误差理论与数据处理课后答案

合集下载

费业泰误差理论与数据处理课后答案全

费业泰误差理论与数据处理课后答案全

《误差理论与数据处理》练习题参考答案第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。

相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。

今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。

试求g 及其最大相对误差。

如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。

由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T TT h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆-g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。

《误差理论与数据处理(第6版)》费业泰-课后答案全

《误差理论与数据处理(第6版)》费业泰-课后答案全

《误差理论与数据处理》练习题第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。

相对误差=0.3100%0.3%100.5-⨯≈-1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。

今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。

试求g 及其最大相对误差。

如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。

由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T T T h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆- g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。

误差理论与数据处理版课后习题答案完整版

误差理论与数据处理版课后习题答案完整版

《误差理论与数据处理》(第六版)完整版第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。

%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。

测得值各为50.004mm ,80.006mm 。

试评定两种方法测量精度的高低。

相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。

21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:射手的相对误差为:多级火箭的射击精度高。

1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

《误差理论与数据处理》部分课后作业参考答案

《误差理论与数据处理》部分课后作业参考答案

《误差理论与数据处理》部分课后作业参考答案1- 18根据数据运算规则,分别计算卞式结果: (1) 3151.0+65.8+7.326+0.4162+152.28=? (2) 28.13X0.037X1.473=? 【解】(1)原式 ^3151.0+65.8+7.33+0.42+152.28=3376.83 $3376.8(2)原式 ^28.1X0.037X1.47=1.528359 ^1.52- 12某时某地由气压表得到的读数(单位为PG 为102523.85, 102391.30, 102257.97, 102124.65, 101991.33, 101858.01, 101726.69, 101591.36,其权各为 1, 3, 5, 7, 8, 6, 4, 2,试求 加权算术平均值及其标准差。

1 x 2523.85 + 3 x 2391.30 + 5 x 2257.97 + 7 x 2124.65 + 8 x 1991.33 +…1+3+5+7+8+6+4+2 =102028.3425PaCT-=(2) 标准差:(1)加权算术平均值:_ 工必(玄一兀)------------------1=1=100000 +(1)线性系统误差:根据关系图利用残余误差观察法町知,不存在线性系统误差。

根据不同公式计算标准差比较法可得:按别捷尔斯公式:cr. =1.253—= 0.2642/心-1)故不存在线性系统误差。

(2)周期性系统误差:=|(-0.26) X 0.04 + 0.04 X 0.24 + 0.24 X (-0.16) + (-0.16) X 0.54 + 0.54 X (-0.36) +…|=0.1112 < Vn — la 2 = 0.624故不存在周期性系统误差。

2- 18对一线圈电感测量10次,前4次是和一个标准线圈比较得到的,后6次是和另一个标准线 圈比较得到的,测得结果如卞(单位为mH ): 50. 82, 50. 83, 50. 87, 50. 89;50. 78, 50. 78, 50. 75, 50. 85, 50. 82, 50.81。

合肥工业大学版误差理论与数据处理课后作业答案(精)

合肥工业大学版误差理论与数据处理课后作业答案(精)

第一章绪论1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6 检定2.5级(即引用误差为2.5%)的全量程为l00V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电表是否合格?解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2%因为 2%<2.5%所以,该电表合格。

1-9 多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。

第二章误差的基本性质与处理2-4 测量某电路电流共5次,测得数据(单位为mA为168.41,168.54,168.59,168.40,168.50。

试求算术平均值及其标准差、或然误差和平均误差。

解:2—5 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

解:求算术平均值求单次测量的标准差求算术平均值的标准差确定测量的极限误差因n=5 较小,算术平均值的极限误差应按t分布处理。

现自由度为:ν=n-1=4;α=1-0.99=0.01,查 t 分布表有:ta=4.60极限误差为写出最后测量结果2-8 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm,若要求测量的允许极限误差为±0.0015mm,而置信概率P为0.95时,应测量多少次?解:根据极限误差的意义,有根据题目给定得已知条件,有查教材附录表3有若n=5,v=4,α=0.05,有t=2.78,若n=4,v=3,α=0.05,有t=3.18,即要达题意要求,必须至少测量5次。

2-19 对某量进行两组测量,测得数据如下:xi0.620.861.131.131.161.181.201.211.221.301.341.391.411.57 yi0.991.121.211.251.311.311.381.411.481.591.601.601.841.95试用秩和检验法判断两组测量值之间是否有系统误差。

《误差理论与数据处理(第6版)》费业泰-课后答案全

《误差理论与数据处理(第6版)》费业泰-课后答案全

《误差理论与数据处理》练习题第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。

相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。

今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。

试求g 及其最大相对误差。

如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。

由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T T T h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆- g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。

误差理论与数据处理答案完整版

误差理论与数据处理答案完整版

误差理论与数据处理答《误差理论与数据处理》第一章绪论1-1 •硏究误差的意义是什么?简述误差理论的主要内容。

答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理讣算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2•试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差.粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。

1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是"大了” 还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。

+多少表明大了多少, -多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5测得某三角块的三个角度之和为180。

00‘ 02”,试求测量的绝对误差和相对误差解:绝对误差等于18OWO2"-18(r = T相对误差等于:虑陵;QO豌側籍其蝕90绝篦误差为]解:绝对误差=测得值一真值,即:△L=L-L°已知:L = 50, △L=lum=, 测件的真实长度L o=L-AL = 5O-= (mm)1-7.用二等标准活塞压力计测量某压力得,该压力用更准确的办法测得为,问二等标准活塞压力讣测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

误差理论与数据处理第六版课后习题答案大全

误差理论与数据处理第六版课后习题答案大全

第二章 误差的基本性质和处理
2-6 测量某电路电流共5次,测得数据(单位为mA)为,,,,。

试求算术平均值及其标准差、或然误差和平均误差。

解:
)(49.1685
51mA I I i i
==∑=
08.01
5)(51
=--=∑=i I Ii σ
05.008.03
215)(32
51
=⨯=--≈∑=i I Ii ρ 06.008.05
415)(545
1=⨯=--≈∑=i I Ii θ 2—7 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm)为20.0015,,,,
解: 求算术平均值 求单次测量的标准差 求算术平均值的标准差
确定测量的极限误差
因n =5 较小,算术平均值的极限误差应按t 分布处理。

现自由度为:ν=n -1=4; α=1-=,

t 分布表有:ta =
极限误差为
写出最后测量结果
2-10 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm ,若要求测量的允许极限
误差为±0.0015mm ,而置信概率P 为时,应测量多少次? 解:根据极限误差的意义,有
0015.0≤±=±n t
t x σσ
根据题目给定得已知条件,有 5.1001
.00015.0=≤n
t
查教材附录表3有
若n =5,v =4,α=,有t =, 24.1236
.278.2578.2===n
t
若n =4,v =3,α=,有t =, 59.12
18.3418
.3===n t
即要达题意要求,必须至少测量5次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若: 1 2 3 则有: V
2 2 (a2 a3 ) 2 12 (a1a3 ) 2 2 (a1a2 ) 2 3
3—9 按公式 V=πr h 求圆柱体体积,若已知 r 约为 2cm,h 约为 20cm,要使体积的相对 误差等于 1%,试问 r 和 h 测量时误差应为多少? 解: 若不考虑测量误差,圆柱体积为
2
V r 2 h 3.14 2 2 20 251.2cm 3
根据题意,体积测量的相对误差为.2 1% 2.51 现按等作用原则分配误差,可以求出 测定 r 的误差应为:
V
1%
r
测定 h 的误差应为:
试用秩和检验法判断两组测量值之间是否有系统误差。 解: 按照秩和检验法要求,将两组数据混合排列成下表:
T xi yi T xi yi T xi yi 1.41 1.48
1
0.62
2
0.86
3
0.99
4
1.12
5
1.13
6
1.13
7
1.16
8
1.18
9
1.20
10
1.21
11
1.21
12
1.22
13
1.25
lim x t x 4.60 1.14 104 5.24 104 mm
写出最后测量结果
L x lim x 20.0015 5.24 104 mm
2-8 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm,若要求测量的允许极限 误差为±0.0015mm,而置信概率 P 为 0.95 时,应测量多少次? 解:根据极限误差的意义,有

3.18 4

3.18 1.59 2
即要达题意要求,必须至少测量 5 次。 2-19 对某量进行两组测量,测得数据如下:
xi yi 0.62 0.99 0.86 1.12 1.13 1.21 1.13 1.25 1.16 1.31 1.18 1.31 1.20 1.38 1.21 1.41 1.22 1.48 1.30 1.59 1.34 1.60 1.39 1.60 1.41 1.84 1.57 1.95
t
T a

0.1
现取概率 2 (t ) 0.95 , 即 (t ) 0.475 , 查教材附表 1 有 t 1.96 。 由于 t t , 因此, 可以认为两组数据间没有系统误差。
第三章 误差的合成与分配
3—3 长方体的边长分别为α1,α2, α3 测量时:①标准差均为σ;②标准差各为σ1、σ2、 σ3 。试求体积的标准差。
4 r 3 3
其标准不确定度应为:
V 2 u r r
2
4 r
2 2
2 r
16 3.14159 2 3.132 4 0.005 2 0.616
确定包含因子。查 t 分布表 t0.01(9)=3.25,及 K=3.25 最后确定的圆球的体积的测量不确定度为 U=Ku=3.25×0.616=2.002 4—6 某数字电压表的说明书指出,该表在校准后的两年内,其 2V 量程的测量误差不超 -6 -6 过±(14×10 读数+1×10 ×量程)V,相对标准差为 20%,若按均匀分布,求 1V 测量时 电压表的标准不确定度; 设在该表校准一年后, 对标称值为 1V 的电压进行 16 次重复测量, 得观测值的平均值为 0.92857V,并由此算得单次测量的标准差为 0.000036V,若以平均值 作为测量的估计值,试分析影响测量结果不确定度的主要来源,分别求出不确定度分量, 说明评定方法的类别,求测量结果的合成标准不确定度及其自由度。
D 2 其标准不确定度应为: u r r
2
2 2 r2
4 3.14159 2 0.005 2
=0.0314cm 确定包含因子。查 t 分布表 t0.01(9)=3.25,及 K=3.25 故圆球的最大截面的圆周的测量不确定度为: U=Ku=3.25×0.0314=0.102 ②求圆球的体积的测量不确定度 圆球体积为: V
3
解: 长方体的体积计算公式为: V a1 a2 a3 体积的标准差应为: V
(
V 2 2 V 2 2 V 2 2 ) 1 ( ) 2 ( ) 3 a1 a 2 a3
现可求出:
V V V a 2 a3 ; a1 a3 ; a1 a 2 a1 a 2 a3
《误差理论与数据处理》练习题
参考答案
第一章 绪论
1-1 测得某三角块的三个角度之和为 180 00’02”,试求测量的绝对误差和相对误差 解: 绝对误差等于:180o 0002 180o 2 相对误差等于:
o
2 2 2 = 0.00000308641 0.000031% o 180 180 60 60 648000
x
求单次测量的标准差
l
i 1
i
n
n i 1
20.0015mm
2 i

求算术平均值的标准差
v

n
n 1

26 10 8 2.55 10 4 mm 4
x
2.55 10 4 = 1.14 10 4 mm 5
确定测量的极限误差 因 n=5 较小,算术平均值的极限误差应按 t 分布处理。 现自由度为:ν=n-1=4; α=1-0.99=0.01, 查 t 分布表有:ta=4.60 极限误差为
14
1.30
15
1.31
16
1.31
17
1.34
18
1.38
19
1.39
20
1.41
21
22
23
1.57
24
1.59
25
1.60
26
1.60
27
1.84
28
1.95
现 nx=14,ny=14,取 xi 的数据计算 T,得 T=154。由
a(
n1 (n1 n2 1) n n (n n2 1) ) 203 ; ( 1 2 1 ) 474 求出: 2 12

1 2.51 1 0.007cm 2 V / r 1.41 2hr
h

1 2.51 1 0.142cm 2 2 V / h 1.41 r
4
第四章 测量不确定度
4—1 某圆球的半径为 r,若重复 10 次测量得 r±σr =(3.132±0.005)cm,试求该圆球 最大截面的圆周和面积及圆球体积的测量不确定度,置信概率 P=99%。 解:①求圆球的最大截面的圆周的测量不确定度 已知圆球的最大截面的圆周为: D 2 r
t x t
根据题目给定得已知条件,有

n
0.0015
t n

0.0015 1.5 0.001
2
查教材附录表 3 有 若 n=5,v=4,α=0.05,有 t=2.78,
t n

2.78 5

2.78 1.24 2.236
若 n=4,v=3,α=0.05,有 t=3.18,
t n
若: 1 2 3 则有: V
(
V 2 2 V 2 2 V 2 2 V 2 V 2 V 2 ) 1 ( ) 2 ( ) 3 ( ) ( ) ( ) a1 a 2 a3 a1 a 2 a3
(a2 a3 ) 2 (a1a3 ) 2 (a1a2 ) 2
1-6 检定 2.5 级(即引用误差为 2.5%)的全量程为 l00V 的电压表,发现 50V 刻度点的 示值误差 2V 为最大误差,问该电表是否合格? 解: 依题意,该电压表的示值误差为 2V 由此求出该电表的引用相对误差为 2/100=2% 因为 2%<2.5% 所以,该电表合格。 1-9 多级弹导火箭的射程为 10000km 时,其射击偏离预定点不超过 0.lkm,优秀射手能在 距离 50m 远处准确地射中直径为 2cm 的靶心,试评述哪一个射击精度高? 解: 多级火箭的相对误差为:
0.1 0.00001 0.001% 10000
射手的相对误差为:
1cm 0.01m 0.0002 0.002% 50m 50m
多级火箭的射击精度高。
第二章 误差的基本性质与处理
2-4 测量某电路电流共 5 次, 测得数据(单位为 mA)为 168.41, 168.54, 168.59, 168.40, 168.50。试求算术平均值及其标准差、或然误差和平均误差。 解:
5
I
I
i 1
5
i
5
5
168.49(mA)

( Ii I )
i 1
5 1
1
0.08

2 3
( Ii I )
i 1
5
5 1

2 0.08 0.05 3
4 5
( Ii I )
i 1
5
5 1

4 0.08 0.06 5
2—5 在立式测长仪上测量某校对量具, 重复测量 5 次, 测得数据(单位为 mm)为 20. 0015, 20.0016,20.0018,20.0015,20.0011。若测量值服从正态分布,试以 99%的置信概率确 定测量结果。 解: n 求算术平均值
相关文档
最新文档