简单的串联型稳压电源
串联型三极管稳压电路

串联型三极管稳压电路1.电路构成用三极管V代替图8.2中的限流电阻R,就得到图8.3所示的串联型三极管稳压电路。
在基极电路中,V DZ与R组成参数稳压器。
图 8.3 串联型三极管稳压电路2. 工作原理〔实验〕:①按图8.3连接电路,检查无误后,接通电路。
②保持输入电压U i不变,改变R L,观察U0。
③保持负载R L不变,改变U L,观察U0。
结论:输出电压U0基本保持不变。
该电路稳压过程如下:(1)当输入电压不变,而负载电压变化时,其稳压过程如下:(2)当负载不变,输入电压U增加时,其稳压过程如下:(3)当UI增加时,输出电压U0有升高趋势,由于三极管T基极电位被稳压管DZ固定,故U0的增加将使三极管发射结上正向偏置电压降低,基极电流减小,从而使三极管的集射极间的电阻增大,UCE增加,于是,抵消了U0的增加,使U0基本保持不变.上述电路虽然对输出电压具有稳压作用,但此电路控制灵敏度不高,稳压性能不理想。
8.3.2 带有放大环节的串联型稳压电路1.电路组成在图8.3电路加放大环节.如图8.4所示。
可使输出电压更加稳定。
图8.4带放大电路的串联型稳压电路取样电路:由R1、RP、R2组成,当输出电压变大时,取样电阻将其变化量的一部分送到比较放大管的基极,基极电压能反映出电压的变化,称为取样电压;取样电压不宜太大,也不宜太小,若太大,控制的灵敏度下降;若太小,带负载能力减弱。
基准电路:由RZ、V DZ组成,给V2发射极提供一个基准电压,RZ为限流电阻,保证V DZ有一个合适的工作电流。
比较放大管V2:R4既是V2的集电极负载电阻,又是V1的基极偏置电阻,比较放大管的作用是将输出电压的变化量,先放大,然后加到调整管的基极,控制调整管工作,提高控制的灵敏度和输出电压的稳定性。
调整管V1:它与负载串联,故称此电路为串联型稳压电路,调整管V1受比较放大管控制,集射极间相当于一个可变电阻,用来抵消输出电压的波动。
串联型晶体管稳压电源

8.2.1 简单串联型晶体管稳压电源 8.2.2 带有放大环节的串联型晶体管稳压电源
8.2 串联型晶体管稳压电源
8.2.1 简单串联型晶体管稳压电源 V1为调整管,工作在放大 区,起电压调整作用;V2为硅 稳压管,稳定V1管的基极电压 VB,提供作为稳压电路的基准 电压VZ;R1既是V2的限流电阻, 又是V1管的偏置电阻;R2为V2 管载。的发稳射压极过电程阻:当;VROL↑为→外V接BE负↓→IB↓→VCE↑→VO↓
VZ )
(8.2.2)
当 RP的滑动臂移到最下端时,RP RP ,RP 0 ,VO 达
到最大值。即
VOm ax
R1 RP R2 R2
(VBE2 VZ )
(8.2.3)
则输出电压VO 的调节范围为
VOm in ~ VOm ax
以上各式中的VBE2 约为0.6~0.8V。
综上所述,带有放大 环节的串联型晶体管稳压 电路,一般由四部分组成, 即采样电路、基准电压、 比较放大电路和调整元件。
(VBE2
VZ )
1 0.2 0.68 (0.7 7)V 0.2 0.68
16.5V
又由式(8.2.3)
VOm a x
R1
RP R2
R2
(VBE2
VZ )
1 0.2 0.68 (0.7 7)V 0.68
2ቤተ መጻሕፍቲ ባይዱ.3V
故输出电压调节范围:
16.5 ~ 21.3V
因负载电流由管子V1供给,所以与并联型稳压电路相比, 可以供给较大的负载电流。但该电路对输出电压微小变化量 反映迟钝,稳压效果不好,只能用在要求不高的电路中。
8.2.2 带有放大环节的串联型晶体管稳压电源
串联型稳压电路

样
环 节
UO
基准电压
– 串联型稳压电路的组成框图 –
2. 串联型稳压电路
串联型稳压电路采用线性集成运放作为比较放大
器,以减小稳压电路输出电压的温漂和提高输出电压
稳定精度。
T
+
R1 R1
+
+
UI
++ UB –
8
UF
++ UZ –
R1 UF
R2 –
RL UO
调整 比较 基准 采样 元件 放大 电压 电路
串联型稳压电路
主要内容: 串联型稳压电路的基本原理和分析方法。
重点难点:
串联型稳压电路的分析方法。
串联型稳压电源的工作电流较大,输出电压一般 可连续调节,稳压性能优越。目前这种稳压电源已经 制成单片集成电路,广泛应用在各种电子仪器和电子 电路中。 • 1. 电路组成与稳压原理
+
调整元件
+
采
UI
比较放大
稳压过程
T +
UI
++ UB
8
UF ++
UZ
–
–
R1 R1 +
R1
UF
R2 –
由图可知
+ RL UO
U
UF
R1 R1
R2 R2
UO
U UZ
UB Auo(UZ UF )
当由于电源电压的变化使输出电压UO升高时,有 如下稳压过程:
UO UF UB IC UCE
UO 由于引入的是串联电压负反馈,故称串联型稳压电路。
串联型稳压电路
输出电压及调节范围
串联型稳压电路分析及调整管的选择

串联型稳压电路分析及调整管的选择摘要:串联型直流稳压电源是一种应用较为广泛的电源,文章详细叙述了串联型直流稳压电源的组成、工作原理、工程设计和实际应用中调整管的选择原则及具体参数计算方法。
关键词:串联;稳压电路;分析;调整管;选择串联型直流稳压电源是一种应用较为广泛的电源,图1是输出电压可调的典型串联直流稳压电源电路,它由电压调整、比较放大、基准电压、取样电路等组成。
图1 串联型直流稳压电源电路原理图一、电路组成与工作原理1.电路组成。
串联型直流稳压电源的稳压电路由四部分组成。
(1)取样电路R1、R2和W电阻分压器组成取样电路。
取样电路与负载并联,通过取样电路可以反映U0的变化,因为反馈电压Uf与输出电压U0有关。
反馈电压Uf取出后送到放大单元,改变电位器W的滑动端子可以调节输出电压U0的大小。
(2)基准电压限流电阻R3与稳压管Dz组成基准单元。
Dz两端电压UDZ作为整个稳压电路自动调整和比较的基准电压。
(3)比较放大电路晶体管T2组成放大电路。
它将采样所得的反馈电压Uf与基准电压UDZ比较后加在T2的输入端,即UBE2=Uf-UDZ经T2放大后控制调整管T1输入端的电位。
R4是T2的集电极负载电阻,同时也是调整管T1的偏置电阻。
(4)电压调整T1是电压调整管,它是整个稳压电路的核心器件,利用T2输出电压的变化量来控制T1的基极电流的变化,进而控制T1的管压降UCE1的变化,自动控制U0值维持稳定。
2.电路工作原理。
对于电路的稳压过程,从电网电压的波动和负载电流的变化这两个方面来加以分析。
(1)当输入电压Ui上升时,输出电压U0也上升,电路将发生如下变化:取样电路从输出电压中取样,使T2基极电位UB2上升,因稳压管Dz的作用使T2发射极电位UE2保持不变,则T2发射结正向偏置电压UBE2上升,使T2基极电流Ib2增加,T2集电极电流IC2也增加,使T2集、射电压UCE2下降,即T1基极电位UB1下降,使T1发射结正向偏置电压UBE1下降,T1基极电流Ib1下降,使T1的c、e极间电压UCE1增加,从而使输出电压U0下降,因为U0=Ui- UCE1,所以输出电压U0会趋于稳定。
串联可调稳压电源课件

变压器绕组
分为初级绕组和次级绕组 ,初级绕组接输入电压, 次级绕组接输出电压。
整流电路
整流电路
将交流电转换为直流电, 为后续电路提供直流电源 。
整流二极管
利用二极管的单向导电性 实现整流功能。
整流电路类型
半波整流、全波整流、桥 式整流等。
滤波电路
滤波电路
电感滤波
将整流后的脉动直流电转换为平滑的 直流电。
绿色能源的整合
串联可调稳压电源应积极整合绿色能源,如太阳能、风能等,以实现能源的可持续发展和环境保护。
Байду номын сангаас5
串联可调稳压电源的实际应用案 例
在电子设备中的应用
串联可调稳压电源在电子设备中主要用于提供稳定的直流电压,以确保电子设备 正常工作。
例如,在电脑、手机、电视等电子产品中,串联可调稳压电源能够确保主板、显 示屏等部件得到稳定的电压供应,从而保证产品的性能和稳定性。
2. 在长时间不使用时,应关闭电源 以节省能源。
3. 注意保持设备清洁,定期除尘,确 保散热良好。
常见故障与排除方法
常见故障 1. 无输出电压。 2. 输出电压不稳定。
常见故障与排除方法
排除方法 2. 检查电位器是否正常,如有故障需更换。
1. 检查电源线是否完好,如有破坏需更换。 3. 检查内部电路是否正常,如有故障需维修或更换。
串联可调稳压电源的优缺点
优点
结构简单、价格便宜、调节方便、稳定性较好。
缺点
效率较低、有较大的热量产生、对电网有较大的谐波干扰。
02
串联可调稳压电源的组成与电路 分析
电源变压器
01
02
03
电源变压器
将电网电压转换为所需电 压等级,为整个稳压电源 提供输入电压。
串联式稳压电源

当输出电压降低时,调 整管基极上的电压减小, 调整管的电流增加,输
出电压升高
这样,通过负反馈的作 用,串联式稳压电源能
够保持输出电压的稳定
特点
串联式稳压电源具有以下特点
特点
稳压范围宽
由于负反馈的作 用,串联式稳压 电源的输出电压 能够稳定地适应 负载的变化和输 入电压的变化
线性调整率好
20XX
串联式稳压电 源
1 工作原理 3 性能指标 5 总结
-
2 特点 4 应用场景
串联式稳压电源
串联式稳压电源是一种电子设备,它通过调整 串联在电路中的调整管基极上的电压,改变其
放大倍数,从而保持输出电压的稳定
这种稳压电源通常被用于各种电子设备中,如 计算机、通信设备、工业控制系统等
工作原理
可靠性高和体积小等特点,被 广泛应用于各种电子设备中
总结
串联式稳压电源是一种常见的 电子设备,它通过调整串联在 电路中的调整管基极上的电压, 改变其放大倍数,从而保持输 出电压的稳定
了解串联式稳压电源的工作原 理、特点和应用场景,对于电 子设备的设计和维护具有重要 的意义
-
XXX
谢谢观看
汇报人:xxxx
应用场景
1
串联式稳压电源被广泛应用于各种电子设备中,如计算机中的ATX 电源、通信设备中的开关电源、工业控制系统中的线性稳压电源等
在这些应用场景中,串联式稳压电源能够提供稳定的输出电压,保 障设备的正常运行
2
3
同时,由于其具有较高的可靠性和较小的体积,因此也适合于小型 电子设备中用
这种稳压电源具有稳压范围宽、 线性调整率好、电路结构简单、
起源
它由调整管、取样电 阻、比较放大器等组
串联型直流稳压电源设计报告

串联型直流稳压电源设计报告一、设计题目题目:串联型直流稳压电源二、设计任务:设计并制作用晶体管、集成运算放大器电阻、电阻器、电容组成的串联型直流稳压电源。
要求指标:1、输出电压6V、9V两档,同时具备正负极性输出;2、输出电流:额定电流为150mA,最大输出电流为500mA;3、在最大输出电流的时候纹波电压峰值▲V op-p≤5mv;4、保护电路:过流保护。
三、原理电路和程序设计:1、电路原理方框图:2、原理说明:(1)单相桥式整流电路可以将单相交流电变换为直流电;(2)整流后的电压脉动较大,需要滤波后变为交流分量较小的直流电压用来供电;(3)滤波后的输出电压容易随电网电压和负载的变化波动不利于设备的稳定运行;(4)将输出电压经过稳压电路后输出电压不会随电网和负载的变化而变化从而提高设备的稳定性和可靠性,保障设备的正常使用;(5)关于输出电压在不同档位之间的变换,可以将稳压电源的电压设置为标准电压再对其进行变换,电压在档位间的调节由于只有6V和9V两档则可以通过开关来转换,从而实现对输出电压的转换。
而正负电源则需要一个六脚开关来控制变换。
四:方案选择1、变压、滤波电路方案一和方案二的变压电路和滤波电路相同,二者的差别主要体现在稳压电路部分。
图1 变压和滤波电路2、稳压电路方案一:此方案以稳压管D1的电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R 2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由E B BE U U U -=可知BE U 将减小(升高)导致基极电流和发射极电流的减小(增大),使得R 两端的电压降低(升高),从而达到稳压的效果。
负电源部分与正电源相对称,原理一样。
图2 方案一稳压部分电路方案二:该方案稳压电路部分如下图3所示,稳压部分由调整(Q1三极管),比较电路(集成运放741),基准电压电路(稳压管D2 02BZ2.2),采样电路(采样电路由R2、R3、R4组成)组成。
串联型稳压电路组成

串联型稳压电路组成稳压电路是电子产品中常见的一种电路,它可以稳定电源输出的电压,防止电压波动对其它电路和设备造成损害。
串联型稳压电路是其中的一种常用型号,下面将对串联型稳压电路的组成进行详细介绍。
串联型稳压电路的基本组成有三部分:电流限制电路、比较电路和调整电路。
首先是电流限制电路。
电流限制电路主要用于限制电流,防止过电流损坏电路和设备。
常用的电流限制元件有熔丝和电阻等。
熔丝是一种具有一定电阻的导线,当电流超过熔丝的承受能力时,导线会熔断,以保护电路和设备。
电阻则可以通过限制电流大小来保护电路。
电流限制电路在稳压电路中起到了很重要的作用。
其次是比较电路。
比较电路用于比较输入和输出电压的差异,如果输出电压低于设定值,比较电路会将这个差异放大,然后送入调整电路进行调整。
常见的比较电路有电压比较器和运放等。
电压比较器是一种能够比较两个电压大小的器件,将较大的电压放大输出。
运放是一种能够将输入电压放大的放大器,其输出电压可以随输入电压大小而变化。
比较电路的作用是监测输入输出电压的差异,以便调整电路进行相应的调整。
最后是调整电路。
调整电路是整个稳压电路中最为关键的部分,它根据输入和输出电压的差异来调整输出电压的大小。
常用的调整电路有二极管稳压电路和集成稳压电路等。
二极管稳压电路是利用二极管的特性来实现电压稳定的电路,通过合理连接电阻和二极管,可以使输出电压基本稳定。
集成稳压电路则是一种微电子器件,内部包含多个电子元件,可以实现更稳定的电压。
调整电路根据输入和输出电压的差异进行调整,使输出电压尽量稳定。
串联型稳压电路的组成不仅包括电流限制电路、比较电路和调整电路,还可以根据具体需求添加其它元件,如滤波电容、保护二极管等,以增强电路的稳定性和保护电路不受外界干扰。
总之,串联型稳压电路的组成包括电流限制电路、比较电路和调整电路,其中比较电路和调整电路起到了重要的作用。
通过这些组成部分的协同工作,串联型稳压电路可以实现对电源电压的稳定输出,保护其它电路和设备不受电压波动的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、思考:
假定在图6-2(a)中,输出电压V0由于某 种原因下降,试分析其稳压过程。
解答:通过对串联稳压电路的分析,了解了各元件的作用,
画出下面的反馈图
V0
VBE
IB
V0
VCE
RCE
四、总结:
在这一节课中,我们主要掌握两方面的 内容: 1、基本串联稳压电路的电路组成 2、基本串联稳压电路的稳压过程 上述简单串联型稳压电源,虽然带负载 能力较强,但稳定性能并不理想,且输 出电压不能调节,我们应该怎么样改进 呢?
同 的电路对电源的要求是不同的。在很多电 子设备和电路中需要一种当电网电压波动 或负载发生变化时,输出电压任能基本保
持不变的电源。我们把这种电源称为直流 稳压源。其组成及工作波形如下所示:
本节将从基本的串联型稳压电路讲起。 返回
二、新授
1、串联型稳压电路的概念:由于负载与起调整作用的三
极管相串联,故称为串联型稳压电路。
五、作业 P128 6-1
为:
VO
VBE
I成(b)的形式,基极电阻R与稳压管之间接入 射极输出器。其中输出电压V0与Vz具有“跟随”关系。由于 Vz稳定,在输入电压VI,和负载电流IL的一定变化范围内V0 也基本稳定。加入射随器后,负载电流不再通过稳压管,而 是通过三极管。由于稳压管接在三极管的基极,它承受了电 流减少了(1+β)倍,使稳压电路带负载能力得以提高。
4、稳压原理: 从图6-2,可以看出,V为NPN型三极管VB>VE。
因此
VBE+VO=VZ
即
VBE=VZ-VO
由上式可知:假定输出电压VO由于某种原因升高,因VZ是稳定值, 所以三极管VBE将减小,使IB减小,三极管集—射电阻RCE增大,由于 VO=VI-VCE,则输出电压VO下降,使其趋于稳定。其稳压过程可表示
简单的串联型稳压电源
王运生 浏阳市职业中专
时间安排
导入:10分钟 新授:20分钟 练习:10分钟 总结:5分钟
教学目标:掌握串联型稳压电路的基本 结构和稳压过程
重点:简单串联型稳压电路的稳压原理 难点:简单串联型稳压电路的稳压原理
一、导入
我们知道,任何一种电路都需要电源, 它是电子电路工作的“能源”和“动力”。不
2、结构:如图6-2
3、各元件的作用:图6-2所示为串联型稳压电路,主要元件
为三极管和二极管,在该电路中三极管做调整电压用,相当于一只 可变电阻,。稳压二极管Vz在起稳定三极管基极的作用。
图6-2所示为串联型稳压电路,主要元件为三极管和二极管,在该电 路中三极管做调整电压用,相当于一只可变电阻,。稳压二极管Vz 在起稳定三极管基极的作用。