最新最新北师大课标版七年级数学上册《应用一元一次方程—追赶小明》教学设计-评奖教案.doc

合集下载

北师大版七年级数学上册:5.6应用一元一次方程追赶小明教学设计

北师大版七年级数学上册:5.6应用一元一次方程追赶小明教学设计
北师大版七年级数学上册:5.6应用一元一次方程追赶小明教学设计
一、教学目标
(一)知识与技能
1.理解一元一次方程的概念,掌握一元一次方程的解法,并能运用到实际情境中。
2.能够根据实际问题,找出数量关系,正确列出相应的一元一次方程。
3.能够运用等式的性质,进行方程的化简与求解,解决实际问题。
4.通过解决实际问题,提高学生的观察、分析、归纳和解决问题的能力。
b.实例演示:给出具体实例,展示如何根据实际问题列出方程。
c.学生跟随:让学生跟随教师一起列出方程,加深理解。
d.知识拓展:介绍一元一次方程在其他实际问题中的应用,如购物、计费等。
(三)学生小组讨论
1.教学内容:小组合作,共同解决实际问题。
2.教学方法:采用分组合作、交流讨论的方式。
3.教学过程:
a.分组:将学生分成若干小组,每组分配一个实际问题。
1.培养学生积极参与数学学习的兴趣,激发学生学习数学的热情。
2.培养学生面对问题,勇于挑战、积极思考的良好习惯。
3.通过解决实际问题,让学生体会数学与生活的紧密联系,感受数学的实用价值。
4.培养学生合作交流、共同解决问题的团队精神,增强集体荣誉感。
在设计“应用一元一次方程追赶小明”的教学活动时,我将结合学生的实际情况,以生活情境为背景,引导学生运用一元一次方程解决实际问题。通过丰富多样的教学手段,激发学生的学习兴趣,培养学生的数学思维能力,提高他们解决实际问题的能力。同时,注重培养学生的情感态度与价值观,使他们在学习过程中,获得成功的体验,增强自信心,形成积极向上的学习态度。
4.精讲多练,提高学生的解题技能。在教学过程中,教师进行适当的讲解,为学生提供丰富的练习机会,使学生在实践中不断提高解题能力。

初中数学北师大七年级上册(2023年修订) 一元一次方程应用一元一次方程追赶小明教案

初中数学北师大七年级上册(2023年修订) 一元一次方程应用一元一次方程追赶小明教案

《追赶小明》教案一、教材及学情分析追赶小明是北师大版七年级(上)第五章应用一元一次方程最后一节的内容。

教材首先由一个实际实例“追赶小明”创设问题情境,激发学生去分析问题、探究解决问题的方法,然后通过画“线段图”建立一元一次方程模型解决问题.目的是培养学生把生活中的实际问题转化为数学模型的能力,让学生体会数学在生活中的作用.教学时是让学生根据事实提出问题并尝试去解决问题,让学生在自主探索、互相启迪、合作交流中提高分析问题和解决问题的能力,梳理所学知识,培养学生的数学能力.认知基础:学生在小学阶段学过有关行程问题的应用题,熟悉路程、时间、速度之间的关系.前几节课又学习了解一元一次方程及一些运用方程模型解决的实际问题的有关知识.学生是学习的“主人”,教学应以学生为中心,从学生已有的生活经验出发,创设有助于学生自主学习的情境,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,促使学生在教师的指导下生动活泼地、主动地、富有个性地学习.本节课让学生主动地参与数学活动,并通过亲身实践,演示追赶过程,更进一步认识和体会方程的作用.活动经验基础:学生在小学已能利用线段图来解决一些简单的应用题,并且在本章前几节的学习中,已初步感受到方程是解决实际问题的一种有效途径,学生已具备一定的分析问题、解决问题的能力,已初步形成合作、交流、勇于探究与实践的良好学风,学生间互相评价和师生互动气氛较浓.二、教学目标1.借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤.发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.3.培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识.4.培养学生文字语言、图形语言、符号语言这三种语言转换的能力.三、教学重难点、教学重点:1.画出“线段图”找相等关系.2.会进行文字语言、图形语言、符号语言的相互转换.教学难点:借助画“线段图”寻找行程问题中的等量关系.四、教学设计情境创设小明每天早上要在7:50之前赶到距家1 000米的学校上学.一天,小明以80米/分钟的速度出发,5分钟后,小明的爸爸发现他忘了带语文书.于是爸爸以180米/分钟的速度去追小明.问题1:爸爸能追上小明吗?问题2:爸爸追上小明用了多长时间?问题3:追上小明时,距离学校还有多远?设计说明列方程解一些实际问题的过程是一个数学建模的过程,及时鼓励学生通过亲身体验、观察、分析找出其中的等量关系,并尝试用文字语言表述出来,通过画线段图让学生明白了数形结合的好处,教学中可以适当对文字语言、图形语言、符号语言的互相转换加以渗透,既提高了学生的语言表达能力,又培养学生对三种语言进行转换的能力.1.亲身演示,自主探索师:这是行程问题中的追赶问题,我们请两位同学分别扮演小明和爸爸来演示一下追赶的过程.2.语言描述师:根据刚才的演示,你发现了哪些等量关系?(1)爸爸要追上小明,爸爸的速度与小明的速度关系怎样?(2)爸爸从家出发到追上小明时,两人所用的时间有何关系?(3)两人所行的总路程有何关系?3.图形语言师:如下图,你能用简单的“线段图”表示演示的追赶过程吗?4.建立方程模型,得出结论路程、速度和时间三者之间有何关系呢?“线段图”反映了怎样的等量关系?教学说明在学生亲身体验追赶过程的基础上,比较容易画出“线段图”,可以让他们独立完成,教师可以适当帮助一些有问题的学生.充分利用生活实践自己去提出问题并解决问题,这样更有利于扩展学生的思考空间,亲身体会数学变式问题的趣味性,感受到数学的实用性.三种语言的转换在教师点拨引导、学生探究分析过程中自然渗透、自然转换,让学生体会各种表达方式的优越性.另外,求爸爸追上小明时离学校还有多远,由于学生的思路不同,学生的解决方法就不同,有“总路程减去小明走过的路程=剩余路程”,即1 000-80×(4+5)=280(米),也有“总路程减去爸爸走过的路程=剩余路程”,即1 000-180×4=280(米),出现这些不同的见解,教师就因势利导,培养学生的思维的灵活性,拓宽学生思路.活动一:小强和小斌每天早晨坚持跑步,小斌每秒跑4米,小强每秒跑6米。

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容是北师大版数学七年级上册的一部分,主要介绍了如何利用一元一次方程解决实际问题。

通过小明和同学之间的追赶游戏,引出一元一次方程在现实生活中的应用,让学生体会数学与生活的紧密联系。

本节内容旨在让学生掌握一元一次方程的解法,并能应用于解决实际问题。

二. 学情分析学生在学习这一节内容前,已经学习了二元一次方程和一元一次方程的解法,具备了一定的数学基础。

但部分学生对一元一次方程在实际问题中的应用还不够清晰,需要在教学中加以引导和培养。

此外,学生对于实际问题的分析能力、数学思维的培养也需要在教学过程中给予关注。

三. 教学目标1.知识与技能:使学生掌握一元一次方程的解法,并能应用于解决实际问题。

2.过程与方法:通过解决追赶小明的实际问题,培养学生运用一元一次方程解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,体会数学与生活的紧密联系。

四. 教学重难点1.重点:一元一次方程的解法及其在实际问题中的应用。

2.难点:如何将实际问题转化为一元一次方程,并运用解法求解。

五. 教学方法1.情境教学法:通过设置追赶小明的场景,激发学生兴趣,引导学生主动参与。

2.案例教学法:分析追赶小明的问题,引导学生发现并总结一元一次方程的解法。

3.小组合作学习:鼓励学生分组讨论,培养学生的团队协作能力和沟通能力。

4.引导发现法:教师引导学生发现问题、分析问题,培养学生的问题解决能力。

六. 教学准备1.教学课件:制作课件,展示追赶小明的场景和问题。

2.练习题:准备相关练习题,巩固学生对一元一次方程的掌握。

3.教学道具:准备一些实物道具,如小车、棋子等,用于模拟追赶游戏。

七. 教学过程1.导入(5分钟)利用课件展示追赶小明的场景,引导学生关注实际问题。

提问:“如何用数学方法表示小明和同学之间的距离和速度关系?”2.呈现(10分钟)呈现追赶小明的问题,引导学生分析问题,发现其中的数学关系。

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计一. 教材分析《北师大版数学七年级上册5.6<应用一元一次方程——追赶小明>》这一节主要通过一个实际问题引导学生应用一元一次方程解决问题。

通过列方程、解方程的过程,让学生掌握一元一次方程在实际问题中的应用。

教材通过追赶小明的例子,让学生理解速度、时间和路程之间的关系,并运用一元一次方程求解实际问题。

二. 学情分析学生在之前的学习中已经接触过一元一次方程的基本概念和解法,但对于如何将实际问题转化为方程,并将方程应用于解决实际问题可能还有一定的困难。

因此,在教学过程中,教师需要引导学生将实际问题转化为方程,并通过实际问题让学生理解一元一次方程在实际生活中的应用。

三. 教学目标1.知识与技能:学生会将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。

2.过程与方法:学生通过自主探究、合作交流的方式,掌握一元一次方程在实际问题中的应用。

3.情感态度与价值观:学生体会数学与生活的紧密联系,培养解决实际问题的能力。

四. 教学重难点1.重点:学生能将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。

2.难点:学生如何将实际问题转化为方程,并理解方程在实际问题中的应用。

五. 教学方法采用问题驱动法、情境教学法和合作交流法。

通过设置追赶小明的实际问题,激发学生的学习兴趣,引导学生自主探究、合作交流,从而掌握一元一次方程在实际问题中的应用。

六. 教学准备1.教师准备:教师需要准备与追赶小明相关的实际问题,以及解题过程中可能用到的数学知识。

2.学生准备:学生需要预习相关的一元一次方程知识,并准备参与课堂讨论。

七. 教学过程1.导入(5分钟)教师通过讲解一个简单的实际问题,引导学生思考如何将实际问题转化为方程。

例如,教师可以提出一个问题:如果小明每分钟跑60米,小红每分钟跑70米,小明比小红慢多少米?让学生思考如何用数学方法表示这个问题。

北师大版七年级数学上册5.6一元一次方程追赶小明优秀教学案例

北师大版七年级数学上册5.6一元一次方程追赶小明优秀教学案例
三、教学策略
(一)情景创设
本节课通过设计“追赶小明”的情境,让学生在解决问题的过程中,自然地引入一元一次方程的概念和解法。教师可以利用多媒体展示小明和小华赛跑的情景,让学生观察并描述小华追上小明的过程。通过实际情境的创设,激发学生的学习兴趣,引发学生的思考。
(二)问题导向
教师以问题为导向,引导学生主动探究一元一次方程的解法。首先,教师可以提出问题:“小华追上小明时,他们的速度关系是什么?”让学生思考并引导学生用数学语言描述这个问题。然后,教师可以继续提问:“如何用数学方程来表示这个问题?”引导学生思考并引入一元一次方程的概念。接着,教师可以提出问题:“如何求解这个方程?”引导学生探究一元一次方程的解法。通过问题导向,激发学生的思考,培养学生的自主学习能力。
2.问题导向:教师以问题为导向,引导学生主动探究一元一次方程的解法。通过提出一系列具有挑战性和启发性的问题,激发了学生的思考,培养了学生的自主学习能力。问题导向的教学策略,使学生在解决问题的过程中,自然而然地掌握了一元一次方程的概念和解法。
3.小组合作:教师组织学生进行小组合作,共同探究一元一次方程的解法。在合作过程中,学生互相启发、互相学习,培养了学生的合作意识和团队精神。小组合作不仅提高了学生的学习效果,还使学生在交流互动中提升了数学思维能力。
(五)作业小结
在课堂的最后,我会布置与本节课相关的一元一次方程作业,让学生课后巩固所学知识。同时,我会提醒学生在完成作业的过程中,注意运用一元一次方程的解法,提高解题效率。作业小结环节,有助于学生巩固新知,培养学生的自主学习能力。
五、案例亮点
1.情境导入:通过设计小明和小华赛跑的实际情境,激发了学生的学习兴趣,让学生感受到数学与生活的紧密联系。情境导入既符合学生的认知水平,又能够引起学生的关注,为后续的教学环节打下了坚实的基础。

七年级数学上册《应用一元一次方程追赶小明》教案、教学设计

七年级数学上册《应用一元一次方程追赶小明》教案、教学设计
2.选做题:
(1)探索一元一次方程的其他解法,比较各种解法的优缺点。
(2)研究一元一次方程在实际问题中的应用,总结出至少三个不作业质量。
(2)书写工整,步骤清晰,方便教师批改和指导。
(3)完成后认真检查,确保无误。
4.作业提交时间:
下节课前将作业交给课代表,由课代表统一交给教师。
(2)培养学生熟练掌握一元一次方程的解法,并在实际运算中避免出错。
(二)教学设想
1.教学方法:
(1)采用情境教学法,以实际问题为背景,激发学生的学习兴趣,引导学生主动参与课堂。
(2)采用探究式教学法,鼓励学生自主探究、合作交流,培养学生的创新能力和团队合作精神。
(3)运用多媒体辅助教学,通过动态演示、图像展示等手段,增强学生对一元一次方程的直观认识。
二、学情分析
七年级的学生在数学学习上已经具备了一定的基础,掌握了基本的算术运算和简单的代数知识。在此基础上,学生对一元一次方程的学习既有挑战性,也具有可行性。学生对实际问题情境具有较强的兴趣,但将实际问题抽象成数学模型的能力尚需培养。此外,学生在解决实际问题时,可能存在以下问题:
1.对问题的分析不够深入,难以正确列出相应的一元一次方程。
(2)一元一次方程的解法及注意事项;
(3)如何避免在解一元一次方程时出现错误。
2.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
2.练习题包括以下类型:
(1)列出一元一次方程解决实际问题;
(2)解一元一次方程;
(3)应用一元一次方程解决实际问题。
3.加强一元一次方程解法的训练,提高学生的运算速度和准确率。
4.针对不同学生的学习情况,给予个性化的指导和鼓励,帮助学生克服恐惧心理,树立学习信心。

新北师大版七年级数学上册教学设计5.6应用一元一次方程——追赶小明

新北师大版七年级数学上册教学设计5.6应用一元一次方程——追赶小明

新北师大版七年级数学上册教课方案:应用一元一次方程——追赶小明【教课目的】知识与技术借助表格对实质问题中的数目关系进行剖析、整理,列方程解决问题.过程与方法经过例题的示范和指引逐渐意会并掌握表格设计的方法以及设计合适的表格有效剖析并解决问题 .感情、态度与价值观经过借助表格对详细问题的剖析、思虑过程培育学生擅长剖析问题、有效解决问题的良勤学习习惯 .【教课重难点】要点 :从表格中提守信息,帮助剖析、整理问题中的数目关系.难点 :从表格中提守信息.【教课过程】一、解说新课师 :下边我们一同来看一个问题.教师多媒体展现问题:球赛积分表问题.队名竞赛场数胜场负场积分行进1410424东方1410424光明149523蓝天149523雄鹰147721远大147721卫星1441018钢铁14014141.用式子表示总积分与胜、负场数之间的数目关系.2.某队的胜场总积分能等于它的负场总积分吗?师 :请同学们认真察看表格,此中哪一行最能说明负一场积几分?生 :最后一行 ,原因是钢铁 14 场竞赛都输了 ,得了 14 分 ,所以负一场得 1 分 .师 :这位同学回答得特别好.假如设胜一场得x分 ,同学们能不可以列出方程?生 :10x+1 ×4=24 ,解得 x=2.师 :依据每一行的数据都能够列出方程,假如设一个队胜m 场 ,总得分为多少?生 :2m+ (14-m )=m+14.师 :设一个队胜 x场 ,则该队负 (14-x ) 场,则2x- (14-x )=0 ,x=.师 :那么 x表示什么量 ?它能够是分数吗?二、例题解说【例 1 】小明每日清晨要在7:50 以前赶到距家 1000 m 的学校上学 .小明以 80 m/min的速度出发 ,5 min 后 ,小明的爸爸发现他忘了带数学书,于是 ,爸爸立刻以 180 m/min的速度去追小明 ,而且在途中追上了他.(1 )爸爸追上小明用了多长时间?(2 )追上小明时 ,距离学校还有多远?剖析 :当爸爸追上小明时,两人所行距离相等.在解决这个问题时,要抓住这个等量关系.解 :(1 )设爸爸追上小明用了 x min ,依据题意 ,得 180x=80x+80 ×5.化简 ,得 10x=400,解得 :x=4.所以 ,爸爸追上小明用了 4 min.(2 )180 ×4=720 (m ),1000-720=280(m ).所以 ,追上小明时 ,距离学校还有280m.【例 2 】A,B两地相距 60 千米 ,甲、乙两人分别同时从 A ,B两地骑自行车出发,相向而行 .甲每小时比乙多行 2 千米 ,经过 2 小时相遇 .问甲、乙两人的速度分别是多少?剖析 :此题波及行程、速度、时间三个基本数目,它们之间有以下关系:行程 = 速度×时间 ;甲的速度 = 乙的速度 +2 ;甲的行程 + 乙的行程 =60.解 :设乙的速度为 x千米 / 时 ,则甲的速度为 (x+2 )千米 / 时 .由题意 ,得 2x+2 ( x+2 )=60.解这个方程 ,得x=14.查验 :x=14 合适方程 ,且切合题意 .则甲的速度为14+2=16(千米 / 时 ).答 :甲的速度为 16 千米 / 时 ,乙的速度为 14 千米 / 时 .三、稳固练习甲从 A 地以 6 千米 / 时的速度驶向 B地 ,40 分钟后 ,乙从 A 地以 8 千米 / 时的速度追甲 ,结果在甲离 B地还有 5千米的地方追上甲,求 A ,B两地的距离 .【答案】设 A ,B两地的距离为 x千米 ,甲被追上时走了小时,乙走了小时 ,甲比乙多用 40 分钟 ,即小时 ,所以有 -= ,解得 x=21.所以 A ,B两地的距离为 21 千米 .四、讲堂小结师 :今日你有什么收获?学生回答 ,教师评论 .。

初中数学北师大七年级上册 一元一次方程应用一元一次方程 ——追赶小明_教案

初中数学北师大七年级上册 一元一次方程应用一元一次方程 ——追赶小明_教案

应用一元一次方程——追赶小明【教学目标】1.知识技能(1)借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤。

(2)能充分利用行程中的速度、路程、时间之间的关系列方程解应用题。

2.能力训练要求(1)培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识。

(2)培养学生文字语言、图形语言、符号语言这三种语言转换的能力。

3. 情感与价值观要求(1)通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识,团队精神和克服困难的勇气。

(2)体验生活中的数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学生学数学,用数学的兴趣。

【教学重难点】利用一元一次方程解追击问题【教学过程】温故与预习1.列方程解应用题的一般步骤有哪些?2.行程问题主要研究、、三个量的关系。

第一环节:情境引入多媒体展示熊大熊二与光头强的追击视频。

目的:让学生感受生活中我们常常会遇到类似的问题,从学生熟悉的生活经历出发,选择学生身边的、感兴趣的动画视频,采用生动活泼的影像效果,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题、便于引起每位同学的兴趣。

二、第二环节:自主学习小明每天早上7:30从家出发,他要在7:50之前赶到距家1000米的学校上学。

一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书。

于是爸爸以180米/分的速度去追小明。

根据以上情景,让学生作出线段图,并尝试解答题目中的问题。

目的:此时让学生结合生活中的实际情况提出问题,使学生亲身体会到问题的实质所在,明确解决这些问题的必要性,教师没有直接提出如何解决问题,而是让学生自己思考,使课堂具有开放性,从而能引起学生的极大兴趣,产生强烈的思考欲望。

由学生分析,学生画出线段图师生一起分析题目中的等量关系。

目的:列方程解一些实际问题的过程是一个数学化的过程,及时鼓励学生通过观察、分析找出其中的等量关系,并尝试用文字语言表述出来,通过画线段图让学生明白了数形结合的好处,教学中可以适当对文字语言、图形语言、符号语言的互相转换加以渗透,既提高了学生的语言表达能力,又培养学生对三种语言进行转换的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《应用一元一次方程—追赶小明》教案
教学目标
1、知识与技能
能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题.熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换.
2、过程与方法
(1)经历画“线段图”找等量关系,列出方程解决问题的过程,进一步体验画“线段图”也是解决实际问题的有效途径.
(2)体会“方程”是解决实际问题的有效模型,并进一步发展学生的文字语言、符号语言、图形语言的转换能力.
3、情感态度与价值观
感受我们身边的数学,体会家人对我们的爱,要热爱家人,热爱生活.
教学重难点
重点:能列出一元一次方程解决实际问题.
难点:利用线段图找到题中的等量关系.
教学准备
PPT课件.
教学过程
一、复习引入
1、问答题
(1)小明家离学校有1000米,他骑车的速度是25米/分,那么小明从家到学校需___小时.
(2)甲、乙两地相距1600千米,一列火车从甲地出发去乙地,经过16小时,距离乙地还有240千米.这列火车每小时行驶多少千米?
2、抢答题
(1)用一元一次方程解决问题的基本步骤:___________ _.
(2)行程问题主要研究、三个量的关系.
路程=_____,速度=_____,时间=_____.
(3)若小明每秒跑4米,那么他10秒跑___米.
二、自主学习
例:小明早晨要在7:50以前赶到距家1000米的学校上学,一天,小明以80m/min的速度出发,5min后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180m/min的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
独立思考,完成上面的问题.
1、根据题目已知条件,画出线段图:
2、找出等量关系:
小明走过的路程=爸爸走过的路程.
3、板书规范写出解题过程:
解:(1)设爸爸追上小明用了xmin.
根据题意,得80×5+80x=180x
化简得100x=400.
解得,x=4.
因此,爸爸追上小明用了4min.
(2)180×4=720(m)
1000-720=280(m)
所以,追上小明时,距离学校还有280米.
(学生独立完成,找到等量关系并列出方程,教师巡视学生并给予检查和指导.请书写规范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处.) 分析出发时间不同的追及问题,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题.
三、交流探究
甲、乙两站间的路程为450千米,一列快车从甲站开出,每小时行驶85千米,一列慢车从乙站开出,每小时行驶65
千米.设两车同时开出,同向而行,则快车几小时后追上慢车?
(学生小组合作完成本题目,按照例题的方法步骤,通过画线段图,分析已知量,找等量关系,列方程解答.教师巡视学生并给予检查和指导.)
四、展示生成
1、通过个别学生分析已知条件,
引导大家正确画出线段图:
2、找出等量关系:
快车所用时间=慢车所用时间;
快车行驶路程=慢车行驶路程+相距路程.
3、解题过程:
解:设快车x小时追上慢车,
据题意得85x=450+65x.
解,得x=22.5.
答:快车22.5小时追上慢车.
(请书写规范的学生到前面板演,并讲解其解题思路,其
他同学有不同看法可相互补充.)
五、议一议
育红学校七年级学生步行到郊外旅行,七(1)班的学生组成前队,步行的速度为4km/h,七(2)班的学生组成后队,速度为6km/h,前队出发1h后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.
请根据以上的事实提出问题并尝试回答.
(分小组讨论,提出不同的可能的问题,并尝试解答,比较哪组几块又准确,想出的方法又多,小组派代表讲给大家听.)
问1:后队追上前队用了多长时?
问2:后队追上前队时联络员行了多少路?
问3:联络员第一次追上前队时用了多长时间?
问4:当后队追上前队时,他们已经行进了多少路程?
问5:联络员在前队出发多少时间后第一次追上前队?
学生尝试自己结合“线段图”解决自己提出的问题,教师
适时给予指导.
课堂总结
引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.强调本课的重点内容是要学会借“线段图”来分析行程问题,并能掌握各种行程问题中的规律及等量关系.
1、会借“线段图”分析行程问题.
2、各种行程问题中的规律及等量关系.
同向追及问题:
(1)同时不同地——甲路程+路程差=乙路程;甲时间=乙时间.
(2)同地不同时——甲时间+时间差=乙时间;甲路程=乙路程.。

相关文档
最新文档