) (4)3,判断正误(1)直线得倾斜角为任意实数。
( )(2)任何直线都有斜率。
( )(3)过点得直线得倾斜角就是。
( )(4)若三点共线,则得值就是-2、( )三、注:必记得特殊三角函数值表四、直线得常用方程1、直线得点斜式: 适用条件就是:斜率存在得直线。
2、斜截式:3、截距式: ,为x轴与y轴上得截距。
4、两点式: ()5、直线得一般式方程:练习:1、写出下列直线得点斜式方程(1)经过点A(3,-1),斜率为(2)经过点倾斜角就是(3)经过点C(0,3),倾斜角就是(4)经过点D(-4,-2),倾斜角就是2、写出下列直线得斜截式方程(1)斜率就是在轴上得截距就是-2(2)斜率就是-2,在y轴上得截距就是43、填空题(1)已知直线得点斜式方程就是则直线得斜率就是_________,经过定点________,倾斜角就是______________;(2)已知直线得点斜式方程就是则直线得斜率就是_________,经过定点________,倾斜角就是______________;4、判断(1)经过顶点得直线都可以用方程表示。
( )(2)经过顶点得直线都可以用方程表示。
( )(3)不经过原点得直线都可以用表示。
( )(4)经过任意两个不同得点得直线都可以用方程表示。
( )直线得一般式方程为:,当B不等于0时直线得斜率为_________一般求完直线方程后化成一般式。
直线与方程专题复习讲义 高三数学二轮专题复习

第三章 直线与方程(一)直线的倾斜角1.定义:在平面直角坐标系中,当直线与x 轴相交时,取x 轴非负半轴作为基准,把x 轴的正方向按逆时针旋转至与直线重合的最小角,叫做直线的倾斜角.当直线平行于 x 轴或与x 轴重合时,我们规定直线的倾斜角为0°.2. 范围: 0°≤α<180° 倾斜角[0°,180°) 二面角[0°,180°]线面角[0°,90°] 异面直线成角(0°,90°](二)直线的斜率1.定义:倾斜角α不是90°的直线,正切值叫做这条直线的斜率,直线的斜率常用k 表示,即k=tanα,当直线的倾斜角等于90°时,直线的斜率不存在.2.倾斜角α与斜率k 的范围之间的对应关系 (三)斜率公式经过两点P ₁(x ₁,y ₁),P ₂(x ₂,y ₂)的直线的斜率是: k =y 2−y1x 2−x 1注:(1)斜率公式适用范围x ₁≠ x ₂ (2)斜率公式变形. y₂−y₁=k (x₂−x₁)例1 (1)过 P(-1,-1)的直线l 与x 轴和y 轴分别交于A 、B 两点,若 P 恰为线段AB 的中点,求直线l 的斜率和倾斜角.k =-1,α = 135°(2)若经过点A(1-t ,1+t)和点B(3,2t)的直线的倾斜角为钝角,求实数t 的取值范围.(-2,1)(3)若直线l 的倾斜角是连接(-3,5),(0,9)两点的直线倾斜角的2倍,则直线l 的斜率为 −247.k =tanα=43k ′=tan2α=−247(4)直线l 的方程为x+ycosθ+3=0(θ∈R),则倾斜角的范围为 [π4,3π4].tanα=−1cosθ∈(−∞,+∞)(5)已知两点A(2,3)和B(-1,2),过点 P(1,-1)的直线l 与线段AB 有交点,则直线l 斜率k 的取值范围为 (−∞,−32]U [4,+∞).名称 方程 适用条件 参数几何意义 斜截式 y=kx+b α≠90° k:斜率b :纵截距(可正,可负)点斜式y-y ₀=k(x-x ₀)α≠90°k:斜率 点(x ₀,y ₀)例2 (1)过P(-2,2)点引一条直线l,使其与两坐标轴围成的三角形的面积等于4,求直线 l的方程.解析{b−a=12abab=8或−8∴{a=2+2√3b=−2+2√3 j{a=−2−2√3b=2−2√3(2)直线l过点P(-2,3),且与x轴、y轴分别交于A、B两点,若 P恰为线段AB 的中点,求直线l的方程.3x-2y+12 = 0(3)若直线((2m²+m-3)x+(2-m)y=4m-1在 x轴上的截距为1,则实数 m是(D)A.1B.2C.−12 D.2 或−12(4)①在x轴,y轴上截距分别是-2,3的直线方程是3x-2y+6=0②求过点 P(2,3),并且在两轴上截距相等的直线方程y=32x或.x+y-5 =0例3 (1)直线l的方程为.Ax+By+C=0(A、B不同时为零),根据下列各位置特征,写出A,B,C应满足的关系:①l与两坐标轴都相交A≠0;B≠0 ;②l过原点 C=0 ;③l只与x轴相交 B=0 ;④l是y轴所在直线 B=0,C=0 ;⑤l在x,y轴上的截距互为相反数①C=0. A≠0,B≠0②C≠0且A= B≠0 .(2)①直线kx+y+1=0(k∈ R)恒过定点 (0,-1) .②直线kx+k+3k²x+k²y=0(k∈R)恒过定点 (-1,3) .(3)过点P(3,0)有一条直线l,它夹在两条直线l₁:2x−y−2=0与l₂:x+y+3=0之间的线段恰被点 P平分,求直线l的方程。
直线与方程章末复习课件

[例 1] (1)点( 3,4)在直线 l:ax-y+1=0 上,则
直线 l 的倾斜角为( )
A.30°
B.45°
C.60°
D.120°
(2)已知在平行四边形 ABCD 中,A(1,2),B(2,1),
中心 E(3,3).
①判断平行四边形 ABCD 是否为正方形;
②点 P(x,y)在平行四边形 ABCD 的边界及内部运动,
(2)单调性. 当 α 由 0°→90°→180°(不含 180°)变化时,k 由 0(含 0)逐渐增大到+∞(不存在),然后由-∞(不存在)逐渐增 大到 0(不含 0). 经过 A(x1,y1),B(x2,y2)(x1≠x2)两点的直线的斜率 公式是 k=xy22--xy11,应用时注意其适用的条件是 x1≠x2, 当 x1=x2 时,直线的斜率不存在.
解:由点M(3,5)及直线l:x-2y+2= 0,可求得点M关于l的对称点M1(5,1),
同理可得点M关于y轴的对称点M2(- 3,5),如图所示.
根据M1,M2两点可得直线M1M2的方程为x+2y-7=0. 令x=0,得直线M1M2与y轴的交点Q0,72, 解方程组xx+-22yy-+72==00,,得两直线的交点P52,94. 所以点P52,94与点Q0,72即为所求.
归纳升华 利用直接求解法比较烦琐时,可从图形方面考虑, 利用数形结合的方法来求解,从而使问题变得形象、直 观,利于求解.
[变式训练] 点P(-2,-1)到直线l:(1+3λ)x+(1+ λ)y-2-5λ=0的距离为d,则d的最大值为________.
解析:直线l的方程可化为x+y-2+λ(3x+y-5)=0,
[例 2] 已知两条直线 l1:ax-by+4=0,l2:(a-1)x +y+b=0,求分别满足下列条件的 a,b 的值:
直线与方程复习题(含答案)

直线的倾斜角与斜率题组一直线的倾斜角1.已知直线l 过点(m,1),(m +1,tan α+1),则 ( ) A .α一定是直线l 的倾斜角 B .α一定不是直线l 的倾斜角 C .α不一定是直线l 的倾斜角 D .180°-α一定是直线l 的倾斜角 解析:设θ为直线l 的倾斜角, 则tan θ=tan α+1-1m +1-m=tan α,∴α=kπ+θ,k ∈Z ,当k ≠0时,θ≠α. 答案:C2.如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( )A .k sin α>0B .k cos α>0C .k sin α≤0D .k cos α≤0 解析:显然k <0,π2<α<π,∴cos α<0,∴k cos α>0. 答案:B题组二直线的斜率及应用3.若一个直角三角形的三条边所在直线的斜率分别为k 1,k 2,k 3,且k 1<k 2<k 3,则下列说法中一定正确的是( )A .k 1k 2=-1B .k 2k 3=-1C .k 1<0D .k 2≥0 解析:结合图形知,k 1<0. 答案:C4.(2008·浙江高考)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________.解析:∵A 、B 、C 三点共线,∴k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,又a >0,∴a =1+ 2.答案:1+ 25.已知两点A (-1,-5),B (3,-2),若直线l 的倾斜角是直线AB 倾斜角的一半,则l 的斜率是________.解析:设直线AB 的倾斜角为2α,则直线l 的倾斜角为α,由于0°≤2α<180°,∴0° ≤α<90°,由tan2α=-2-(-5)3-(-1)=34,得tan α=13,即直线l 的斜率为13.答案:13题组三两条直线的平行与垂直6.(2009·陕西八校模拟)已知两条直线l 1:ax +by +c =0,直线l 2:mx +ny +p =0,则an =bm 是直线l 1∥l 2的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵l 1∥l 2⇒an -bm =0,且an -bm =0⇒/ l 1∥l 2,故an =bm 是直线l 1∥l 2的必要不充分条件. 答案:B7.(2009·福建质检)已知直线a 2x +y +2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为( )A .5B .4C .2D .1 解析:由题意知,a 2b -(a 2+1)=0且a ≠0, ∴a 2b =a 2+1,∴ab =a 2+1a =a +1a,∴|ab |=|a +1a |=|a |+1|a |≥2.(当且仅当a =±1时取“=”).答案:C8.(2010·合肥模拟)已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则ab为( )A.23 B .-23 C.13 D .-13 解析:曲线y =x 3在点P (1,1)处的切线斜率为3, 所以a b =-13.答案:D9.(2009·泰兴模拟)设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.解析:∵l 1⊥l 2,k 1=-12,∴k 2=2,又点(0,1)在直线l 1上,故点(-1,0)在直线l 2上, ∴直线l 2的方程为y =2(x +1),即2x -y +2=0. 答案:2x -y +2=0题组四直线的倾斜角和斜率的综合问题10.若关于x 的方程|x -1|-kx =0有且只有一个正实数根,则实数k 的取值范围是________.解析:数形结合.在同一坐标系内画出函数y =kx ,y =|x -1|的图象如图所示,显然k ≥1或k =0时满足题意.答案:k ≥1或k =011.(2009·青岛模拟)已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________. 解析:如图所示,k P A =6-3-1-2=-1, ∴直线P A 的倾斜角为3π4,k PB =6-2-1-(-5)=1,∴直线PB 的倾斜角为π4,从而直线l 的倾斜角的范围是[π4,3π4].答案:[π4,3π4]12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标. (1)∠MOP =∠OPN (O 是坐标原点). (2)∠MPN 是直角. 解:设P (x,0),(1)∵∠MOP =∠OPN ,∴OM ∥NP . ∴k OM =k NP .又k OM =2-02-0=1,k NP =0-(-2)x -5=2x -5(x ≠5),∴1=2x -5,∴x =7,即P 点坐标为(7,0).(2)∵∠MPN =90°,∴MP ⊥NP , ∴k MP ·k NP =-1. 又k MP =22-x (x ≠2),k NP =2x -5(x ≠5), ∴22-x ×2x -5=-1,解得x =1或x =6, 即P 点坐标为(1,0)或(6,0).直线方程题组一直线方程的求法1.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0解析:当x =1时,y =1,即所求直线过点(1,1),在直线x -2y +1=0中,令y =0,得x =-1,则(-1,0)关于直线x =1对称的点(3,0)在所求直线上,故所求方程为x +2y -3=0. 答案:D2.设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=0 解析:由于直线P A 的倾斜角为45°,且|P A |=|PB |, 故直线PB 的倾斜角为135°, 又当x =2时,y =3,即P (2,3),∴直线PB 的方程为y -3=-(x -2),即x +y -5=0. 答案:A3.(2009·安徽高考)直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是 ( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析:由直线l 与直线2x -3y +4=0垂直,可知直线l 的斜率是-32,由点斜式可得直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.答案:A题组二直线方程中参数的确定4.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC =2CB ,则a 等于( )A .2B .1 C.45 D.53解析:设点C (x ,y ),由于AC =2CB , 所以(x -7,y -1)=2(1-x,4-y ),所以有⎩⎪⎨⎪⎧ x -7=2-2x y -1=8-2y ⇒⎩⎪⎨⎪⎧x =3y =3, 又点C 在直线y =12ax 上,所以有3=32a ,a =2.答案:A5.(2009·厦门模拟)若点(5,b )在两条平行直线6x -8y +1=0与3x -4y +5=0之间,则整数b 的值为( )A .5B .-5C .4D .-4 解析:过点(5,b )且与两直线平行的直线的方程为3x -4y +4b -15=0. 由题意知,18<4b -154<54,∴318<b <5,又b 是整数,∴b =4. 答案:C题组三直线方程的应用6.经过点P (1,4)的直线在两坐标轴上的截距都是正值,且截距之和最小,则直线的方程为 ( )A .x +2y -6=0B .2x +y -6=0C .x -2y +7=0D .x -2y -7=0解析:设直线的方程为x a +y b =1(a >0,b >0),则有1a +4b =1,∴a +b =(a +b )(1a +4b )=5+b a +4ab ≥5+4=9,当且仅当b a =4ab ,即a =3,b =6时取“=”.∴直线方程为2x +y -6=0. 答案:B7.已知A (3,0),B (0,4),动点P (x ,y )在线段AB 上移动,则xy 的最大值等于________. 解析:线段AB 的方程为x 3+y4=1(0≤x ≤3),∴1=x 3+y 4≥2xy12,∴xy ≤3. (当且仅当x =32,y =2时取“=”).答案:38.已知直线l 1:x +3y -5=0,l 2:3kx -y +1=0.若l 1,l 2与两坐标轴围成的四边形有一个外接圆,则k =________.解析:由题意知,l 1⊥l 2,∴3k -3=0,k =1. 答案:1题组四直线方程的综合问题9.(2009·上海春季高考)过点A (4,-1)和双曲线x 29-y 216=1右焦点的直线方程为________.解析:由于a 2=9,b 2=16,∴c 2=25,故右焦点为(5,0). 所求直线方程为y-1=x -54-5,即x -y -5=0.答案:x -y -5=010.函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +2n 的最小值为________.解析:由题意知,点A (-2,-1).∴2m +n =1,∴1m +2n =(1m +2n )(2m +n )=4+n m +4m n ≥4+4=8(当且仅当m =14,n =12时取“=”). 答案:811.过点M (0,1)作直线,使它被两直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,求此直线方程.解:法一:过点M 且与x 轴垂直的直线是y 轴,它和两已知直线的交点分别是⎝⎛⎭⎫0,103和(0,8),显然不满足中点是点M (0,1)的条件.故可设所求直线方程为y =kx +1,与两已知直线l 1,l 2分别交于A 、B 两点,联立方程组⎩⎪⎨⎪⎧y =kx +1,x -3y +10=0,① ⎩⎪⎨⎪⎧y =kx +1,2x +y -8=0,② 由①解得x A =73k -1,由②解得x B =7k +2, ∵点M 平分线段AB ,∴x A +x B =2x M ,即73k -1+7k +2=0.解得k =-14,故所求直线方程为x +4y -4=0.法二:设所求直线与已知直线l 1,l 2分别交于A 、B 两点. ∵点B 在直线l 2:2x +y -8=0上, 故可设B (t,8-2t ).又M (0,1)是AB 的中点, 由中点坐标公式得A (-t,2t -6). ∵A 点在直线l 1:x -3y +10=0上, ∴(-t )-3(2t -6)+10=0,解得t =4. ∴B (4,0),A (-4,2),故所求直线方程为x +4y -4=0. 12.已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程. 解:(1)法一:直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1).法二:设直线过定点(x 0,y 0),则kx 0-y 0+1+2k =0对任意k ∈R 恒成立,即(x 0+2)k -y 0+1=0恒成立, 所以x 0+2=0,-y 0+1=0,解得x 0=-2,y 0=1,故直线l 总过定点(-2,1).(2)直线l 的方程可化为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是k ≥0.(3)依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,∴A (-1+2k k ,0),B (0,1+2k ),又-1+2k k <0且1+2k >0,∴k >0,故S =12|OA ||OB |=12×1+2kk(1+2k ) =12(4k +1k +4)≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号,故S 的最小值为4,此时直线l 的方程为x -2y +4=0.直线的交点坐标与距离公式题组一两条直线的交点问题1.若直线l 1:y =kx +k +2与l 2:y =-2x +4的交点在第一象限,则实数k 的取值范围是( )A .k >-23 B .k <2C .-23<k <2D .k <-23或k >2解析:由⎩⎪⎨⎪⎧y =kx +k +2y =-2x +4得⎩⎪⎨⎪⎧x =2-kk +2y =6k +4k +2,由⎩⎪⎨⎪⎧2-kk +2>06k +4k +2>0得⎩⎪⎨⎪⎧-2<k <2,k <-2或k >-23,∴-23<k <2. 答案:C2.若y =a |x |的图象与直线y =x +a (a >0)有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1 解析:结合图象知,a 的取值范围是a >1.答案:B题组二有关直线的对称问题3.直线l :4x +3y -2=0关于点A (1,1)对称的直线方程为 ( ) A .4x +3y -4=0 B .4x +3y -12=0 C .4x -3y -4=0 D .4x -3y -12=0解析:在对称直线上任取一点P (x ,y ),则点P 关于点A 对称的点P ′(x ′,y ′)必在直线l 上.由⎩⎪⎨⎪⎧x ′+x =2y ′+y =2得P ′(2-x,2-y ), ∴4(2-x )+3(2-y )-2=0,即4x +3y -12=0. 答案:B4.(2010·临沂质检)已知A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上, 则AC 所在直线方程是____________.解析:设点A 关于直线y =x +1对称的点A ′(x 0,y 0), 则⎩⎪⎨⎪⎧y 0-1x 0-3=-1y 0+12=x 0+32+1,解得⎩⎪⎨⎪⎧x 0=0y 0=4,即A ′(0,4).∴直线A ′B 的方程为2x -y +4=0.由⎩⎪⎨⎪⎧ 2x -y +4=0y =x +1得⎩⎪⎨⎪⎧x =-3y =-2,得C (-3,-2). ∴直线AC 的方程为x -2y -1=0. 答案:x -2y -1=0题组三有关距离问题5.点(1,cos θ)到直线x sin θ+y cos θ-1=0的距离是14(0°≤θ≤180°),那么θ= ( )A .150°B .30°或150°C .30°D .30°或210°解析:由题意知14=|sin θ+cos 2θ-1|sin 2θ+cos 2θ=|sin θ-sin 2θ|,又0≤sin θ≤1,∴sin 2θ-sin θ+14=0,(sin θ-12)2=0,∴sin θ=12,又0°≤θ≤180°,∴θ=30°或150°. 答案:B6.(2010·武汉模拟)已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于( )A.79 B .-13 C .-79或-13 D.79或13 解析:由题意知|6a +3+1|a 2+1=|-3a -4+1|a 2+1,解得a =-13或a =-79.答案:C7.(2010·孝昌模拟)若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则线段AB 的中点M 到原点的距离的最小值为 ( ) A .23 B .3 3 C .3 2 D .4 2解析:由题意知,M 点的轨迹为平行于直线l 1、l 2且到l 1、l 2距离相等的直线l ,其方程为x +y -6=0,∴M 到原点的距离的最小值为d =62=3 2. 答案:C题组四综 合 问 题 8.(2009·哈尔滨模拟)若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( ) A .(1,-2) B .(1,2) C .(-1,2) D .(-1,-2)解析:因为k ,-1,b 三个数成等差数列,所以k +b =-2, 即b =-k -2,于是直线方程化为y =kx -k -2, 即y +2=k (x -1),故直线必过定点(1,-2). 答案:A 9.点P (-1,3)到直线l :y =k (x -2)的距离的最大值等于( )A .2B .3C .3 2D .2 3 解析:直线l :y =k (x -2)的方程化为kx -y -2k =0, 所以点P (-1,3)到该直线的距离为 d =3|k +1|k 2+1=3k 2+2k +1k 2+1=31+2k k 2+1,由于2k k 2+1≤1,所以d ≤32, 即距离的最大值等于3 2.答案:C10.已知点A (3,1),在直线x -y =0和y =0上分别有点M 和N 使△AMN 的周长最短,求点M 、N 的坐标.解:A (3,1)关于y =x 的对称点A1(1,3),A (3,1)关于y =0的对称点A 2(3,-1),△AMN 的周长最小值为|A 1A 2|,|A 1A 2|=25,A 1A 2的方程:2x +y -5=0.A 1A 2与x -y =0的交点为M ,由⎩⎪⎨⎪⎧2x +y -5=0x -y =0⇒M (53,53), A 1A 2与y =0的交点N ,由⎩⎪⎨⎪⎧ 2x +y -5=0y =0⇒N (52,0). 11.已知n 条直线:l 1:x -y +C 1=0,C 1=2且l 2:x -y +C 2=0,l 3:x -y +C 3=0,…,l n :x -y +C n =0,其中C 1<C 2<C 3<…<C n ,这n 条平行直线中,每相邻两条之间的距离顺次为2,3,4,…,n .(1)求C n ;(2)求x -y +C n =0与x 轴、y 轴围成的图形的面积.解:(1)由已知条件可得l 1:x -y +2=0,则原点O 到l 1的距离d 1=1,由平行直线间的距离可得原点O 到l n 的距离d n 为1+2+…+n =n (n +1)2, ∵C n =2d n ,∴C n =2·n (n +1)2. (2)设直线l n :x -y +C n =0交x 轴于点M ,交y 轴于点N ,则△OMN 的面积S △OMN =12|OM |·|ON |=12(C n )2=n 2(n +1)24.。
直线与直线方程复习课件

K1=K2且b1≠b2 K1=K2且b1=b2 K1≠K2 K1k2=-1
A1B2 A2 B1 0 BC2 B2C1 0 1 A1B2 A2 B1 0 BC2 B2C1 0 1
A1B2 A2 B1 0 A1 A2 B1B2 0
5.距离公式
(1)两点间的距离公式:
(1)①当横截距、纵截距均为零时,设所求的直线方程
2 为y=kx,将(-5,2)代入得 k 5 ,此时直线方程 y
,即2x+5y=0; ②当横截距、纵截距都不是零时,设所求的直线 1 x y 1,将(-5,2)代入得 a 方程为 2 2a a ,此时直线方程为x+2y+1=0.
2 x 5
综上所述,所求直线方程为2x+5y=0或x+2y+1=0.
直线方程的求法
例3已知点P(2,-1),过P点作直线l.
若原点O到直线l的距离为2,求l的方程; ①当l不与x轴垂直时, 直线方程可设为y+1=k(x-2), y 即kx-y-2k-1=0.
l1
由已知得
o x P(2,-1)
1 2k 1 k2
直线方程的求法 例1. 已知△ABC的三个顶点是 A(3,-4)、B(0,3), C(-6,0),求它的三条边所在的直线方程.
解:②由于B点的坐标为(0,3),故直线AB在 y 轴上的截距为3,利用斜截式, 设直线AB的方程为 y=kx+3 又由顶点 A(3,-4)在直线AB上,
C(-6,0)
y
B(0,3)
| PP2 | ( x2 x1 ) ( y2 y1 ) 1
2 2
(2)点到直线的距离公式:
直线与方程复习题答案

直线与方程复习题答案一、选择题1. 直线方程 \( y = mx + b \) 中,\( m \) 表示直线的斜率,\( b \) 表示直线与y轴的交点。
A. 正确B. 错误答案:A2. 下列哪个方程表示的是过点 (1,2) 且斜率为3的直线?A. \( y = 3x + 1 \)B. \( y = 3x - 1 \)C. \( y = 3x + 2 \)D. \( y = 3x - 2 \)答案:C3. 直线 \( x + 2y - 6 = 0 \) 与 \( x - y + 5 = 0 \) 的交点坐标为:A. (1,3)B. (3,1)C. (-1,-3)D. (-3,-1)答案:A二、填空题1. 直线 \( ax + by + c = 0 \) 的斜截式方程是 \( y = \frac{-a}{b}x + \frac{c}{b} \)。
答案:\( \frac{-a}{b} \),\( \frac{c}{b} \)2. 若直线 \( l \) 与直线 \( 3x - 4y + 5 = 0 \) 平行,则直线\( l \) 的斜率为 \( \frac{3}{4} \)。
答案:\( \frac{3}{4} \)三、解答题1. 求过点 (2,3) 且垂直于直线 \( 2x - 3y + 6 = 0 \) 的直线方程。
解:已知直线 \( 2x - 3y + 6 = 0 \) 的斜率为 \( \frac{2}{3} \),垂直于它的直线斜率为 \( -\frac{3}{2} \)。
代入点斜式方程\( y - y_1 = m(x - x_1) \) 得:\( y - 3 = -\frac{3}{2}(x - 2) \)化简得:\( 3x + 2y - 12 = 0 \)2. 已知直线 \( l \) 经过点 (1,0) 和 (0,1),求直线 \( l \) 的方程。
解:直线 \( l \) 经过点 (1,0) 和 (0,1),其斜率为\( \frac{1 - 0}{0 - 1} = -1 \)。
直线与方程_知识点总结_例题习题精讲精练

直线与方程专题复习【知识点一:倾斜角与斜率】 (1)直线的倾斜角①直线与x 轴平行或重合时,规定它的倾斜角为00;②倾斜角α的范围000180α≤<(2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在.记作tan k α=0(90)α≠⑴当直线l 与x 轴平行或重合时, 00α=,0tan 00k ==; ⑵当直线l 与x 轴垂直时, 090α=,k 不存在.②经过两点1112212(,),(,)P x y P x y x x ≠()的直线的斜率公式是2121y y k x x -=-③每条直线都有倾斜角,但并不是每条直线都有斜率. (3)利用斜率证明三点共线的方法:已知112233(,),(,),(,)A x y B x y C x y ,若123AB BC x x x k k ===或,则有A 、B 、C 三点共线。
【知识点二:直线平行与垂直】(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔ 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l 【知识点三:直线的方程】 (1)直线方程的几种形式问题:过两点111222(,),(,)P x y P x y 的直线是否一定可用两点式方程表示?不一定】 (1)若1212x x y y =≠且,直线垂直于x 轴,方程为1x x =; (2)若1212x x y y ≠=且,直线垂直于y 轴,方程为12y y =; (3)若1212x x y y ≠≠且,直线方程可用两点式表示截距与距离的区别:截距的值有正、负、零。
距离的值是非负数。
截距是实数,不是“距离”,可正可负。
截距式方程的应用①与坐标轴围成的三角形的周长为: |a |+|b②直线与坐标轴围成的三角形面积为: S =1||2ab ; ③直线在两坐标轴上的截距相等,则1k =-或直线过原点,常设此方程为x y a y kx +==或 (2)线段的中点坐标公式121122,(,),(,)P P x y x y 若点的坐标分别是,1212122(,)2x x x PP M x y y y y +⎧=⎪⎪⎨+⎪=⎪⎩且线段的中点的坐标为 【知识点四 直线的交点坐标与距离】 (1)两条直线的交点设两条直线的方程是1111:0l A x B y C ++=, 2222:0l A x B y C ++= 两条直线的交点坐标就是方程组1112220A xB yC A x B y C ++=⎧⎨++=⎩的解.①若方程组有唯一解,则这两条直线相交,此解就是交点的坐标; ②若方程组无解,则两条直线无公共点,此时两条直线平行. (2)几种距离两点间的距离:平面上的两点111222(,),(,)P x y P x y间的距离公式12||PP =特别地,原点(0,0)O 与任一点(,)P x y的距离||OP =点到直线的距离:点00(,)o P x y 到直线0Ax By C ++=的距离d =两条平行线间的距离:两条平行线1200Ax By C Ax By C ++=++=与间的距离d =精讲精练:【例】已知(1A 直线l 过原点O 且与线段AB 有公共点,则直线l 的斜率的取值范围是( )ABCD【例】在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A 1条 B 2条 C 3条 D 4条 【例】方程1=+y x 所表示的图形的面积为_______.【例】一直线过点(3,4)M -,并且在两坐标轴上截距之和为12,这条直线方程是__________. 【例】已知直线(2)(31)1,a y a x -=--为使这条直线不经过第二象限,则实数a 的范围是___ _.【例】直线13y x =-+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等,求m 的值.【例】已知点(1,1)A ,(2,2)B ,点P 在直线x y 21=上,求22PB PA +取得最小值时P 点的坐标. 【例】在△ABC 中,已知BC 边上的高所在直线的方程为210,x y A -+=∠的平分线所在直线的方程为0y =.若点B 的坐标为(1,2),求点C 的坐标.【例】直线l 过点(2,1),P 且分别与,x y 轴的正半轴于,A B 两点,O 为原点. (1)求△AOB 面积最小值时l 的方程;(2)|PA|•|PB|取最小值时l 的方程. 【例】求倾角是直线1y =+的倾角的1,4且分别满足下列条件的直线方程: (1)经过点1)-;(2)在y 轴上的截距是-5. 【例】已知直线:120l kx y k -++=.(1)证明:直线l 过定点;(2)若直线l 交x 负半轴于,A 交y 正半轴于,B AOB ∆的面积为,S 试求S 的最小值并求出此时直线l 的方程. 练习:1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为 ; 2.如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是 ;3.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是 ; 4.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是 ; 5.过点A(1,2)且与原点距离最大的直线方程是:6.三直线ax +2y +8=0,4x +3y =10,2x -y =10相交于一点,则a 的值是:7.已知点(1,2),B(2,2),C(0,3),A --若点),(b a M )0(≠a 是线段AB 上一点,则直线CM k 的取值范围是: 8.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为:9过点(1,2)且在两坐标轴上的截距相等的直线的方程 ;10.已知A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上, 则AC 所在直线方程是____________. 11.光线从点()3,2A 射出在直线01:=++y x l 上,反射光线经过点()1,1B ,则反射光线所在直线的方程 12.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为: 13.已知直线l :kx -y +1+2k =0(k ∈R).(1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为4,求直线l 的方程. 14.(1)要使直线l 1:m y m m x m m 2)()32(22=-+-+与直线l 2:x -y=1平行,求m 的值. (2)直线l 1:a x +(1-a)y=3与直线l 2:(a -1)x +(2a+3)y=2互相垂直,求a 的值.15.已知∆A B C 中,A (1, 3),AB 、AC 边上的中线所在直线方程分别为x y -+=210 和y -=10,求∆A B C各边所在直线方程.16.△ABC 中,A (3,-1),AB 边上的中线CM 所在直线方程为:6x +10y -59=0, ∠B 的平分线方程B T 为:x -4y +10=0,求直线BC 的方程.17.已知函数(x)a f x x =+的定义域为(0,),+∞且(2)22f =+设点P 是函数图象上的任意一点,过点P 分别作直线y x =和y 轴的垂线,垂足分别为,M N .(1)求a 的值;(2)问:|PM ||PN |⋅是否为定值?若是,则求出该定值,若不是,则说明理由;(3)设O 为原点,若1OMPN S =求P 点的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
:A1A2+B1B2=0
8.点(-1,2)到直线 2 x y 10 0 2 5 的距离为___ 应用知识点:点( x 0 , y 0)到直线 Ax By C 0 Ax0 By 0 C 的距离是
y kx b
y 2 y1 x 2 x1
点P1 ( x1,y1 )和点P2 ( x2,y 2 ) y y 1 x x 1 不垂直于x、y轴的直线
在x轴上的截距a 在y轴上的截距b
x y 1 a b
不垂直于x、y轴的直线 不过原点的直线
一般式 两个独立的条件
Ax By C 0 A、 B 不同时为零
1.直线的倾斜角:理解
直线的倾斜角的概念要 注意三点: (1)直线向上的方向; (2)与x轴的正方向; (3)所成的最小正角, 其范围是[0,π).
2.直线的斜率:
(1)定义:倾斜角不是90°的直线它
的倾斜角α的正切值叫做这条直线的斜 率,常用k表示,即 k=tanα. α=90°的直线斜率不存在; (2)经过两点P(x1,y1),Q(x2,y2) 的直线的斜率公式 (其中x1≠x2). y2 y1 k x2 x1
5,已知直线过两点(0,2)和(3,0), x y 则此直线的方程是____ 1
3
则直线l的方程为 x/a+y/b=1.
2 设直线 l 在x、y轴截距分别为a、b(ab≠0)
6.若直线ax 2 y 2 0和3x y 2 0 6 互相平行,则 等于___
a
应用知识点: l1∥l2:k1=k2 A B C 1 1 : 1 A2 B2 C 2 7.若直线 x ay 2 0和 2 x 3 y 1 0
4.直线与二元一次方程的关系: 直线的方程都是二元一次方程; 任何一个关于x,y的二元一次方程都 表示一条直线。
直线方程的五种形式
名 称 已 知 条 件 标准方程 适用范围
不垂直于 x轴的直线 不垂直于 x轴的直线
点斜式 点P1 ( x1,y1 )和斜率k y y1 k ( x x1 ) 斜截式 斜率k和y轴上的截距 两点式 截距式
解法一: k PA 5,k PB 由图可知, 1 k , 5, . 2
A
1 , 2
y
P
B o x
解法二:设l的方程为y k ( x 1) 2, 3 而线段AB的方程为y ( x 3)( 2 x 3), 5 5k 19 将两式联立,解得:x , 3 5k 5k 19 则 2 3, 3 5k 1 解得k ,或k 5. 2 1 k , 5, . 2
例三:已知直线 l 过定点 P (1, 2) , 请添 加适当的条件,求直线l 的方程.
y 3 2
1 O 1
(1)斜率是直线2 x y 1 0
P(1,2)
斜率的两倍 (2)倾斜角是直线 2x y 1 0
倾斜角的两倍 (3)与直线2 x y 1 0平行 2 3 x (4)与直线2 x y 1 0垂直
问题3:如何判定两条直线的平行与垂直?
L1:y=k1x+b1 L2:Y=K2x+b2 (K1,k2均存在) L1:A1X+B1Y+C1=0 L2:A2X+B2Y+C2=0 (A1、B1 , A2 、 B2 均不同时为0)
平行
K1=K2且b1≠b2
A1 B1 C 1 A2 B2 C 2
A1B2 A2 B1 0
d
9.直线 7 x 8 y 9 0 和 12 113 的距离是__ 113源自7x 8 y 3 0
A B
2 2
A B
2
2
应用知识点:直线Ax By C1 0 和Ax By C 2 0 C1 C 2 的距离是 d
例二.直线l过点P (1, 2)且与以A(2, 3)、B (3, 0) 为端点的线段相交,那么直线l的斜率的取值范 围是
(6)求过点(2,1)和点(a,2)的直线方程. x ( a 2) y a 4 0
11
4.已知直线过点(1.2),且它的倾斜角是 x y 1 0 450,则此直线的方程是_____
应用知识点:直线l过定点P(x0,y0),斜率为k, 则直线l 的方程为 y-y0=k(x-x0)
x
x1 x2 2 y y2 y 1 2
3.点到直线的距离公式: d
| Ax0 By0 C | A2 B 2
两平行直线间的距离公式: d C1 C2 2 2
A B
1.直线的倾斜角是1350,则它的斜率 是______. 1 应用知识点:k=tana a是直线的倾斜角 2,已知两点A(2,3),B(15),则过A,B两点 2 的直线的斜率是____. 应用知识点: k y 2 y1
y B 3 P(1,2) 2 1 O 1
与x轴y轴的正半轴 分别交于A, B两点
2 3 x
A
与x轴y轴的正半轴分别交于 A, B两点,
(1)OAB的面积为 10时
(2)OAB的面积最小时 (3)OAB的周长最小时
y B 3 P(1,2) 2 1 O 1
(4) OA OB 最小时 (5) PA PB 最小时
B1C2 B2C1 0
重合
K1=K2且b1=b2
相交
K1≠K2
A1B2 A2 B1 0 A1 A2 B1B2 0
垂直
K1k2=-1
问题4:关于距离的公式
1、两点间的距离公式
| PP ( x2 x1 ) ( y2 y1 ) 1 2 |
2 2
2,中点坐标公式
一题多变 加强联系 一题多解 比较优劣 多题一解 抓住本质
问题2:确定一条直线的条件有哪些?
1.由直线上一点和直线的方向确定,而直 线的方向由斜率确定,这便是点斜式的由 来,斜截式是点斜式的特例。
2.由两点确定一条直线,这便是两点式 的由来,两点式也可以由点斜式而来, 截距式可看做是两点式的特例。
3.方程Ax+By+C=0(A,B不全为0) 叫做直线方程的一般式,任何一条直线 的方程不管是用点斜式、斜截式、两点 式还是截距式表示的,都可以化成一般 式。
x 2 x1
.
3、求满足下列条件的直线方程: (1)经过点P(2,-1)且与直线2x+3y+12=0平行; 2x+3y-1=0 (2)经过点Q(-1,3)且与直线x+2y-1=0垂直; 2x-y+5=0 (3)经过点R(-2,3)且在两坐标轴上截距相等; x+y-1=0或3x+2y=0 (4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等; 4x+y-6=0或3x+2y-7=0 (5) 经过点N(-1,3)且在x轴的截距与它在y轴上的截距 的和为零. 3x y 0 或 x y 4 0
例三:已知直线 l 过定点 P (1, 2) , 请添 加适当的条件,求直线l 的方程.
y 3 2
1 O 1 2 3 x
(1)截距相等
P(1,2)
(2)原点到直线 l的距离为2
(3)原点到直线 l的距离最大时
(4)与点A(1,0), B(3,1) 距离相等
例三:已知直线 l 过定点 P (1, 2) , 请添 加适当的条件,求直线l 的方程.
A
2 3 x
变式 :已知直线l 的斜率为2 , 请添 加适当的条件,求直线 l 的方程.
点 对称 距离、 截距、 面积、周长等 最值有关
例四已知直线 . L1: 2 x y 4 0, 求L1关于直线 L: 3x 4 y 1 0对称的直线L2的方程。
小结
1.知识 2.方法 待定系数法 3.思想 分类讨论 数形结合 函数与方程
直线与方程复习
龙江中学 韩春梅
问题1:什么是直线的倾斜角、斜率、截距
1、直线向上的方向与x轴正方向之间所成的角,叫做这条 直线的倾斜角. 倾斜角的取值范围是[0,π)
2、若直线的倾斜角为α(α≠90°),则k=tanα,叫做这条 直线的斜率.经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直 线的斜率 k y2 y1 x2 x1 3、直线的横截距是直线与x轴交点的横坐标,直线的纵截 距是直线与 y 轴交点的纵坐标.