东南大学误差理论与数据处理练习卷1
《误差理论与数据处理》答案

《误差理论与数据处理》第一章绪论1-1.研究误差的意义是什么简述误差理论的主要内容。
答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于:相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm )1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理》习题1及解答

第一章 习题及参考答案1-1. 测得某三角块的三个角度之和为180°00’02”,试求测量的绝对误差和相对误差。
【解】绝对误差=测得值-真值=180°00’02”-180°=2”相对误差=绝对误差/真值=2”/(180×60×60”)=3.086×10-4 %1-2. 在万能测长仪上,测量某一被测件的长度为50mm ,已知其最大绝对误差为1μm ,试问该被测件的真实长度为多少?【解】 绝对误差=测得值-真值,即: ∆L =L -L 0 已知:L =50,∆L =1μm =0.001mm ,测件的真实长度L0=L -∆L =50-0.001=49.999(mm )1-3. 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
故二等标准活塞压力计测量值的误差=测得值-实际值=100.2-100.5=-0.3( Pa )。
1-4. 在测量某一长度时,读数值为2.31m ,其最大绝对误差为20μm ,试求其最大相对误差。
【解】因 ∆L =L -L 0 求得真值:L 0=L -∆L =2310-0.020=2309.98(mm )。
故:最大相对误差=0.020/2309.98=8.66×10-4 %=0.000866%1-5. 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。
今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。
试求g 及其最大相对误差。
如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少?【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。
《误差理论与数据处理》模拟考试题型

《误差理论与数据处理》试题一、填空题1、测量误差等于 测得值 与真值之差。
2、误差的来源包括 测量装置误差 、人员误差 、 环境误差 、方法误差。
3、按误差的性质与特点,可将误差分为 系统误差、 随机误差 、 粗大误差 三类。
4、保留三位有效数字时3.1415应为 3.14 ,0.3145应为 0.314 。
5、扩展不确定度U 由合成标准不确定度Uc 乘以 包含因子 k 得到。
6、量块的公称尺寸为10mm ,实际尺寸为10.001mm ,若按公称尺寸使用,始终会存在-0.001mm 的系统误差。
采用修正方法消除,则修正值为 +0.001 mm 。
当用此量块作为标准件测得圆柱体直径为10.002mm ,则此圆柱体的最可信赖值为 10.003 mm 。
7、设校准证书给出名义值10Ω的标准电阻器的电阻Ω±Ωμ129000742.10,测量结果服从正态分布,置信水平为99%,则其标准不确定度u 为 0.00005Ω 。
这属于 B 类评定。
二、选择题1、 2.5级电压表是指其( c )为2.5%。
A .绝对误差B .相对误差C .引用误差D .误差绝对值 2、 用算术平均值作为被测量的最佳估计值是为了减少( B )的影响。
A .系统误差 B .随机误差 C .粗大误差3、 单位权化的实质是:使任何一个量值乘以( B ),得到新的量值的权数为1。
A .PB .21/σ C D .1/σ4、 对于随机误差和未定系统误差,微小误差舍去准则是被舍去的误差必须小于或等于测量结果总标准差的( c )。
A .1/3~1/4B .1/3~1/8C .1/3~1/10D .1/4~1/10 5、 判别粗大误差的3σ准则称为( c )。
A .罗曼诺夫斯基准则B .荻克松准则C .莱以特准则6、不确定度用合成标准不确定度c u 表示时,测量结果为Y=100.02147(35)g ,则合成标准不确定度c u 为( B )。
(完整word版)误差理论与数据处理试题及答案(word文档良心出品)

12014年3月理化检测中心培训考试试题(误差理论与数据处理)一、判断下列各题,正确的在题后括号内打 “√”,错的打“╳”。
(每小题2分,共10分)1.研究误差的意义之一就是为了正确地组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济的条件下,得到理想结果。
( √ ) 2.相对误差严格地可以表示为:相对误差=(测得值-真值)/平均值。
( ╳ )3.标准量具不存在误差。
( ╳ )4.精密度反映了测量误差的大小。
( ╳ )5.粗大误差是随机误差和系统误差之和。
( ╳ )6.系统误差就是在测量的过程中始终不变的误差。
( ╳ )7.计算标准差时,贝塞尔公式和最大误差法的计算公式完全等价。
( ╳ )8.极限误差就是指在测量中,所有的测量列中的任一误差值都不会超过此极限误差。
( ╳ )9.测量不确定度,表达了测量结果的分散性。
( √ )10.随机误差可以修正,然后消除。
( ╳ )二、填空题(每空1分,共40分)1.测量相对误差越小,则测量的精度就越___高__。
2.测量精确度越高,则测量误差越 小 。
3.在测量中σ越大,则测量精度越 低__。
4.在某一测量系统中存在着不变系统误差,为了消除此系统误差的修正值为0.003mm ,则此不变系统误差为-0.003mm _。
5.在某一测量系统中存在着测量误差,且没有办法修正,则此误差可能是__未定系统__误差或随机误差。
6.245.67+4.591≈__250.26__。
7.25.626×1.06≈ 27.16 。
8.测量直径为50mm 的a 和直径为30mm 的b ,a 的相对测量误差为0.021,b 的相对测量误差为0.022,则_ a 的_测量精度较高。
9.有a 、b 两次测量,a 测量的绝对误差是0.2mm ,相对误差为0.003,b 测量的绝对误差是0.3mm ,相对误差为0.002,这两个测量中精度较高的是b 测量。
10.精确度与精密度的关系是:精确度越高,则精密度__高___。
误差理论与数据处理--课后答案

《误差理论与数据处理》练习题参-考-答-案第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10 检定2.5级(即引用误差为2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格? 解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2% 因为 2%<2.5% 所以,该电表合格。
1-12用两种方法分别测量L 1=50mm ,L 2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=I L 2:80mm 0.0075%100%8080006.802=⨯-=I21I I > 所以L 2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o射手的相对误差为:多级火箭的射击精度高。
第二章 误差的基本性质与处理2-6 测量某电路电流共5次,测得数据(单位为mA)为168.41,168.54,168.59,168.40, 168.50。
误差理论与数据处理--课后答案

《误差理论与数据处理》练习题参-考-答-案第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10 检定2.5级(即引用误差为2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格? 解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2% 因为 2%<2.5% 所以,该电表合格。
1-12用两种方法分别测量L 1=50mm ,L 2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=I L 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高?21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。
第二章 误差的基本性质与处理2-6 测量某电路电流共5次,测得数据(单位为mA)为168.41,168.54,168.59,168.40, 168.50。
东南大学2015年(仪科)误差理论与数据处理填空题汇总

填空题(一)1.______(3σ或莱以特)准则是最常用也是最简单的判别粗大误差的准则。
2.随机误差的合成可按标准差和______(极限误差)两种方式进行。
3.在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性称为______(重复)性。
4. 在改变了的测量条件下,同一被测量的测量结果之间的一致性称为______(重现)性。
5. 测量准确度是指测量结果与被测量______(真值)之间的一致程度。
6. 根据测量条件是否发生变化分类,可分为等精度测量和______(不等精度)测量。
7. 根据被测量对象在测量过程中所处的状态分分类,可分为静态测量和_____(动态)测量。
//8. 根据对测量结果的要求分类,可分为工程测量和_____(精密)测量。
9. 真值可分为理论真值和____(约定)真值。
//10. 反正弦分布的特点是该随机误差与某一角度成_____(正弦)关系。
11. 在相同条件下,对同一物理量进行多次测量时,误差的大小和正负总保持不变,或按一定的规律变化,或是有规律地重复。
这种误差称为______(系统误差)。
12. 在相同条件下,对某一物理量进行多次测量时,每次测量的结果有差异,其差异的大小和符号以不可预定的方式变化着。
这种误差称为______(随机误差)。
?13. 系统误差主要来自仪器误差、________(方法误差)、人员误差三方面。
?14. 仪器误差主要包括_________(示值误差)、零值误差、仪器机构和附件误差。
?15. 方法误差是由于实验理论、实验方法或_________(实验条件)不合要求而引起的误差。
16. 精密度高是指在多次测量中,数据的离散性小,_________(随机)误差小。
17. 准确度高是指多次测量中,数据的平均值偏离真值的程度小,_________(系统)误差小。
18. 精确度高是指在多次测量中,数据比较集中,且逼近真值,即测量结果中的_________(系统)误差和_________(随机)误差都比较小。
《误差理论与数据处理》试卷一参考答案

《误差理论与数据处理》试卷一参考答案
一. 某待测量约为 80 μ m,要求测量误差不超过 3%,现有 1.0 级 0-300 μ m 和 2.0 级 0-100 μ m 的两种测微仪,问选择哪一种测微仪符合测量要求? (本题 10 分) 解: 测量允许误差: 80 × 3% = 2.4μm 1.0 级测微仪最大示值误差: 300 ×1% = 3μm 2.0 级测微仪最大示值误差:100 × 2% = 2μm 答: 2.0 级 0-100 μ m 的测微仪符合要求。
∑ σ =
vi2 = 3.4 ×10−2
4−2
σx =
d11σ =
19 × 0.034 = 0.07 417
σy =
d 22 σ =
22 × 0.034 = 0.08 417
八.简答题(3 小题共 15 分)(略)
AT L = ⎜⎜⎝⎛ 2406..28⎟⎟⎠⎞
四. 已知三个量块的尺寸及标准差分别为:
l1 ± σ 1 = (10.000 ± 0.0004) mm; l2 ± σ 2 = (1.010 ± 0.0003) mm; l3 ± σ 3 = (1.001 ± 0.0001) mm 求由这三个量块研合后的量块组的尺寸及其标准差( ρij = 0 )。(本题 10 分)
σ
2 3
=
1: 1 : 64 100
1 25
=
25 :16 : 64
∑ σ x = σ i
pi = σ 2
p2
= 1×
16
= 0.2′
pi 4 p1 + p2 + p3 2 25 + 16 + 64
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
误差理论与数据处理练习卷(一)
一.检定一只5mA、3.0级电流表的误差。
按规定,要求所使用的标准仪器产生的误差不大于受检仪器允许误差的1/3。
现有下列三只标准电流表,问选用哪一支最为合适,为什么?(10分)15mA 0.5级(2)10mA 1.0级(3)15mA 0.2级
二.某一量u由x和y之和求得,x的值是由16次测量的平均值得出,其单次测量标准差为0.2;
y的值是由25次测量的平均值得出,其单次测量的标准差为0.3,,求u的标准差(单位略)。
(10分)
三.测某一温度值15次,测得值如下:(单位:)
20.53,20.52,20.50,20.52,20.53,20.53,20.50,20.49,20.49,20.51,20.53,20.52,20.49,
20.40,20.50
已知温度计的系统误差为-0.05,除此之外不会再含有其他的系统误差,试判断该测量列是否含有粗大误差,并求温度的测量结果。
(15分)
四.某实验测得x与y的一组观测值如下:(单位略)
(附:,,,,)
五.测量某电路电阻R及两端电压U,计算出电路之电流I。
若测得(),(),并已知R和U测量的示值误差不超过(服从均匀分布),求电流I的标准不确定度。
(10分)
六.三人分别测同一锥角,测得值如下:
,;,;,。
已知,求该锥角的最可信赖值及其精度(单位略)。
(15分)
七.由下列误差方程,求x、y的最佳估计值及其精度(单位略)。
(15分)
;;;;
八.简答题(5×3=15分)
1.在实际测量中如何减小三大类误差对测量结果的影响?
2.系统误差合成与随机误差合成的方法有何区别?
3.对一元线性回归方程进行显著性检验时,如果回归方程不显著,如何分析判断引起回归方程不
显著的主要因素是什么?
4.简述动态测试数据的分类,分析各类数据的特点与性质。
5.平稳随机过程的必要条件与各态经历随机过程的充分条件是什么?。