陶瓷基复合材料的结构与力学性能研究
浅谈陶瓷基复合材料的分类及性能特点

浅谈陶瓷基复合材料的分类及性能特点蒋永彪(贵州省机械工业学校,贵州贵阳550000)1陶瓷基复合材料分类陶瓷基复合材料,根据增强体分成两大类:连续增强的复合材料和不连续增强的复合材料,如表1所示。
其中,连续增强的复合材料包括一方向,二方向和三方向纤维增强的复合材料,也包括多层陶瓷复合材料;不连续增强的复合材料包括晶须、晶片和颗粒的第二组元增强体和自身增强体,如Si 3N 4中等轴晶的基体中分布一些晶须状β-Si 3N 4晶粒起到增韧效果。
纳米陶瓷既可以是添加纳米尺寸的增强体复合材料,也可以是自身晶粒尺寸纳米化及增强。
表1陶瓷基复合材料分类陶瓷基符合材料也可以根据基体分成氧化物基和非氧化物基符合材料。
氧化物基复合材料包括玻璃、玻璃陶瓷、氧化物、复合氧化物等,弱增强纤维也是氧化物,常称为全氧化物复合材料。
非氧化物基复合材料以SiC ,Si 3N 4,MoS 2基为主。
2陶瓷基复合材料的力学特性陶瓷本体具有耐高温、抗氧化、高温强度高、抗高温蠕变性好、高硬度、高耐磨损性、线膨胀系数小、耐化学腐蚀等优点,但也存在致命的弱点(脆性),它不能承受激烈的机械冲击和热冲击,这限制了它的应用。
可通过控制晶粒、相变韧化、纤维增强等手段制成复合材料,陶瓷基复合材料具有了更高的熔点、刚度、硬度和高温强度,并具有抗蠕变、疲劳极限好、高抗磨性,在高温和化学侵蚀的场合下能承受大的载荷等优点,使其在航空、航天等众多领域有着广泛的应用前景。
2.1陶瓷基复合材料的主要物理和化学性能(1)热膨胀。
复合材料有纤维、界面和基体构成,因此热膨胀的相容性是非常重要的。
虽然线膨胀系数彼此相同是最为理想的,但是几乎实现不了。
通常用线膨胀系数来表征材料的热膨胀,晶体的线膨胀系数存在各向异性,因此,线膨胀系数的各向异性造成的热应力常常是导致多晶体材料从烧结温度冷却下来即发生开裂的原因。
在陶瓷基复合材料里,一般希望增强体承压缩的残余应力,这样即使是弱界面,也不会发生界面脱黏。
陶瓷基先进复合材料的高温力学性能研究

陶瓷基先进复合材料的高温力学性能研究陶瓷基先进复合材料(ceramic matrix composites,CMCs)是一种重要的新型结构材料,具有优异的高温力学性能。
本文将对陶瓷基先进复合材料的高温力学性能进行研究,探讨其原因和影响因素。
一、陶瓷基先进复合材料的高温力学性能陶瓷基先进复合材料由陶瓷基体和增强相组成,其中陶瓷基体具有高温抗氧化性、耐高温蠕变性和低热膨胀系数等优良性能,增强相具有高强度和高模量等特点。
因此,陶瓷基先进复合材料在高温环境下具有出色的力学性能。
在高温下,陶瓷基先进复合材料通常表现出较低的热膨胀系数和较高的耐热疲劳性能。
其低热膨胀系数可以降低在不同温度下材料的热应力,减少热应力引起的开裂和破坏;而耐热疲劳性能指材料在高温循环加载下的抗裂纹扩展和断裂性能,能够保证材料长期在高温下稳定工作。
此外,陶瓷基先进复合材料还具有较高的强度和模量。
其高强度可以使材料在高温条件下具有更好的承载能力和抗拉伸性能,从而保证使用时的可靠性;而高模量可以提高材料的刚性和抗变形性能,降低在高温下的塑性变形。
二、影响陶瓷基先进复合材料高温力学性能的因素1.组分和制备工艺:陶瓷基先进复合材料的组分和制备工艺直接影响其力学性能。
合适的组分能够使不同相之间的界面结合更加牢固,提高材料的强度和韧性;而合理的制备工艺可以降低材料的孔隙率、提高微观组织的均匀性,从而改善材料的高温力学性能。
2.界面行为:界面在陶瓷基先进复合材料的高温力学性能中起着重要的作用。
强化相和基体之间的界面结合状态会影响材料的强度和断裂韧性。
良好的界面结合可以抑制裂纹的扩展,提高材料的高温抗拉伸能力。
3.氧化行为:陶瓷基先进复合材料在高温环境下容易发生氧化反应,导致材料的氧化损伤。
氧化层的形成会影响材料的力学性能,尤其是材料的抗氧化性能。
因此,控制氧化行为可以有效改善材料的高温力学性能。
三、陶瓷基先进复合材料的应用前景陶瓷基先进复合材料由于其卓越的高温力学性能,在航空航天、能源、汽车和机械等领域具有广阔的应用前景。
碳纤维增强陶瓷基复合材料的制备及性能研究

碳纤维增强陶瓷基复合材料的制备及性能研究碳纤维增强陶瓷基复合材料是一种具有优异性能的复合材料,具有高强度、高刚度、低密度、高温耐性、抗腐蚀等优点,被广泛应用于航空、航天、汽车、新能源等领域。
本文将对碳纤维增强陶瓷基复合材料的制备及其性能研究进行探讨。
1. 背景传统金属材料存在密度大、重量重、强度低等问题,难以满足现代工业的需求。
而复合材料的出现解决了这一问题,毫不夸张地说,“复合材料就是未来工业的材料”。
其中最为突出的就是碳纤维增强陶瓷基复合材料。
2. 制备方法制备碳纤维增强陶瓷基复合材料的方法有多种,其中最为常见的是热压法和热处理法。
热压法是将预先制备的碳纤维增强陶瓷基复合材料在高温高压下进行加热压制,使其形成连续的结构。
这种方法适用于制备块状和板状复合材料。
热处理法则是先将碳纤维增强材料进行数次高温氧化处理,使其表面形成含有氧的层,然后进行碳化处理和陶瓷化处理,最终得到陶瓷基复合材料。
这种方法适用于制备复杂形状的复合材料。
3. 性能研究碳纤维增强陶瓷基复合材料具有优异的性能,如高强度、高刚度、低密度、高温耐性、抗腐蚀等,其力学性能和热学性能是研究的重点。
力学性能研究主要包括拉伸强度、屈服强度、断裂韧性等指标的测试和评估。
热学性能研究主要包括热膨胀系数、导热系数、热稳定性等指标的测试和评估。
研究表明,碳纤维增强陶瓷基复合材料的力学性能远远优于传统金属材料,具有极高的强度和刚度;而其热学性能也表现出卓越的优势,具有很高的耐热性和热稳定性。
4. 应用前景碳纤维增强陶瓷基复合材料具有广泛的应用前景。
在航空和航天产业中,用以制造减重、高刚度、高强度的重要部件;在汽车产业中,用于制造轻量化结构件和发动机;在新能源领域,用于制造高温耐受的储能材料等。
总之,碳纤维增强陶瓷基复合材料具有优异的性能和广泛的应用前景,能够为现代工业的发展做出巨大的贡献。
陶瓷基复合材料的研究进展及其在航空发动机上的应用

陶瓷基复合材料的研究进展及其在航空发动机上的应用摘要:综述了陶瓷基复合材料(CMCs) 的研究进展。
就CMCs的增韧机理、制备工艺和其在航空发动机上的应用进展作了详细介绍。
阐述了CMCs研究和应用中存在的问题。
最后,指出了CMCs的发展目标和方向。
关键词:陶瓷基复合材料;航空发动机;增韧机理;制备工艺The Research Development of Ceramic Matrix Compositesand Its Application on AeroengineAbstract: The development and research status of ceramic matrix composites were reviewed in this paper. The main topics include the toughening mechanisms, the preparation progress and the application on aeroengine were introduced comprehensively. Also, the problems in the research and application of CMCs were presented. Finally, the future research aims and directions were proposed.Keywords: Ceramic matrix composites, Aeroengine, Fiber toughening,Preparation progress1 引言推重比作为发动机的核心参数,其直接影响发动机的性能,进而直接影响飞机的各项性能指标。
高推重比航空发动机是发展新一代战斗机的基础,提高发动机的工作温度和降低结构重量是提高推重比的有效途径[1]。
现有推重比10一级的发动机涡轮进口温度达到了1500~1700℃,如M88-2型发动机涡轮进口温度达到1577℃,F119型发动机涡轮进口温度达到1700℃左右,而推重比15~20一级发动机涡轮进口温度将达到1800~2100℃,这远远超过了发动机中高温合金材料的熔点温度。
陶瓷基复合材料

陶瓷基复合材料论文2015年5月5日摘要:陶瓷基复合材料主要以高性能陶瓷为基体.通过加入颗粒、晶须、连续纤维和层状材料等增强体而形成的复合材料。
如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。
陶瓷基复合材料的研究还处于较初级阶段,我国对陶瓷基复合材料的研究则刚刚起步不久。
关键词:陶瓷基复合材料基体增强体强韧化机理制备技术前言:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
正文一、陶瓷基复合材料基本概述陶瓷基复合材料的基体为陶瓷。
如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。
化学键往往是介于离子键与共价键之间的混合键。
陶瓷基复合材料中的增强体通常也称为增韧体。
从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。
碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件;其它常用纤维是玻璃纤维和硼纤维。
纤维增强陶瓷基复合材料是改善陶瓷材料韧性的重要手段。
目前常用的晶须是SiC和A12O3,常用的基体则为A12O3,ZrO2,SiO2,Si3N4以及莫来石等。
晶须具有长径比,含量较高时,桥架效应使致密化困难,引起了密度的下降导致性能下降。
颗粒代替晶须在原料的混合均匀化及烧结致密化方面均比晶须增强陶瓷基复合材料要容易。
常用的颗粒也是SiC、Si3N4和A12O3等。
陶瓷基复合材料发展迟滞,发展过程中也遇到了比其它复合材料更大的困难。
陶瓷基复合材料

Ceramic-matrix
注意事项 : (1)料浆应能与纤维表面保持良好润湿。料浆中包括:陶瓷基体粉末、 载液(通常是蒸馏水)和有机粘接剂,有时还加入某些促进剂和基体润湿 剂。为使纤维表面均匀粘附料浆,要求陶瓷粉体粒径小于纤维直径,并 能悬浮于载液和粘接剂混合的溶液中。 (2)纤维应选用容易分散的、捻数低的丝束,保持其表面清洁无污染。 在操作过程中尽量避免纤维损伤,并注意排除气泡。 (3)热压烧结应按预定规律(即热压制度)升温和加压。在热压过程中, 将发生基体颗粒重新分布、烧结和在外压作用下的粘性流动等过程,最 终获得致密化的陶瓷基复合材料。很多陶瓷基复合材料体系在热压过程 中往往没有直接发生化学反应,主要通过系统表面能减少的驱动,使疏 松粉体熔结而致密化。 存在的问题: (1)纤维和陶瓷粉末不容易复合成型。 (2)烧结时由于基体收缩或热压烧结时无粘性流动,会使颗粒和纤维 之间的机械作用而损伤纤维。 (3)目前,直径小于0.1微米-1微米的粉末很难买到。并且,其中的夹 杂物不易排除。同时,细的粉末在制造复合材料过程中又不易分散。 (4)在热压时会损伤纤维结构。
Ceramic-matrix
注意事项:
(1)与高聚物先驱体转化法不同的是,溶胶—凝胶工艺的先驱体是在溶液浸 进纤维编织坯件后在原位合成的。 (2)采用溶胶—凝胶法制备复合材料可以先制备复合凝胶体,即将复合的各 相以原子或分子级进行均匀混合形成复合溶胶和凝胶化,得到高纯、超细、均 相、分子级或包裹式的复合陶瓷粉末,再经成型、烧结而形成复合材料的基体 或者通过控制溶剂的蒸发速度将复合的溶胶凝胶化后,直接烧结成陶瓷基复合 材料。 (3)如果第二相是粉末或纤维,则可浸在适当的溶液中,通过形核和成长, 使溶液形成溶胶,均匀包围粉末和纤维,经凝胶化处理和热解后即形成陶瓷基 复合材料的基体。 (4)溶胶—凝胶法制备陶瓷基复合材料的质量保证关键主要有:选择合适的 先驱体反应物,控制溶液的浓度和pH值、气氛、分散剂、选用胶溶剂、去除 团聚以及使各相处于良好的分散状态等。
碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用

碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用1研究进展近年来,随着碳纤维增强碳化硅陶瓷复合材料(CCR)性能优越的发现,越来越受到科学家和工程师的关注。
并且CCR的陶瓷相结构具有极高的抗热、抗冲击、抗腐蚀和耐磨性能。
然而,由于其微观和宏观机械性能调控能力较弱,该复合材料在应用中仍受到一定的限制。
近期,CCR材料的性能优势受到了很多研究者的重视,各种新型结构,复杂的组合加工工艺及增强技术被提出。
例如,抗腐蚀性能可以通过制备复合表面层来改善;抗热、抗受力能力可以通过控制碳纤维的尺寸和排列方式来改善;耐磨性能可以通过引入碳材料的碳-氧化物多层复合来增强。
最近,一些拥有改良机械性能的新制备工艺也被研究并实施,包括激光熔覆、前景碳化熔覆、快速增材成型、焊接熔覆和高速冲击等。
2应用对于碳纤维增强碳化硅陶瓷复合材料,主要应用于航空航天、船舶航行及军事等方面,其优越的机械性能使其成为一种非常理想的重要应用材料。
如果说航空飞机,这种复合材料可以替代大部分传统金属。
由于复合材料的轻重比和热稳定性更佳,可以帮助飞机减轻重量。
此外,其优越的抗受力和抗腐蚀性能还可以防止复合材料受到高温或低温环境的影响。
此外,由于复合材料可以克服传统金属在热响应速度受到拘束的缺点,在军事上其应用也都非常广泛。
最新研究表明,该材料很容易改变其形状,使用CCR,军事装备及其它武器物品可以取得更好的效果。
3结论碳纤维增强碳化硅陶瓷复合材料的研究及应用正在逐渐受到重视,复合材料的热稳定性、高抗受力和抗腐蚀性等优势在航空航天、船舶航行及军事领域都得到了广泛的应用。
此外,新的制备工艺也取得了巨大的进步,可以有效地改善复合材料的机械性能。
因此,未来碳纤维增强碳化硅陶瓷复合材料将有望发展出更强大的功能更适应更多应用场景。
陶瓷基复合材料的界面结合机制研究

陶瓷基复合材料的界面结合机制研究摘要:陶瓷基复合材料在领域中有着广泛的应用。
界面结合机制是影响材料性能的关键因素之一。
本文主要研究了陶瓷基复合材料的界面结合机制,包括界面能量、界面化学键以及界面应力传递等方面的内容。
通过深入研究和分析,可以为陶瓷基复合材料的设计和应用提供指导和优化方案。
1. 引言陶瓷基复合材料是一种重要的结构材料,具有高强度、高硬度、耐高温等优点,在航空、能源以及汽车等行业中有着广泛的应用。
然而,由于其复合材料结构的特殊性,界面结合机制成为影响材料性能的关键因素。
2. 界面能量界面能量是描述界面结合力的重要参数,通常通过材料的界面接触角来评估。
界面能量较大,表示陶瓷基复合材料的界面结合力较强。
然而,界面能量过大也会导致界面剥离等问题。
因此,对于陶瓷基复合材料的界面能量进行合理设计和控制是必要的。
3. 界面化学键界面化学键的形成对于陶瓷基复合材料的界面结合至关重要。
通过合适的界面处理方法和添加剂,可以促进界面化学键的形成,增强界面结合强度。
例如,通过表面改性剂的引入,可以提高界面附着力,减少界面剥离的可能性。
4. 界面应力传递界面应力传递是陶瓷基复合材料中的重要问题之一。
在应力加载下,界面处的应力传递能力直接影响材料的力学性能。
良好的界面结合能够实现有效的应力传递,从而提高材料的强度和硬度。
然而,过大的界面应力可能会导致界面破裂和材料失效,因此,在设计陶瓷基复合材料时需要合理考虑界面应力的分布和传递。
5. 界面结合机制的研究方法研究陶瓷基复合材料的界面结合机制需要采用多种表征方法和技术手段。
例如,界面接触角测量可以评估界面能量;扫描电镜观察可以研究界面化学键的形成;原位拉伸实验可以探究界面应力传递等。
综合运用多种方法可以全面了解界面结合机制,为材料设计和改性提供基础数据和理论指导。
6. 界面结合机制的优化针对陶瓷基复合材料的界面结合机制,可以通过以下措施进行优化:合理设计界面结构,选择适合的界面处理方法,控制界面能量,引入界面化学键增强界面结合强度,合理设计界面应力的传递路径等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陶瓷基复合材料的结构与力学性能研究
引言:
陶瓷基复合材料是一类具有高温、高硬度、高强度和耐磨损等特点的先进材料。
在现代工业领域中,陶瓷基复合材料被广泛应用于航空航天、汽车、能源和电子等领域。
本文将重点探讨陶瓷基复合材料的结构和力学性能研究。
1. 陶瓷基复合材料的基本结构
陶瓷基复合材料由两个或多个互不相容的材料相互结合而成。
其中,陶瓷基质
通常由氧化铝、碳化硅或氮化硅等陶瓷材料构成,而增强相可以是碳纤维、陶瓷纤维或颗粒等。
这种结构可以大大提高陶瓷材料的韧性和强度。
2. 结构对力学性能的影响
陶瓷基复合材料的结构对其力学性能具有重要影响。
例如,增强相的分布和形
状可以影响材料的强度和断裂韧性。
此外,结构还会影响材料的硬度、热膨胀系数和导热性能等。
3. 界面结构的研究
在陶瓷基复合材料中,界面结构起着至关重要的作用。
界面结构的好坏直接影
响着材料的力学性能和耐久性。
因此,许多研究都集中于探索和改善复合材料的界面结构。
例如,采用表面改性技术可以提高界面的粘结强度,从而增加材料的韧性和强度。
4. 纤维长度对复合材料性能的影响
陶瓷基复合材料中的纤维长度也是一个重要的参数。
研究表明,较长的纤维可
以提高材料的韧性和强度。
这是因为较长的纤维能够更好地承受应力,并且在断裂前能够吸收更多的能量。
5. 组织结构的优化
陶瓷基复合材料的组织结构是进一步提高其力学性能的重要途径。
通过控制材料的组织结构,可以实现材料的多功能化。
例如,可以通过合理的制备工艺来调控材料的孔隙率和孔隙分布,提高材料的密度和机械性能。
此外,可以通过添加纳米颗粒来调节材料的导热性能和电磁性能。
6. 材料的破坏机制
陶瓷基复合材料的破坏机制十分复杂,常见的破坏形式有纤维断裂、界面剥离和基质破裂等。
了解材料的破坏机制对于改善材料的力学性能至关重要。
通过研究破坏机制,可以选择适当的增强相和界面材料,增加材料的韧性和耐久性。
结论:
陶瓷基复合材料具有独特的结构和优越的力学性能,在各个领域有着广泛的应用前景。
通过研究其结构和力学性能,可以进一步提高材料的性能,并为工业应用提供理论基础和实践指导。
从本质上来说,陶瓷基复合材料的结构与力学性能研究是一项长期而深入的工作,在未来仍有许多挑战和机遇等待我们去探索。