串联型稳压电源

合集下载

mos管串联稳压电源

mos管串联稳压电源

mos管串联稳压电源MOS管串联稳压电源是一种常见的电路设计,用于稳定电压输出。

首先,让我们从整体结构和工作原理两个角度来全面了解这种电路。

从整体结构来看,MOS管串联稳压电源通常由输入滤波电路、MOS管、参考电压源、反馈电路和输出负载等组成。

输入电压经过滤波电路后,进入MOS管,MOS管的导通电阻会根据输入电压的变化而调节,以维持输出电压的稳定。

参考电压源提供一个稳定的参考电压,反馈电路检测输出电压并将信息反馈给MOS管,以调节MOS管的导通电阻。

输出负载则是稳压电源的最终电压输出的载荷。

从工作原理来看,MOS管串联稳压电源利用MOS管的调节特性来实现稳压。

当输入电压发生变化时,反馈电路检测到输出电压的变化,通过控制MOS管的导通电阻来调节输出电压,使其保持稳定。

参考电压源提供一个稳定的参考电压,帮助系统实现稳定的输出电压。

整个电路通过不断的反馈和调节,实现了稳定的输出电压。

除了结构和工作原理,我们还可以从优缺点、应用领域和设计注意事项等方面来全面了解MOS管串联稳压电源。

例如,优点包括响应速度快、效率高、输出纹波小等;缺点可能包括成本较高、需要较复杂的控制电路等。

在应用领域上,MOS管串联稳压电源广泛应用于各种电子设备中,如通信设备、电源适配器、工业控制等。

在设计时,需要考虑输入电压范围、输出电压稳定性、负载变化等因素,以保证稳压电源的性能和稳定性。

总的来说,MOS管串联稳压电源是一种常见且重要的电路设计,通过全面了解其结构、工作原理、优缺点、应用领域和设计注意事项,我们可以更好地理解和应用这种电路。

串联可调稳压电源课件

串联可调稳压电源课件

变压器绕组
分为初级绕组和次级绕组 ,初级绕组接输入电压, 次级绕组接输出电压。
整流电路
整流电路
将交流电转换为直流电, 为后续电路提供直流电源 。
整流二极管
利用二极管的单向导电性 实现整流功能。
整流电路类型
半波整流、全波整流、桥 式整流等。
滤波电路
滤波电路
电感滤波
将整流后的脉动直流电转换为平滑的 直流电。
绿色能源的整合
串联可调稳压电源应积极整合绿色能源,如太阳能、风能等,以实现能源的可持续发展和环境保护。
Байду номын сангаас5
串联可调稳压电源的实际应用案 例
在电子设备中的应用
串联可调稳压电源在电子设备中主要用于提供稳定的直流电压,以确保电子设备 正常工作。
例如,在电脑、手机、电视等电子产品中,串联可调稳压电源能够确保主板、显 示屏等部件得到稳定的电压供应,从而保证产品的性能和稳定性。
2. 在长时间不使用时,应关闭电源 以节省能源。
3. 注意保持设备清洁,定期除尘,确 保散热良好。
常见故障与排除方法
常见故障 1. 无输出电压。 2. 输出电压不稳定。
常见故障与排除方法
排除方法 2. 检查电位器是否正常,如有故障需更换。
1. 检查电源线是否完好,如有破坏需更换。 3. 检查内部电路是否正常,如有故障需维修或更换。
串联可调稳压电源的优缺点
优点
结构简单、价格便宜、调节方便、稳定性较好。
缺点
效率较低、有较大的热量产生、对电网有较大的谐波干扰。
02
串联可调稳压电源的组成与电路 分析
电源变压器
01
02
03
电源变压器
将电网电压转换为所需电 压等级,为整个稳压电源 提供输入电压。

串联稳压电源电路工作原理

串联稳压电源电路工作原理

串联稳压电源电路工作原理
串联稳压电源电路工作原理:
①串联稳压电源是一种通过调整串联在输入输出之间的控制元件来实现稳定输出电压的直流电源装置;
②典型的串联稳压电路主要包括整流滤波调整三个部分其中调整部分是实现稳压功能的关键所在;
③输入交流电首先经过变压器降压至所需水平然后送入整流电路整流电路通常采用桥式整流方式将交流转变为脉动直流;
④经过整流后的电流含有大量纹波需要通过滤波电容进行平滑滤波电容越大输出电压越平稳但响应速度会下降;
⑤调整部分的核心元件为调整管如晶体管场效应管等它工作在线性放大区根据反馈信号控制自身导通程度;
⑥输出端连接基准电压源与误差放大器共同构成负反馈系统当输出电压波动时误差放大器会调整调整管基极电流;
⑦通过改变调整管集电极发射极之间导通程度即可调节流过负载的实际电流进而保持输出电压恒定;
⑧为了提高效率减少调整管发热现代设计中常采用复合调整电路如带电流限制保护功能的电路;
⑨在实际应用中还需考虑输入电压变化负载波动等因素对稳压性能的影响通过优化设计提高电路适应性;
⑩完整的串联稳压电源还需包含过载保护短路保护等功能确保在异常情况下不会损坏设备;
⑪随着技术进步出现了如开关电源等新型稳压方案它们在效率体积等方面更具优势;
⑫总结串联稳压电源以其简单可靠的特点在众多场合仍占有重要地位。

串联式稳压电源

串联式稳压电源
压进行比较
当输出电压降低时,调 整管基极上的电压减小, 调整管的电流增加,输
出电压升高
这样,通过负反馈的作 用,串联式稳压电源能
够保持输出电压的稳定
特点
串联式稳压电源具有以下特点
特点
稳压范围宽
由于负反馈的作 用,串联式稳压 电源的输出电压 能够稳定地适应 负载的变化和输 入电压的变化
线性调整率好
20XX
串联式稳压电 源
1 工作原理 3 性能指标 5 总结
-
2 特点 4 应用场景
串联式稳压电源
串联式稳压电源是一种电子设备,它通过调整 串联在电路中的调整管基极上的电压,改变其
放大倍数,从而保持输出电压的稳定
这种稳压电源通常被用于各种电子设备中,如 计算机、通信设备、工业控制系统等
工作原理
可靠性高和体积小等特点,被 广泛应用于各种电子设备中
总结
串联式稳压电源是一种常见的 电子设备,它通过调整串联在 电路中的调整管基极上的电压, 改变其放大倍数,从而保持输 出电压的稳定
了解串联式稳压电源的工作原 理、特点和应用场景,对于电 子设备的设计和维护具有重要 的意义
-
XXX
谢谢观看
汇报人:xxxx
应用场景
1
串联式稳压电源被广泛应用于各种电子设备中,如计算机中的ATX 电源、通信设备中的开关电源、工业控制系统中的线性稳压电源等
在这些应用场景中,串联式稳压电源能够提供稳定的输出电压,保 障设备的正常运行
2
3
同时,由于其具有较高的可靠性和较小的体积,因此也适合于小型 电子设备中用
这种稳压电源具有稳压范围宽、 线性调整率好、电路结构简单、
起源
它由调整管、取样电 阻、比较放大器等组

串联型直流稳压电源 实验报告

串联型直流稳压电源 实验报告

串联型直流稳压电源实验报告
一、实验目的与要求
本次实验的目的是研究串联型直流稳压电源的结构、工作原理和特性,以及由此产生
的电压的稳定性和精度等性能指标。

二、实验原理
串联型直流稳压电源是由电流控制模块和调压模块组成的一种电源类型,其中电流控
制模块主要负责控制电流,而调压模块则主要负责控制电压。

本次实验采用的是带有分压
稳压电路的串联型电源,其中通过一组可分压电路可以有效地使稳压电路得以精确调整输
出电压,从而实现精度和稳定性更好的结果。

三、实验步骤
1. 将电阻、电容和电位器连接到串联型直流稳压电源的各个外部端子上;
2. 通过调节电位器以及其它分压电路上的电压,调节这种类型的电源的电压,使之
保持在一个最佳的稳定结果;
3. 用万用表测量输出电压的波形,并测量标准值和误差值。

4. 对输出电流也进行测量,其稳定性要达到99%以上;
5. 根据电压和电流设定一定功率,并将功率波形与步骤3和4中测量出的时间记录;
6. 紫外线调试方法测量电路内部的组件的功耗;
7. 用实验台的变压器原理对系统的可靠性进行测试。

四、实验结果
通过实验,我们发现了串联型直流稳压电源的结构、工作原理和特性。

实验结果表明,该电源的稳定性优于传统的变压器稳压电源。

在调节电压时,可以有效地控制电压、电流
和功率,使输出结果更加准确;而且在不同的条件下,也可以确保电源的稳定性和可靠性,最大限度地减少一些误差。

五、总结。

串联稳压电源原理概述

串联稳压电源原理概述

串联稳压电源原理概述串联稳压电源是一种电子电源,其主要作用是将不稳定的输入电压转换为稳定的输出电压。

这类电源通常采用线性稳压器或开关稳压器的电路结构。

以下是串联稳压电源的原理概述:1.基本原理:串联稳压电源的基本原理是通过电路中的稳压器来维持输出电压在一个稳定的水平,不受输入电压变化的影响。

这样可以确保在负载变化或输入电压波动时,输出电压保持相对恒定。

2.线性稳压器:串联稳压电源中常用的一种稳压器是线性稳压器。

线性稳压器通过调整电阻网络,将多余的电压转化为热能散失,从而保持输出电压的稳定。

常见的线性稳压器包括普遍使用的三端稳压器(例如LM317)或基于二极管和晶体管的设计。

3.开关稳压器:另一种常见的串联稳压电源是开关稳压器。

开关稳压器利用电感、电容和开关管来实现电压的调整。

相对于线性稳压器,开关稳压器的效率更高,但可能会引入一些电磁干扰。

4.负载调整:串联稳压电源需要能够适应负载变化。

为了实现这一点,通常在电路中包含有负载调整电路,使得在负载变化时,稳压电源能够迅速调整以保持输出电压的稳定性。

5.过压保护:为了防止输出电压超过设定值,串联稳压电源通常包含过压保护电路。

这些保护电路可以通过截断或调整电路来确保输出电压不会超过预定的安全水平。

6.输入电压变化补偿:串联稳压电源也需要考虑输入电压的变化。

通过采用适当的电路设计,如使用差分放大器和反馈电路,可以实现对输入电压变化的补偿,从而维持输出电压的稳定性。

串联稳压电源广泛应用于需要稳定电压的电子设备,例如通信设备、实验室仪器、计算机系统等。

选择合适的稳压电源类型通常取决于具体应用的要求和性能标准。

串联稳压电源

串联稳压电源
T'1 R为一小电阻,用于检测负载电流。
当IL不超过额定值时, T’1截止; 当IL超过额定值时, T'1导通,其集电极 从T1的基极分流。18
2)截流型: 过流时使调整管截止或接近截止。应用于 大功率电源电路中。
输出电流在额定值内时:
三极管T2截止,这时, 电压负反馈保证电 路正常工作。
输出电流超出额定值时:
IE
UO
T通过对电流的调整实现UO的稳定,故称T为调整管。1
+
+
T
iL
UI iR

iZ
UZ
RL UO –
实际上是射极输出器,Uo=UZ -UBE 。但带负载 的能力比稳压管强。
iR 0, iZ iB iL iE (1 )iB
负载电流的变化量可以比稳压管工作电流的变
化量扩大(1+)倍。
2
2
UI
CI
Co
0.1~1F
1µF
_
+
Uo
_
W7800系列稳压器 基本接线图 注意:输入与输出端之间的电压不得低于3V! 27
2 、输出正负电压的电路
+
1WΒιβλιοθήκη 8XX3+ UO
2
CI
CO
UI
_
CI
1
CO
_
2
W79XX
3
UO
正负电压同时输出电路
28
3、提高输出电压的电路
1 +
W78XX 3
2
UXX R
UIVC2 Uo 2. 流过稳压管的电压随 UI 波动,使UZ 不稳定,
降低了稳压精度。
3. 温度变化时,T2组成的放大电路产生零点

串联型稳压电源的安装与调试

串联型稳压电源的安装与调试

任务二、串联型稳压电源的装配与调试任务描述:随着人们生活水平的日益提高,通信技术不断的进展,同学们每天使用手机,手机的充电器就是一个稳压电源。

在我们电子生产实习中,常常需要用到稳压电源,为后一级电路供给稳定的直流电压,图 2-2-1 为串联型稳压电源的原理图。

图2-2-1 串联型稳压电源原理图活动 1识读电路元件,实施元件检测技能目标1、能够识读和检测常用电子元器件2、能够识读和检测稳压二极管3、能够用 MF-47 型万用表检测各元器件学问贮存一、稳压二极管〔一〕简介稳压二极管,英文名称 Zener diode,又叫齐纳二极管。

利用 pn 结反向击穿状态,其电流可在很大范围内变化而电压根本不变的现象,制成的起稳压作用的二极管。

此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是依据击穿电压来分档的,由于这种特性,稳压管主要被作为稳压器或电压基准元件使用。

稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更高的稳定电压。

其图形符号和封装形式如图2-2-2。

图2-2-2 稳压二极管的图形符号及其封装形式〔二〕原理稳压二极管的伏安特性曲线的正向特性和一般二极管差不多如图 2-2-3,反向特性是在反向电压低于反向击穿电压时,反向电阻很大,反向漏电流微小。

但是,当反向电压接近反向电压的临界值时,反向电流突然增大,称为击穿,在这一临界击穿点上,反向电阻突然降至很小值。

尽管电流在很大的范围内变化,而二极管两端的电压却根本上稳定在击穿电压四周,从而实现了二极管的稳压功能。

图2-2-3 稳压二极管特性曲线〔三〕主要参数1、Uz—稳定电压指稳压管通过额定电流时两端产生的稳定电压值。

该值随工作电流和温度的不同而略有转变。

由于制造工艺的差异,同一型号稳压管的稳压值也不完全全都。

例如,2CW51 型稳压管的 Vzmin 为3.0V, Vzmax 则为3.6V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

VDZ2
VT1 IE1 IR1 R1
VT2
-
A
R2
R4
++
R5
UZ
-
R3 VDZ1
选择调整管VT1时,其集电极的最大允许电流为:
+ IL
RL UD0
-
ICM IC1max
根据基尔霍夫电压定律可得: UCE1 UDI UDO
集电极与发射机之间的反
UCE1max U DImax U DOmin
⑵当电网电压波动时,使整流滤波电路输出的直流电压不稳 定。通常交流电网电压允许±10%的波动。
稳压二极管组成的稳压电路
稳压原理:利用稳压二极管的反向击穿特性 来稳压的,由于反向特性曲线陡直,引起较大 的电流变化,但是只会引起较小的电压变化。
I IZ I0 Ui UR U0
I + UR -
3、串联型稳压电源的结构
变 交流输入 压

整流 滤波
调整管 UDI
比较放大器
基准电压

样 电
RL UD0

二、简单串联型稳压电源
R
UDI
满足深度负反馈: ∑’
+
根据虚短、虚断
+ -A
U' U UZ U R2
UZ
VDZ ∑
R1
R2
-
+ RL UDO
-
U DO R1 R2
只要基准电压UZ
U D0

1
R1 R2 R3
U

1
R1 R2 R3
U Z
当R1在滑动端的最下端时,可得:
VT1 IE1 IR1 R1
VT2
-
A
R2
R4
++
R5
UZ
-
R3 VDZ1
+ IL
RL UD0
-
UD0

1
R1 R2 R3
U Z
所以,输出电压的调节范围是:
前言
1、电路中为什么要稳压?
电子设备一般都需要稳定的电源电压。如果电源
电压不稳定,将会引起直流放大器的零点漂移,交流
噪声增大,测量仪表的测量精度降低等。因此必须进
行稳压。
VO = f (VI , IO ,T )
2、引起电压不稳定的因素有哪些?
⑴当负载电流变化时,由于整流滤波电路存在内阻,输出电 压将要变化。
Ube=Uz-U0 (uz基本不变)
Ui↑→U0↑→Ube↓→Ib↓→Ie↓→
T
R
UI
RL
U0
DZ UZ
U0↓
(2)当ui不变,而RL变化(即IL变化) RL↓→IL↑→ Ui↓→ U0↓→Ube↑→Ib↑→ Ie↑→
U0 ↑
调整管之所以能够起调整电压的作用,关键在于用输出 电压的变化量返回去控制调整管的基极电流。
1
R1 R1 R2
U Z
UD0
1
R1 R2 R1
U Z
稳定电压控 制在某个范
围内
三、实用串联型稳压电源
(二)稳压管的极限参数
1 根据基尔霍夫电流 定律可得:
+ R6
UDI
IE1 IR1 I L I E1max I R1 I Lmax IC1max -
+
R IZ
U-i
DZ
Io
+
+
UZ RL Uo


缺点:工作电流值较小,稳定电压值不能连续调节
一、电路的基本形式
1、原始设想
若UI↑→使R↑→△UI都加在R上,
UI
R U0
RL
若RL↓→使R↓→维持U0不变。
T
调整管
R
UI
RL
U0
UI 基准电源
UO
DZ UZ
2、稳压原理 (1)当RL不变,UI变化时的稳压过程
向击穿电压:BU CEO UCE1max
三极管的集电极电流最大,管压降最大时,三 极管的功率损耗将最大,即
PC max IC1max •UCE1max
集电极最大允许功率损耗:
PCM PC max
(三)保护电路
R0为电流采样电阻,它电压 UR0 IE1R0
正常情况下,稳压管的电压UDZ应 小于其稳定电压UZ,即
U DO

1
R1 R2
U

1
R1 R2
U Z
稳定,输出电压 就稳定
三、实用串联型稳压电源
(一)输出电压的调节范围 根据虚短、虚断可得:
+ R6
当R2在滑动端的ຫໍສະໝຸດ UDI最上端时,可得:
U U UZ
U

R2 R3 R1 R2R3
U D0
- VDZ2
U DZ U BE2 U BE1 U R0 U Z
VT1 VT2
R0 IE1
VDZ
当过流时,UR0增大使稳压管击穿,工作在稳压状态
U DZ U BE2 U BE1 I E1R0 U Z
I E1

UZ
U BE2 R0
U BE1
相关文档
最新文档