初二数学知识点总结:分式除法

合集下载

分式的乘法和除法知识点总结

分式的乘法和除法知识点总结

分式的乘法和除法知识点总结分式是数学中常见的一种运算形式,分式的乘法和除法是我们在解决实际问题或进行数学运算时经常用到的操作。

本文将对分式的乘法和除法的知识点进行总结和讲解。

一、分式的乘法分式的乘法可以简单地理解为分数的乘法。

当两个分数相乘时,我们将分子乘以分子,分母乘以分母,得到的新的分式即为它们的乘积。

示例1:计算分式的乘法1/3 * 2/5 = (1 * 2) / (3 * 5) = 2/15在进行分式的乘法时,我们可以通过化简分数的方法,将结果以最简形式表示出来。

化简分数的关键在于找到分子和分母的最大公约数,并将其约去。

示例2:化简分数4/8 = (4/2) / (8/2) = 2/4 = 1/2二、分式的除法分式的除法可以类比为分数的除法。

当我们需要计算两个分数相除时,我们将除数取倒数(分子和分母调换位置),然后再和被除数相乘,得到的结果即为它们的商。

示例3:计算分式的除法2/3 ÷ 4/5 = (2/3) * (5/4) = (2 * 5) / (3 * 4) = 10/12和分式的乘法一样,我们也可以通过化简分数的方法,将结果以最简形式表示出来。

示例4:化简分数20/24 = (20/4) / (24/4) = 5/6三、混合运算的应用分式的乘法和除法经常在实际问题中应用,特别是在比例和单位换算中。

示例5:应用于比例小明把一件商品以原价的三分之一出售,假设商品原价为120元,他卖出的价格是多少?解答:原价的三分之一相当于1/3,所以小明卖出的价格为120 * 1/3 = 40元。

示例6:应用于单位换算假设一辆汽车以每小时60公里的速度行驶,问它行驶100公里需要多长时间?解答:速度是每小时60公里,所以它行驶100公里需要的时间为100 / 60 = 5/3小时,即1小时40分钟。

四、小结分式的乘法和除法是数学中重要的基本运算,可以帮助我们解决实际问题和进行数学计算。

在进行分式的乘法和除法时,需要注意化简分数的方法,将结果以最简形式表示出来。

初二分式知识点总结

初二分式知识点总结

初二分式知识点总结一、分式的概念分式是指分母为非零数的两个整数的比值。

在分式中,分子和分母分别表示为a和b,通常表示为a/b。

其中,分子表示为被分的数,分母表示为分的数。

分子分母在分式中扮演着不同的角色,分子代表了分子数量,分母代表了分母数量。

二、分式的性质1. 分数的一般形式分数通常写成a/b的形式,a称为分子,b称为分母。

这里要求b≠0。

2. 相反数分式若a/b≠0,则分式-a/b=(-a)/b。

3. 分式的倒数若a/b≠0,则分式1/(a/b)=b/a。

4. 分式的乘法若a/b、c/d均存在,则a/b✖c/d=(a✖c)/(b✖d)。

5. 分式的除法若a/b、c/d均存在,则a/b÷c/d=(a/b)✖(d/c)。

6. 分式的加法和减法若a/b、c/d均存在,则a/b±c/d=(ad±bc)/(bd)。

7. 分式的消去若分式a/b与c/d相等,且b≠0,d≠0,则ad=bc。

三、分式的化简与扩展分式化简就是把分式用最简形式表示,化简分式有两个问题要关心:①分子,分母是不是能约分;②能约分,约去的公因式是什么。

分式的扩展是指通过乘法将分子或分母扩大到某一倍数。

四、分式的概念1. 添加相同数的分数若分子相同而分母不同,或分子不同而分母相同,则两个分数相加或相减时,只需将他们的分子相加或相减,同时将他们的分母保持不变。

2. 乘法的运算律分数相乘还是原分数,只是分子与分母分别相乘。

3. 除法的运算律分数相除,乘以倒数。

五、分式的应用1. 充分利用分式解决问题2. 通过实例理解分式的意义分式的应用不仅仅是在数学中,还可以应用到日常生活中。

比如在工作中计算利润分配问题、在生活中计算食材比例等。

初中分式知识点总结到此结束,希望对大家有所帮助。

八年级数学上册《分式》知识点归纳

八年级数学上册《分式》知识点归纳

分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。

如果除式..B .中含有分母.....,那么称BA为分式。

(对于任何一个分式,分母不为0。

如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

分式:分母中含有字母。

整式:分母中没有字母。

而代数式则包含分式和整式。

)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。

定义3:分子和分母没有公因式的分式称为最简分式。

(化简分式时,通常要使结果成为最简分式或者整式。

)定义4:化异分母分式为同分母分式的过程称为分式的通分。

定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。

二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。

三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。

(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。

八年级下数学知识点归纳笔记

八年级下数学知识点归纳笔记
实数
1. 无理数的性质(无限不循环小数)2. 实数的运算(有理数和无理数的加、减、乘、除运算)3. 实数的开方运算(正数和负数的平方根和立方根)
函数
1. 一次函数的图象和性质(一条直线,斜率和截距是关键参数)2. 反比例函数的图象和性质(双曲线,位于两个象限,常与坐标轴相交)3. 一次函数与反比例函数的实际应用(如速度、时间、距离等问题)
二次根式
1. 二次根式的定义和性质(非负性、算术平方根的性质)2. 二次根式的乘除法(通过将根号内的数相乘或相除,进行乘除运算)3. 二次根式的加减法(先将根号内的数化为最简形式,再进行加减运算)
勾股定理
1. 勾股定理的表述(直角三角形的两条直角边a、b的平方和或其他方法证明)3. 勾股定理的应用(利用勾股定理解决实际问题)
八年级下数学知识点归纳笔记
章节/主题
主要知识点
分式
1. 分式的定义(分母中含有字母的整式)2. 分式的基本性质3. 分式的约分(通过约去分子和分母中的公因式,将分式化为最简形式)4. 分式的通分5. 分式的乘除法(通过将分式相乘或相除,将分子和分母分别相乘或相除)6. 分式的加减法(通过通分,将分式化为同分母,再进行加减运算)7. 分式方程(含有分式的等式,通过去分母转化为整式方程)
平行四边形
1. 平行四边形的性质(对边相等、对角相等、对角线互相平分)2. 平行四边形的判定(一组对边平行且相等、两组对边分别相等、对角线互相平分)3. 特殊平行四边形(矩形、菱形、正方形)的性质和判定
轴对称、中心对称和旋转对称
1. 轴对称(关于一条直线对称的两个图形完全重合)2. 中心对称(关于一点对称的两个图形完全重合)3. 旋转对称(绕某点旋转一定角度后与另一个图形重合)

初二上册数学知识点归纳

初二上册数学知识点归纳

初二数学上册知识点归纳1一、分式※1、两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式。

整式A除以整式B,可以表示成的形式。

如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零。

※2、整式和分式统称为有理式,即有:※3、进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

※4、一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分。

二、分式的乘除法※1、分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

※2、分式乘方,把分子、分母分别乘方。

逆向运用,当n为整数时,仍然有成立。

※3、分子与分母没有公因式的分式,叫做最简分式。

三、分式的加减法※1、分式与分数类似,也可以通分。

根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

※2、分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。

(1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:※3、概念内涵:通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解。

四、分式方程※1、解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去。

※2、列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案。

关于初二数学下册必备知识点归纳

关于初二数学下册必备知识点归纳

关于初二数学下册必备知识点归纳初二数学下册必备知识点归纳第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。

2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的'积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;。

异分母分式相加减,先通分,变为同分母的分式,再加减。

3、整数指数幂的加减乘除法。

4、分式方程及其解法。

第二章反比例函数1、反比例函数的表达式、图像、性质。

图像:双曲线。

表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用。

第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。

2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形1、平行四边形。

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

分式主要知识点总结

分式主要知识点总结

分式主要知识点总结一、分式的定义分式是指一个整体被分成若干个相等的部分,其中的一部分就是分式。

分式通常写成a/b的形式,其中a为分子,b 为分母,b≠0,a和b都是整数。

例如,1/2 就是一个分式,表示整体被分成两个相等的部分,其中一个部分为1。

分式中的a和b都是有一定的含义,a表示被分的份数,b表示整体被分成的份数。

二、分式的化简对于分式a/b,如果a和b有公因数,那么可以对分式进行约分。

化简分式的目的是为了使得分式变得更简单,更易于处理。

例如,对于分式6/8,可以约分得到3/4。

当然,有时候还需要对分式进行扩分。

化简分式的过程就是一个约分和扩分的过程。

三、分式的加减乘除1. 分式的加减:对于分式a/b和c/d,要将它们相加或相减,需要找到它们的公共分母,并且将它们的分子进行操作。

具体来说,如果a/b和c/d的分母不同,就需要找到它们的最小公倍数,然后将分子分别乘以对方的分母,再进行操作。

例如,对于分式1/2 + 1/3,找到它们的最小公倍数为6,然后乘上对方的分母,得到3/6 + 2/6 = 5/6。

2. 分式的乘法:对于分式a/b和c/d,它们的乘积可以直接相乘得到ac/bd。

3. 分式的除法:对于分式a/b和c/d,它们的除法可以变成乘法,即a/b ÷ c/d = a/b × d/c。

四、分式方程的求解分式方程是指方程中含有分式的方程。

它的解法与一般方程类似,但是需要更多的化简和约分操作。

对于一些特殊的分式方程,有时候需要进行分式更相等的变形,或者加减乘除操作。

例如,对于分式方程1/(x+1) = 1/(x-1),可以将等式两边同时乘以(x+1)(x-1),并观察出一元二次方程的形式,再进行解方程的操作。

五、分式在实际问题中的应用分式在实际问题中有着广泛的应用。

它可以用来表示比率关系、部分到整体的比例关系,例如表示打折时的折扣率、比赛中的获胜概率等。

分式也可以用来表示关系式、方程式,例如用来表示质量分数、比热容、密度等。

分式的乘除法知识点:八年级上册数学期中考试

分式的乘除法知识点:八年级上册数学期中考试

分式的乘除法知识点:八年级上册数学期中
考试
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如
x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
以上就是为大家整理的分式的乘除法知识点:八年级上册数学期中考试,大家还满意吗?希望对大家有所帮助!
相关标签搜索:八年级期中复习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学知识点总结:分式除法
初二数学知识点总结:分式除法
分式除法法则:
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

提示:
(1)分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解公因式,看能否约分,然后再相乘;
(2)当分式与整式相乘时,要把整式与分式的分子相乘作为积的分子,分母不变
(3)分式的除法可以转化为分式的'乘法运算;
(4)分式的乘除混合运算统一为乘法运算。

①分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺序,有括号先算括号里面的;
②分式的乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符号;
③分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式。

相关文档
最新文档