资金的时间价值
《资金的时间价值 》课件

资金的时间价值是指资金在不同时间点的价值不同,本节课程将介绍资金时 间价值的概念、计算方法以及在投资决策中的应用。
什么是资金的时间价值
资金的时间价值是指随着时间的推移,同样数量的资金在不同时间点具有不 同的价值。了解资金时间价值的概念对作出理性的财务决策至关重要。
为什么资金具有时间价值
现金流量的概念
现金流量是指通过某项投资或项目所产生的现金流入和流出的金额。了解现 金流量对于评估投资的可行性和确定项目的价值至关重要。
净现值的含义及计算方法
净现值是用于评估一个投资项目是否可行和值得的指标。它是将项目的现金流量折现后减去项目的初始投资, 以确定项目的盈利能力。
内部收益率的概ቤተ መጻሕፍቲ ባይዱ及计算方法
资金具有时间价值是因为它可以被投资和获得回报。而这些回报将随着时间的推移而存在,从而使得同样数量 的资金在不同时间点具有不同的价值。
未来价值与现值的概念
未来价值是指资金经过一定期限的投资后所能获得的价值,而现值是指在当 前时间点上具有同等价值的资金。
折现率的概念及计算方法
折现率是用于计算未来现金流量在当前时间点的价值的利率。它的计算方法 取决于多个因素,包括风险、预期回报以及市场利率等。
内部收益率是指使得项目的净现值等于零时所需的贴现率。它是评估投资项目的潜在回报和可行性的重要指标。
收益与风险的权衡
在进行投资决策时,我们需要权衡投资的预期收益与风险。高收益往往伴随 着更高的风险,而低收益可能意味着较低的风险。
资金的时间价值

(二)一次性收付款项 1、一次性款项终值的计算
(1)单利终值 ) F=P (1+i n)
(1+i n)----单利终值系数 单利终值系数
例:某人存入银行10万,若银行存款利率为5%,5 年后的本利和是多少? 解析:单利计息:本利和=10+10×5%×5=10× (1+5×5%)=12.5(万元)
( F / A,10%,5)
6.1051
【例题】银行发放1000万元的贷款,对方企业在10 年内以年利率12%等额偿还,则银行每年收到的金 额为多少?
1 1 1000 × 1000 × ( P / A,12%,10) = 解答:A = 5.6502
≈177(万元)
.系数间的关系 复利终值和复利现值互为逆运算; 复利终值系数(F/P,i,n)与复利现值系数 (P/F,i,n)互为倒数关系; 偿债基金和普通年金终值互为逆运算; 偿债基金系数(A/F,i,n)与年金终值系数 (F/A,i,n)互为倒数关系; 资本回收额与普通年金现值互为逆运算; 资本回收系数(A/P,i,n)与年金现值系数 (P/A,i,n)互为倒数关系。
P=A+A×(P/A,i,2)=A×[1+(P/A,i,2)] 即:P=A×[(P/A,i,n-1)+1] ,即付年金现值系数 等于普通年金现值系数期数减1、系数加1。 P=A×[(P/A,i,n-1)+1]
系数之间的关系 即付年金终值系数等于普通年金终值系数期数加1、 系数减1。或者即付年金终值系数=普通年金终值系 数×(1+i) 即付年金现值系数等于普通年金现值系数期数减1、 系数1加。或者即付年金现值系数=普通年金现值系 数×(1+i)
如果李博士本身是一个企业的业主,其资金 的投资回报率为32%,则他应如何选择呢? 在投资回报率为32%的条件下,每年20万的 住房补贴现值为: P=20×(P/A,32%,5)×(1+32%) 或:P=20×[(P/A,32%,4)+1] =20×(2.0957+1) =20×3.0957 =61.914(万元) 在这种情况下,应接受住房。 结论:折现率与现值呈反向变动关系。
资金的时间价值名词解释

资金的时间价值名词解释所谓资金的时间价值,就是指在不考虑货币购买力的条件下,通过资金的运动表现出来的货币所具有的增殖能力。
1、资金时间价值的概念资金时间价值是指在不考虑货币购买力因素的条件下,通过资金的运动表现出来的货币所具有的增殖能力。
它是由货币作为一般等价物的职能决定的。
货币是从商品中分离出来固定地充当一般等价物的特殊商品。
在现实生活中,流通中的货币只是一种观念上的货币,它并不代表任何东西,既不能买到任何东西,也不能兑换成任何东西,但人们却愿意用自己手中的货币去购买他们所需要的一切东西,这就表明了货币具有价值尺度、流通手段和贮藏手段三种职能。
货币执行这三种职能,必然会发生两种社会现象:第一,货币作为支付手段,可以通过买卖关系转化为价值形态存在于商品之中,或者以价值形式贮存在银行或其他金融机构中;第二,作为流通手段,可以通过买卖关系而创造价值,即用创造出来的货币去购买商品和服务。
这两种社会现象都是货币时间价值的体现。
因此,货币的这两种职能又称为货币的时间职能和价值职能。
2、如何计算资金时间价值为了反映社会资金在不同用途上的差异性,体现资金使用的不同效果,资金时间价值有两种表现形式:即静态和动态两种表现形式。
前者是指用现期收入除以现期支出得到的数字,用以说明社会资金的平均利息率;后者是指现期收入减去现期支出所得的余额,用以说明社会资金的机会成本。
3、计算时应注意的问题( 1)计算对象是资金时间价值。
( 2)计算时间与用途要一致。
否则将不能准确反映资金时间价值的真实内涵。
( 3)货币时间价值要按全社会资金平均占用额来计算。
计算资金时间价值是反映资金使用情况的重要方法。
资金的时间价值的形成主要取决于资金的时间价值的实质。
因此,在计算资金时间价值时,首先要弄清楚什么是资金的时间价值,这就要求在对资金进行时间价值分析的时候,必须把握住资金的时间价值的实质,即从理论上掌握资金时间价值的含义,弄清资金时间价值产生的原因和过程。
名词解释 资金的时间价值

名词解释资金的时间价值资金的时间价值一、引言资金的时间价值是金融学中的重要概念,指的是同一笔资金在不同时间点的价值不同。
随着时间的推移,金钱的价值会受到各种因素的影响,如通货膨胀、利率等。
本文将深入探讨资金的时间价值及其对经济决策的影响。
二、资金的时间价值的概念资金的时间价值是指在不同时间点,同一笔资金能够创造或获得的价值不同。
这是因为随着时间的流逝,资金会受到通货膨胀的影响,而且可以用于投资赚取利息或回报。
因此,较早获取资金的人可以利用时间来增加其价值。
三、资金的时间价值的核心原理资金的时间价值的核心原理是现值和未来值的概念。
现值是指在当前时间点,一定金额的资金的实际价值。
未来值是指在未来某个时间点,资金的实际价值。
这两个概念之间的关系是通过利率来计算的。
当利率较高时,资金在未来的价值较低,反之亦然。
四、影响资金时间价值的因素1. 通货膨胀:随着时间的推移,物价水平普遍上升,货币的购买力会下降,因此相同金额的资金在未来的实际购买力较低,从而影响资金的时间价值。
2. 利率:利率是衡量资金时间价值的重要指标。
利率较高时,资金的现值较高;利率较低时,资金的现值较低。
3. 风险:资金的时间价值还受到投资风险的影响。
风险较高的投资会降低资金的时间价值,因为投资回报可能不确定。
五、资金的时间价值在经济决策中的应用1. 投资决策:在进行投资决策时,需要考虑资金的时间价值。
较早投资的项目通常能够获得更高的回报,因为资金有更多时间增值。
2. 财务规划:在个人或企业进行财务规划时,需要考虑资金的时间价值。
合理安排资金的使用时间,可以最大化其价值,实现财务目标。
3. 贷款决策:在决定是否申请贷款时,需要考虑资金的时间价值。
借入资金可能会提前满足个人或企业的需求,但同时也需要承担一定的利息支出。
六、资金的时间价值的局限性与扩展尽管资金的时间价值是金融学中的重要概念,但其也存在一定的局限性。
首先,资金的时间价值基于一些假设,如稳定的利率和通货膨胀率。
资金时间价值

资金时间价值摘要:资金时间价值是指由于时间的推移,同一金额的资金在不同时间点的价值不同。
对于投资者和贷款人而言,理解和应用资金时间价值是十分重要的。
本文将详细介绍资金时间价值的概念、计算方法以及对投资和贷款决策的影响。
一、概念介绍资金时间价值是基于时间价值的概念产生的。
时间价值是指在不同时间点拥有同一金额的资金所能带来的不同利益或价值。
由于时间的推移,同一金额的资金可以通过投资或贷款等方式增值或减值,因此其价值也会发生变化。
资金时间价值的核心概念是利率,即资金在特定时期的增长率或减少率。
二、资金时间价值的计算资金的时间价值可以通过以下两种常用的计算方法进行估算:1. 未来价值(Future Value,FV):未来价值是指将现有资金在一定的时间期限内通过投资或利息的增加而变为未来的价值。
未来价值的计算公式为:FV = PV × (1 + r)^n其中,FV代表未来价值,PV代表现值或初始资金,r代表利率,n 代表时间期限。
2. 现值(Present Value,PV):现值是指未来的资金按照一定的利率折算为现在的价值。
现值的计算公式为:PV = FV ÷ (1 + r)^n其中,PV代表现值,FV代表未来价值,r代表利率,n代表时间期限。
三、资金时间价值对投资决策的影响资金时间价值对投资决策有着重要的影响。
1. 投资回报率的比较:考虑到资金的时间价值,投资者应该将未来的资金回报与现值进行对比。
在比较不同投资项目的回报率时,应将其折算为相同时间段的现值,以便进行客观的比较。
2. 投资的风险评估:由于资金时间价值的存在,投资者需要考虑投资项目的风险。
在同样的回报率下,较长的投资期限意味着投资者需要承担更长时间的风险,因此需要更高的回报率来弥补风险。
3. 基于时间的投资策略:资金时间价值的概念还可以指导投资者制定相应的投资策略。
长期投资者可以通过利用复利效应,使资金在长期内实现更大的增长。
资金时间价值

资金时间价值一、资金时间价值的含义资金时间价值是一定量资金在不同时点上的价值量差额。
资金的时间价值来源于资金进入社会再生产过程后的价值增值。
通常情况下,它相当于没有风险也没有通货膨胀情况下的社会平均利润率,是利润平均化规律发生作用的结果。
根据资金具有时间价值的理论,可以将某一时点的资金金额折算为其他时点的金额。
二、现值和终值的计算现值是未来某一时点上的一定量资金折算到现在所对应的金额,通常记作P。
终值又称将来值是现在一定量的资金折算到未来某一时点所对应的金额,通常记作F。
现值和终值是一定量资金在前后两个不同时点上对应的价值,其差额即为资金的时间价值。
现实生活中计算利息时所称本金、本利和的概念相当于资金时间价值理论中的现值和终值,利率(用i表示)可视为资金时间价值的一种具体表现;现值和终值对应的时点之间可以划分为门期5三1),相当于计息期。
(一)单利现值和终值的计算1.单利现值P=F/(1+nXi)其中,1/(1+nXi)为单利现值系数。
2.单利终值F=P(1+nXi)其中,(1+nXi)为单利终值系数。
(二)复利现值和终值的计算复利计算方法是每经过一个计息期,要将该期所派生的利息加入本金再计算利息,逐期滚动计算,俗称“利滚利”。
这里所说的计息期,是相邻两次计息的间隔,如年、月、日等。
除非特别说明,计息期一般为一年。
1.复利现值P=F/(1+i)n其中,1/(1+i)n为复利现值系数,记作(P/F,i,n);n为计息期。
2.复利终值F=P(1+i)n其中,(1+i)n为复利终值系数,记作(F/P,i,n);n为计息期。
(三)年金终值和年金现值的计算年金包括普通年金(后付年金)、即付年金(先付年金)、递延年金、永续年金等形式。
普通年金和即付年金是年金的基本形式,都是从第一期开始发生等额收付,两者的区别是普通年金发生在期末,而即付年金发生在期初。
递延年金和永续年金是派生出来的年金。
递延年金是从第二期或第二期以后才发生,而永续年金的收付期趋向于无穷大。
资金的时间价值

=(1+ m) m-1 (
[例] 例
每月计息一次,月利率为10‰,则实际年 每月计息一次,月利率为 , 利率 : =(1+ m) m-1 ( =(1+ 10‰)12-1=0.126 ( ) =12 .6%
3,名义年利率和实际年利率的关系 ,
m-1 =(1+r/m) ( )
当每年计息一次时, 当每年计息一次时, r= 当每年计息多次时, >r 当每年计息多次时, 年内计息次数越多, 的差距越大. 年内计息次数越多, 与 r 的差距越大.
[例] 某企业向银行借款,有两种计息方式: 例 某企业向银行借款,有两种计息方式: A:年利率 :年利率8%,按月计息; ,按月计息; B:年利率 :年利率9%,按半年计息. ,按半年计息. 问企业应该选择哪一种计息方式? 问企业应该选择哪一种计息方式? [解] 解 企业应该选择实际年利率较低的计息方式. 企业应该选择实际年利率较低的计息方式. 两种计息方式的实际年利率: 两种计息方式的实际年利率: A:=(1+8%/12)12-1=8.3% : ( / ) B: =(1+9%/2)2 -1=9.2% : ( / ) 应选A计息方式 计息方式. 应选 计息方式.
2,从流通的角度来讲,对于消费者 ,从流通的角度来讲, 或出资者,其拥有的资金一旦用于投资, 或出资者,其拥有的资金一旦用于投资, 就不能用于现期消费. 就不能用于现期消费.消费的推迟是一种 福利损失, 福利损失,资金的时间价值体现了对牺牲 现期消费的损失所应作出的必要补偿. 现期消费的损失所应作出的必要补偿.
式中: I——利息 式中: 利息 ——利率 利率
其本利和公式: F = P(1+ n) ( ) 式中: F——第 n期期末的本利和. 期期末的本利和. 第 期期末的本利和 [例] 有一笔50000元的借款,借期3年,按每 例 有一笔 元的借款,借期 年 元的借款 的单利率计息, 年8%的单利率计息,求到期时应归还的本利 的单利率计息 和. 解:用单利法计算: 用单利法计算: F = P(1+ n) ( )
资金的时间价值

资金的时间价值一、资金时间价值的含义资金的时间价值是指因现金流量发生的时间不同而使现金流量所具有的价值不同。
例如,现在立即收到的100元的价值要大于一年后收到的100元。
如果银行存款利率为10,,我们可以将现在收到的100元存入银行,一年后存款的利息为10元,本利和为110元。
在这种情况下,现在收到的100元的价值,一年后会升值到110元。
这种价值通常以所得报酬与让出货币数额的百分率来表示,在这里即为年利率10,。
可见,“利息”、“利率”就是资金的时间价值。
资金的运动规律就是资金的价值随时间的变化而变化,其变化的主要原因有:(1)通货膨胀,货币贬值——今年的1元钱比明年的1元钱值钱;(2)承担风险——明年得到1元钱不如现在拿到1元钱保险;(3)货币增值——通过一系列经济活动可以使今年的1元钱获得一定数量的利润,从而到明年成为1元多钱。
二、资金时间价值的换算(一)现值与终值的换算假如按复利6,将1000元存入银行,则一年后的本利和为1060元,此时若不取出利息而继续存款,则第二年末的本利和为:1000×(1,0.06),1000×(1,0.06)×0.062,1000×(1,0.06),1123.6(元)如果用F表示第三年年末的复本利和,其值为:22F,1000×(1,0.06),1000×(1,0.06)×0.063,1000×(1,0.06),1191.02(元)其资金的变化情况如图所示。
通常用P表示现在时点的资金额,简称现值,用表示资本的利率,期期末的复本利ni和用F表示,简称终值,则有:n (5,1) F,P,(1,i)n这里的称为一次支付复本利和因数,用符号(F,P,,)表示。
终值又称将(1,i)ni来值,它是指现在一定金额的货币折合成未来一定时间货币的价值。
借用利息计算的术语,终值的计算是已知本金(现值)、利率、期间,求本利和的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? 资金利息和资金的利润是体现衡量资金时间价值 的两个方面和绝对尺度。
? 折现率:利息率、利润率 ? 计算周期
2.1资金的时间价值
2.1.3 利息的计算
? 利息:借贷货币所付出的代价 ? 单利法: F=p(1+n*i)
? 复利法: F=P(1+I)^n
? 案例:复利的威力:
? 现金流量表
年末
收入
支出
0
0
-900
1
400
-200
2
700
0
? 现金流量图
净现金流量 -900 200 700
? 三要素:大小流、流向、时间点 ? 假定:现金的支付都发生在每期的期末
2.2 资金的等值原理
2.2.2 资金的折现与贴现率
?P=F/ (1+i)^n , 即复利的逆运算
? 现值:把分析期内不同时间的投资和收益都折 算到同一基准时间。一般为项目分析期的初期。
第2章 资金的时间价值
资金的时间价值 资金的等值原理 资金时间价值计算 名义利率与实际利率
第2章 资金的时间价值
本章要求 (1)熟悉现金流量的概念;(选择) (2)熟悉资金时间价值的概念;(选择、简答) (3)掌握资金时间价值计算所涉及的基本概念和计算公式;(选 择、计算) (4)掌握资金等值计算及其应用。(计算) 本章重点 (1)资金时间价值的概念、等值的概念和计算公式 (2)名义利率和实际利率 本章难点 (1)等值的概念和计算 (2)名义利率和实际利率
。案例 年末
A方案
B 方案
0
-10000
-10000
1
7000
1000
2
5000
3000
3
3000
5000
4
1000
7000
原因:以货币表示的资源可以成为资本,存在投资的机会, 并可产生回报;现在消费的节约换得日后更多的消费。
提示:由于货币时间价值的存在导致,不同时间上发生的 现金流无法直接比较
2.1资金的时间价值
2.1资金的时间价值
2.1.3 利息的计算
? 等额本息:
? 还款公式推导 设贷款总额为A,银行月利率为i,总期数为m(个月),月还
款额设为X
?
则各个月所欠银行贷款为:
?
第一个月A(1+i)-X]
? 第二个月[A(1+i)-X](1+i)-X = A(1+i)^2-X[1+( ? 第三个月{[A(1+i)-X](1+i)-X}(1+i)-X = A(1+i)^
,a1=A,a2=A-A/n,a3=A-2*A/n...以次类推 dn 第n个月的实际天数,如平
年2月就为28,3月就为31,4月就为30,以次类推
? 例题:
? 每月本金:10000/60=166.67 月利4%/
? 首月:166.67+10000*4%/12= 166.67+33.33=200
? 2月:166.67+(10000-166.67)*4%/12=166.67+32.78=199.45
1626年荷兰东印度公司花24美元买下曼哈顿岛,2000年
2.1资金的时间价值
2.1.3 利息的计算
?案例:房贷
? 等额本息还款:这种还款方式就是按按揭贷款的本金总 额与利息总额相加,然后平均分摊到还款期限的每个月 中。每月还款额中的本金比重逐月递增、利息比重逐月 递减。
? 等额本金还款:借款人可随还贷年份增加逐渐减轻负担 。这种还款方式将本金分摊到每个月内,同时付清上一 还款日至本次还款日之间的利息。
1000
2
5000
3000
3
3000
5000
4
1000
7000
原因:以货币表示的资源可以成为资本,存在投资的机会, 并可产生回报;现在消费的节约换得日后更多的消费。
提示:由于货币时间价值的存在导致,不同时间上发生的 现金流无法直接比较
2.1资金的时间价值
2.1.1 资金的时间价值概念及其意义
? 资金的时间价值:一定数量的货币资金在一定时间内通 过一系列的经济活动具有的增值能力
举例:固定资产报废的残值收入、营业输入、项目结束 时的流动资金回收;项目建设时的投入资金(建设投资 和流动资金投资)、营业税金及附加和经营成本。 注意 1、净现金流量不是利润 2、是未来发生的,而非过去发生的即沉没成本不考虑 3、相关现金流量不能忽视机会成本
2.2 资金的等值原理
2.2.1现金流量图、表
2.1资金的时间价值
2.1.3 利息的计算
2.1资金的时间价值
2.1.3 利息的计算
? 等额本金
?
每月应还本金:A/n
?
每月应还利息:an*i*(dn/ 30) dn/30近似为1
? 每月应还本金:a/n
?
每月应还利息:an*i
?
注:A贷款本金, i.67+(10000-166.67*2)*6.14%/12=2794.39 ……
?
N月:166.67+[10000-166.67*(*N-1)]*4%/12
2.1资金的时间价值
2.1.3 利息的计算
2.2 资金的等值原理
2.2.1现金流量图
现金流量:现金+非现金的变现价值(与书上差别) 包括:现金流入量、现金流出量、净现金流量
?
…
?
由此可得第n个月后所欠银行贷款为:
? A(1+i)^n-X[1+(1+i)+(1+-1i))]^=2A+…(1++i()1^n+-iX)^[((1n
?
由于还款总期数为m,也即第m月刚好还完银行所有贷款,因此有:
? A(1+i)^m-X[(1+i)^m-1]/i = 0
?
由此求得:
? X = A*i*(1+i)^m/[(1+i)^m-1]
? 例题: 1年后 100元如何贴现计算成现值?贴现 率10%
2.2 资金的等值原理
2.2.3 资金的等值
?例题:借款 8000元,四年还清,年利率 10%, 四种情况: P16
? 1、四年后一次向还清
?2、每年年末还本金 2000,在加上所欠利息
? 3、每年年末只付利息,第四年末一次性付本金 和本年利息
?4、将每年本金和利息均分到 4年偿还
?
画出资金流量图
? 总结:货币的等值是考虑货币时间价值的等值
2.1 资金的时间价值
2.1 概念及其意义 2.2 衡量资金时间价值的尺度 2.3 利息的计算
2.1资金的时间价值
2.1.1 资金的时间价值概念及其意义
? 资金的时间价值:一定数量的货币资金在一定时间内通 过一系列的经济活动具有的增值能力
。案例 年末
A方案
B 方案
0
-10000
-10000
1
7000