渗流力学
渗流力学知识点总结

渗流力学知识点总结一、渗流基本理论1.渗流的基本概念渗流是指流体在多孔介质中的流动现象。
多孔介质是由孔隙和固体颗粒组成的介质,流体可以通过孔隙和固体颗粒之间的空隙进行流动。
渗流现象在自然界和工程领域都有着广泛的应用,如地下水的运移、石油的开采、地下储层的注水等。
2.渗透性与渗透率渗透性是指单位压力下单位面积介质对流体的渗透能力,通常用渗透率来描述。
渗透率是介质内渗流速度与流体粘滞力之比。
一般来说,渗透性越大,渗透率越高,介质对流体的渗透能力越强。
3.渗透压力与渗透率渗透压力是指多孔介质内部由于孔隙中流体分布不均匀而产生的压力。
渗透压力的大小与介质的孔隙结构、流体的性质、地下水位等因素有关,它是影响渗流速度和方向的重要因素。
4.达西定律达西定律是描述渗透性与渗流速度之间关系的定律,它指出在流体粘滞力不考虑的条件下,渗透速度与渗透压力成正比,与渗透率成反比。
达西定律为渗流理论研究提供了重要的基础。
二、多孔介质渗流规律1.多孔介质的渗流特性多孔介质是由孔隙和固体颗粒组成的介质,它具有复杂的微观结构和介质性质。
渗流在多孔介质中受到许多因素的影响,如介质的孔隙度、渗透率、渗透性等,这些因素决定了渗流规律的复杂性和多样性。
2.渗流方程渗流方程是描述多孔介质中流体运移规律的方程,它通常由渗流方程和质量守恒方程两部分组成。
渗流方程描述了流体在多孔介质中的流动规律,它是渗流力学研究的核心内容。
3.多孔介质的稳定性多孔介质中的渗流现象可能受到介质本身的稳定性限制。
孔隙结构、流体的性质以及渗透压力等因素都会影响介质的稳定性,这对渗流速度和方向产生重要影响。
4.非均质多孔介质中的渗流非均质多孔介质中的渗流现象通常较为复杂,其渗透率、孔隙度、渗透性等参数都可能在空间上呈现非均匀性。
对非均质多孔介质中渗流规律的研究对于实际工程应用具有重要意义。
三、非线性渗流1.非线性渗流模型非线性渗流模型是描述介质非线性渗流现象的数学模型。
渗流力学复习

渗流力学:是争论流体在多孔介质中的运动形态和运动规律的科学渗流:流体通过多孔介质的流淌。
稳定渗流:在渗流过程中,假设压力、渗流速度等运动要素不随时间变化。
任一时刻,通过任一过流断面的质量流量恒定且相等。
油气藏:是油气储集的场所和流淌的空间。
渗透性:多孔介质允许流体通过的力量。
确定渗透率:当岩石中的孔隙流体为一相时,岩石允许流体通过的力量。
有效渗透率:当岩石在有两种以上流体存在时,岩石其中一相的通过力量。
比外表积:单位体积岩石全部岩石颗粒的总外表积或孔隙内外表积。
抱负构造模型:岩石的孔隙控件看成是由一束等直径的微毛细管组成。
修正抱负构造模型:变截面弯曲毛细管模型。
力学分析:重力〔动力或阻力〕、惯性力〔阻力〕、粘滞力〔阻力〕、弹性力〔动力〕、毛管力〔动、阻力〕供给压力:油藏中存在液源供给区时,在供给边缘上的压力。
井底压力:油井正常工作时,在生产井井底所测得的压力。
折算压力:选择一基准面,基准面上处的压力为折算压力。
渗流速度:渗流量与渗流截面积之比。
真实速度:渗流量与渗流截面的孔隙面积之比。
线性渗流:当渗流速度较低时,属层流区域,则粘滞力占主导地位,而惯性阻力很小,可无视,这时压差与流量呈线性关系。
渗流的三种方式:单向流、平面径向流、球面对心流贾敏现象:当液滴或者气泡在直径变化的毛管中运动时,由于变形而产生的附加阻力。
确定孔隙度:岩石总孔隙体积与岩石视体积之比。
连续流体:把流体中的质点抽象为一个很小体积重包含着很多分子的集合体,致电中流体的性质与四周质点中的流体性质成连续函数关系。
连续多孔介质:把多孔介质中的质点抽象为一个很小体积单元,该体积单位的介质性质与四周体积单元中的介质性质成连续函数关系。
连续介质场:抱负的连续多孔介质及其所包含的连续流体的整体系统。
压力梯度曲线:在直角坐标系中,依据最初的探井所实测到的油藏埋藏深度H 和实测压力 P 所得的关系曲线地层压力系数:P=a+bH,直线的斜率称为压力系数单相渗流:地层中只有一种流体在流淌。
岩土工程中的渗流力学分析

岩土工程中的渗流力学分析岩土工程作为建筑工程和土木工程的重要组成部分,涉及到土壤和岩石的工程性质与行为研究。
在岩土工程中,渗流力学分析是一项重要的技术和工具,用于研究水流在土体或岩石中的渗透和传递规律。
本文将深入探讨岩土工程中的渗流力学分析。
一、渗流力学分析的基本原理渗流力学分析是基于渗流力学原理进行的。
渗流力学原理可以用达西定律来描述,即水分在渗流时受到的单位面积上水流速度与单位深度上压力梯度成正比。
达西定律可以用数学公式表示为:q = -K(dh/dl)其中,q表示单位面积上的水流速度,K表示渗透系数,dh/dl表示单位深度上的压力梯度。
这个方程可以用于描述土壤或岩石中的水流规律。
二、渗流力学分析的应用领域渗流力学分析广泛运用于岩土工程的各个领域。
在基础工程中,通过渗流力学分析可以评估地下水位对地下室和地下管道的影响;在边坡工程中,可以分析地下水对边坡稳定性的影响,提出相应的排水措施;在水利工程中,可以研究渠道和堤坝的渗流问题,优化设计方案。
渗流力学分析在岩土工程中的应用非常广泛,对于确保工程的安全和可靠性具有重要意义。
三、渗流力学分析的方法和工具在实际工程中,渗流力学分析需要使用一些特定的方法和工具。
常用的分析方法包括数值模拟法和解析解法。
数值模拟方法基于有限元法或有限差分法,通过将分析区域划分为许多小单元,建立数学模型,求解模型方程来获得渗流场的分布规律。
解析解法则是通过求解渗流相关的微分方程来得出解析公式,然后利用这些公式可以直接计算出渗流场的参数。
在实际运用中,根据具体的问题和数据,选择适合的方法和工具进行分析。
四、渗流力学分析的挑战和解决方案渗流力学分析在实际工程中面临一些挑战。
首先,现场土壤或岩石的渗透性质往往难以准确测定,这对渗流力学分析结果的准确性提出了要求。
其次,渗流过程是非线性的,需要考虑各种因素的相互作用,这增加了分析的复杂性。
最后,岩土工程中的渗流问题常常涉及到多尺度的问题,需要采用多尺度分析方法来获得准确的结果。
渗流的基本定律(达西定律)

根据实验需求,设计并建立渗流装置,包括渗流管、压力源、流量 计等。
设定实验条件
设定恒定的水头压力、流量等实验条件,确保实验数据的准确性和 可靠性。
实验结果分析
01
02
03
数据记录
详细记录实验过程中的水 头压力、流量等数据,并 确保数据的准确性和完整 性。
数据处理
对实验数据进行整理、分 析和处理,绘制水头压力 与流量之间的关系曲线。
达西定律的发现可以追溯到19世纪初,由法国工程师达西通 过实验观察到流体在砂质土壤中的流动规律,并提出了该定 律。
达西定律的概述
达西定律描述了流体在多孔介质中的流动速度与压力梯度 之间的关系。具体来说,当流体在多孔介质中流动时,流 速与作用在流体上的压力梯度成正比,同时与介质的渗透 系数有关。
达西定律的数学表达式为:v = -K * grad(p),其中v是流速, K是介质的渗透系数,grad(p)是压力梯度。该公式表明流速 与压力梯度成正比,与渗透系数成反比。
达西定律与实际渗流过程的联系
01
达西定律是描述均匀、定常、不可压缩流体在多孔介质中稳态 流动的基本定律。
02
它指出,在一定条件下,流体的流量与压力梯度成正比,与介
质孔隙的阻力成反比。
达西定律适用于小孔径、低流速、高孔隙度、均质的多孔介质。
03
达西定律的局限性
1
达西定律不适用于非均匀、非定常、非线性流动, 以及大孔径、高流速、低孔隙度、非均质的多孔 介质。
渗流的基本定律(达西定律)
目录
• 引言 • 达西定律的数学表达 • 达西定律的物理意义 • 达西定律的实验验证 • 达西定律的应用实例 • 达西定律的发展与展望
01 引言
渗流力学_缩印版

proo oKdp B⎰一、概念1、折算压力及其公式和其实质:油藏中任一点的实测压力均与其埋藏深度有关,为了确切地表示地下的能量分布情况,必须把地层内各点的压力折算到同一水平面上,经折算后的压力称为折算压力,通常选取原始油水界面为折算平面。
折算压力在实质上代表了该点流体所具有的总的机械能。
公式:p ZM =p M +ρgΔD M 2、非活塞式水驱油方式: 由于油水粘度差、毛细管现象、油水重率差以及地层本身非均质性等因素的影响,水渗入到油区后,不可能把全部的石油都置换出去,而会出现一个油水同时混合流动的两相渗流区,这种驱油方式称为非活塞式的水驱油。
在非活塞式水驱油时,从供给边界到生产井排之间可以分为三个区,即纯水区、油水混合区和纯油区。
混合区逐渐扩大到生产井排。
3、气井绝对无阻流量及其二项式表达式,物理意义:天然气井在井底压力为1个大气压时 气井流量。
(AOF q A B=-表示气井的(最大)气井稳定试井时,按二项式处理试井资料,其流动方程为p e 2-p a 2=Aq sc +Bq 2sc4、导压系数定义式、单位及其物理意义:导压系数η=K/φμC t ; m 2·Pa/Pa·s,物理意义:表示压力波在地层中的传导能力,或单位时间内压力传播的面积。
5.井干扰现象及其实质:在油层中有许多井同时,其中任一口井工作制度的改变,如新井投产、事故停产或更换油嘴等等,必然会引起其它井的产量或井底压力发生变化,这种现象叫做井干扰现象。
其实质为地层中能量重新平衡(或压力重新分布)。
二、简答题1.单相弱可压缩液体不稳定渗流基本微分方程为,----该类型方程称为热传导型方程。
2.油气储集层是油气储集场所和油气运移通道,特点:储容性,渗透性,比表面大,结构复杂。
3.流体渗流中受到的力主要有粘滞力、岩石及流体的弹性力和毛细管力。
4.渗流力学是研究流体在多孔介质中流动规律的一门学科。
5.油井不完善类型有打开程度不完善、打开性质不完善和双重不完善。
渗流力学1

渗流力学渗流力学,也称为多孔介质流动力学,是关注多孔介质中油气水等流体的运动与物质传输的一门交叉学科。
本文将从渗流力学的基本概念、渗透性与渗流规律、渗流模型及其数学描述、渗透率测定以及渗流在工程领域的应用等方面进行综述。
一、基本概念多孔介质即为孔隙率大于零的介质,多数包括岩石、土壤等。
我们通常所知的原油、水等都是沿着孔隙流动的,因此对于研究油气水等流体在多孔介质中的运动及物质传输,渗流力学便成为了必不可少的工具。
渗流力学研究的流体如下:1.单相流体:包括气体和液体。
2.不可压缩单相流体:流体密度不随流速变化的流体。
3.不可压缩多相流体:指含空气、水和油的混合流体。
4.可压缩流体:长跑中会考虑的空气。
快速均匀地离开多孔介质的流体称之为洁净流体。
二、渗透性与渗流规律多孔介质的渗透性是流体运动过程中一个重要的参数,通常用渗透率(permeability)来表示。
渗透率取决于多孔介质的孔隙度、孔隙分布及孔隙形态。
它反映的是一个多孔介质通过润湿的介质进行渗透时,所需要克服阻力的大小。
渗透流指液体、气体或气体-液体等多相流体沿渗透介质流动,而渗透介质包括孔洞和颗粒。
颗粒通常被认为是刚性球形粒子。
渗透性是多孔介质的透水能力。
它是空隙中液体流动的干扰抵消与力的关系,并通过Darcy’s Law来描述非细长孔径多孔介质的渗透流。
Darcy's Law的一般表述为:q = -K(∆p)/μ其中,q是流体的流量,K是渗透性,∆p是流体受力的压力差,μ是流体的黏度。
此外,根据流量公式Q = S × q,可以计算出平均流速v和渗透系数K’:v = q/SK' = Kμ其中,S是截面积。
三、渗流模型及其数学描述渗流过程通常分为传导和对流两种方式。
1.传导传导表示沿着渗透介质孔隙内的流动。
其过程可以用贾格尔-盖茨方程来理解。
dP/dx = -η(k/φ) dv/dx其中,η是粘度,k是渗透系数,φ是孔隙度,v是流量。
渗流力学达西定律公式

渗流力学中的达西定律公式是描述液体在多孔介质中流动的重要公式。
公式如下:
q=-K*A*(ΔP/L)
其中,q表示流速,K表示多孔介质的渗透率,A表示多孔介质的横截面积,ΔP表示压力差,L表示渗流路径的长度。
这个公式表明,流速与压力差成正比,与渗流路径的长度和多孔介质的渗透率成反比。
它基于一系列物理假设,包括液体是不可压缩的,多孔介质是各向同性的,流动是稳态的,以及忽略重力和惯性力的影响。
值得注意的是,达西定律公式只适用于层流状态,不适用于湍流状态。
在层流条件下,液体在多孔介质中流动时,流速与压力差成正比,并且流量与横截面积和压力差的乘积成正比。
在湍流条件下,流速和压力差之间的关系更为复杂,需要考虑更多的因素。
此外,渗透率K是描述多孔介质性质的重要参数。
它反映了多孔介质对液体流动的阻力,并与多孔介质的孔隙率、孔隙大小和分布等因素有关。
在多孔介质中,渗透率越大,表示阻力越小,流速越大。
在实际应用中,达西定律公式被广泛应用于石油、水文地质等领域。
通过测量多孔介质的渗透率、横截面积、压力差等参数,可以计算出流速和流量等参数,从而更好地了解液体在多孔介质中的流动规律。
这有助于优化资源开发、提高能源利用效率、保护生态环境等方面的工作。
渗流力学达西定律公式

渗流力学达西定律公式摘要:一、渗流力学的背景与意义1.渗流力学的定义2.渗流力学在实际生活中的应用二、达西定律的概念与公式1.达西定律的定义2.达西定律的数学表达式三、达西定律在渗流力学中的应用1.地下水资源的开发与利用2.土壤污染物的传输与扩散3.水利工程的设计与分析四、达西定律与其他渗流力学定律的关系1.达西定律与奈尔定律的关联2.达西定律与其他渗流力学定律的比较五、渗流力学的发展趋势与挑战1.新技术在渗流力学研究中的应用2.渗流力学在可持续发展中的作用3.渗流力学面临的挑战与未来研究方向正文:渗流力学是研究流体在多孔介质中运动规律的学科,具有重要的理论和实际意义。
在众多渗流力学定律中,达西定律是最基本且应用最广泛的定律之一。
达西定律是由法国科学家亨利·达西在19世纪提出的,它描述了流体在多孔介质中渗流的速度与压力梯度之间的关系。
达西定律的数学表达式为:Q = KiA,其中Q表示渗流量,K表示渗透系数,i表示压力梯度,A表示渗流面积。
达西定律在渗流力学领域具有广泛的应用。
首先,在地下水资源开发方面,通过研究达西定律,可以预测地下水的涌出量,为水资源的开采提供科学依据。
其次,在土壤污染物传输方面,达西定律为研究污染物在土壤中的扩散过程提供了理论依据。
此外,在水利工程设计中,达西定律也发挥着重要作用,如分析水库的渗流稳定性等。
达西定律与其他渗流力学定律,如奈尔定律等,存在密切的关联。
奈尔定律是描述流体在多孔介质中渗流速度与流体性质之间的关系,与达西定律一起构成了渗流力学的基本理论体系。
随着科学技术的进步,渗流力学在可持续发展、环境保护等领域的作用日益凸显。
未来,渗流力学将面临诸多挑战,如多相流体渗流、非达西渗流等问题。
同时,新技术如数值模拟、实验技术等在渗流力学研究中的应用将为解决这些问题提供新的思路和方法。
总之,渗流力学作为一门研究流体在多孔介质中运动的学科,具有重要的理论价值和实践意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渗流力学一、词解释:1、多孔介质:由毛细管微毛细管构成的介质叫多孔介质。
2、双重介质:由两种孔隙空间构成的多孔介质叫重介质。
3、油水分界面:油藏中油和水接触面叫油水分界面。
4、油水边界:油水分界面在平面上的投影。
5、供给边界:若油藏有露头,露头处有水源供应,则露头在平面上的投影叫做供给边界。
6、储容容性:油藏储存和容纳流体的能力。
7、渗流速度:流体通过单位渗流面积的体积流量。
8、真实渗流面积:流体所流过孔道的横载面的面积。
9、原始地层压力:油藏在投入开发以前测得的地层压力叫原始地压力。
10、流动压力:在正常生产状态下,在生产井井底所测得的压力叫流动压力。
11、压力梯度曲线:第一批控井测得的原始地层压力与对应的地层深度作出的曲线叫压力梯度曲线。
12、折算压力:经折算后的压力叫折算压力,代表流体盾点总能量。
13、重力水压驱动方式:以与外界连通的水头压力或人工注水压力作用作为主要驱油动力的驱油方式。
14、弹性驱动:以岩石及流体本身的弹性力作为主要驱汪动力的驱动方式。
15、溶解气驱动:以从石油中不断分离出来的溶解气的弹性能作为主要驱油动力的驱油方式。
16、线性渗流:流体流动规律符合达西定律的流动叫线性渗流。
17、非线性渗流:凡是偏离达西定律的流动叫非线性渗流。
18、稳定渗流:运动要素在渗流过程不发生变化的渗流。
19、渗流数学模型:用数学语文综合表达油气渗流过程中全部力学现象与物理化学现象的内在联系和一般运动规律的方程。
20、平面单向流:流体沿着一个方向流动,流线互相平行的渗流叫平面单向流。
21、平面径向流:流体沿着半径向中心一点洪或向外扩散的流动叫平面径向流,井底附近流动即为平面径向流。
22、压力梯度:地层中流体流经单位长度距离所消耗的能量。
23、质量渗流速度:地层中单位时间单位截面所流过的质量流量。
24、流场图:由一组等压线和一组流线按一定规则构成的图形。
25、等压线:流场图中压力相等点的连线。
26、完善井:指油层部位全部钻穿,且裸眼完成的,井底不受污染的井。
27、不完善井:井底结构与完善井不同或井底附近油层性质发生变化的井。
28、打开程度不完善:油层没全部钻开、但钻开部分是裸眼完成的井。
29、打开性质不完善:油层全部钻开,但采用下套管射孔的方式完井的井。
30、双重不完善:油层没全部钻开,而且钻开部分又是下套管身孔完成的井。
31、折算半径:把不完善井假想成具有某一半径的完善井,其产量与实际井产量相等,此假想完善井半径叫折算半径。
32、试井:试井是通过对油井生产动态的测试来研究油层各种物理参数及油井生产能力的一种测试方法。
33、采油指数:消耗单位压差所产出的油量,反映生产能力的大小。
34、指示曲线:在试井过程中特产量和生产压绘在直角坐标系中,可得一条曲线这条曲线叫指示曲线。
35、井干扰现象:油层中有许多同时工作时,其中任一口井发迹工作制度引起其它井生产量和压力变化现象。
36、压降迭加原则:多井同时工作时,地层内各点的压力降等于各井单独工作时的压降的代数和。
37、点汇:平面上存在一点,流体流向这一点,并在此消失,这点称为点汇。
38、汇源反映法:根据直线供缘附近的井流场图与等产量一源一汇流场图中汇的一半一致性,把直线供缘对生产井的作用用一口假想井代替,将问题化为一源一汇来解决,这种解决问题的方法叫汇源反映法。
39、平衡点:在两口生产井连线上,渗流速度为零那突叫平衡点。
40、等值渗流阻力法:根据水电相原理,用电路图描述渗流过程,然后按照有关电路来求产量或压力的解决问题的方法。
41、不稳定早期:压力传到边界之前思压力波传播第一阶段,称为不稳定早期。
42、拟稳定期:压降漏斗传到边界以后,经过一段时间地层名点压力下降速度相对稳定,在一点压力下降速度均相同,这个时期叫拟稳定期。
43、压力降落试井法:利用油井以固定产量生产时,井底压力随着时间不断降落的资料确定油层参数,这种试井方法叫压力降落试井法。
44、压力恢复试井法:利用关井后井底压力随时间不断恢复的实测资料,确定油层参数的方法叫压力恢复试井法。
45、井筒储存系数:井高速内单位压力变化引起的井筒流体体积的变化值。
46、表皮系数:表示一口井表皮效应的性质和严重程度的无因次附加压降叫表皮系数。
47、非活塞式水驱油:注水井开发油藏,水渗入到油区后,出现了一个油水同时混合流动的两相区,这种驱油方式称为非活塞式水驱油。
48、含水率:渗流时水量占液量的百分数。
49、绝对无阻流量:气井井底压力为一个绝对大气压时气井的产量。
50、弹性储能比:裂缝的弹性储能与整个系统弹性储能之比。
51、绝对孔隙度:岩石内总的孔隙度占岩石体积的百分数为绝对孔隙度。
52、目前地层压力:指油藏开发过程中,不同时期的地层压力,也叫地层压力。
53、井底压力:在正常生产状态下,在生产井的井底测得的压力称为井底压力,也称流压。
54、惯性力:由于惯性而表现出来的力叫惯性力,其大小取决于质量和运动加速度。
55、粘滞力:是流体流动时流动层之间产生的内摩擦力,其大小与流体的粘度有关。
56、渗流的数学模型:用数学的语言综合表达油气渗流过程中全部力学现象与物理化学现象的内在联系和一般运动规律的方程或方程组。
57、试井:试井是通过对油井生产动态的测试来研究油层各种物理参数及油井生产能力的一种测试方法。
58、本构方程:表示切应力和切速率关系的方程。
59、非牛顿液体:不符合牛顿内摩擦定律的液体叫非牛顿液体。
60、牛顿液体:符合牛顿内摩擦定律的液体叫非牛顿液体。
61、混气液体的渗流:溶解气驱方式下,油藏内气液两相分布不同于气驱油藏,而是在油层内每一部分都同时存在气液两相,一般称之为混气液体的渗流。
62、井筒储存系数:井高速内单位压力变化引起的井筒流体体积的变化值。
63、表皮系数:表示一口井表皮效应的性质和严重程度的无因次附加压降叫表皮系数。
64、探边测试:是指探测周围遇到的断层、尖灭、油水、有气等边界。
65、压力恢复试井法:利用关井后井底压力随时间不断恢复的实测资料,确定油层参数的方法叫压力恢复试井法。
二、填空:1、油气储集层按其内部孔隙空间结构特点可分为三种介质,即(单纯介质)、(双重介质)、(三得介质)。
2、单纯介质中可有三种子孔隙结构、即(粒间孔隙)、(纯裂缝)、(纯溶洞)。
3、若背斜构造中同时存在油、气、水,则它们按(重力分异原则分布,天然气在(项部)、油在(其下部)、水则在构造的(底部或翼部)。
4、构造中油和水的接触面叫(油水界面),在平面上的投影叫(油水边界);油和气的接触面叫(油气界面),在平面上的投影叫(油气边界)。
5、油气储集层的特点是(储容性),(渗透性),(比表面大),(孔隙结构复杂)。
6、平面单向流的渗流特点是(流线互相平行),(渗流速度相等)。
7、平面径向流的渗流特点是愈靠近井底渗流面积(愈小),渗流速度(愈大),单位长度消耗能量(愈大)。
8、流体在地下流动进要受到各种力共同作用流向井底,这些力是(流体的重力),(惯性力),(粘带力),(弹性力),(毛细管力)。
9、由于油藏孔隙结构复杂,比表面大,所以流体流动时(阻力)大,(渗流速度)小。
10、油藏中常见的驱动方式是(重力水压驱动),(弹性驱动),(溶解气驱动)。
11、达西定律说明渗流过程是一个消耗(能量),克服(阻力),获得(能量)的过程。
12、达西定律叫做线性定律是指(流量),与(压力差)成线性关系。
13、达西定律说明渗流过程是一个消耗(能量),克服(阻力)获得(流量)的过程。
14、流体渗流基本微分方程由(连续性方程),(运动方程)(状态方程)构成。
15、折算压力代表液体(总能量),不仅包含了油藏中液体的(压能),而且也包含了(位能)。
16、单相液体稳定渗流物理模型为:地层是(均质水平)(不可压缩),流体是(单相均质)(不可压缩的)牛顿流体。
17、完整的渗流数学模型包括两部分:(基本微分方程式)(定解条件)。
18、绘制流场图所要求两条流线间,(流量相等)两条线等压间(压差相等),流线与等压线(正交)。
19、平面单向流流场图中,流线是一组(射线),越近井底(愈密),等压线是一组(同心圆),间隔(不相等)。
20、平面径向流流场图中,流线是一组(射线),越近井底愈密),等压线是一组(同心圆),间隔(不相等)。
21、不完善井的井底结构类型很多,但归纳起来有三种形式,它们是(打开程度不完善)(打开性质不完善)(双重不完善)。
22、等产量一源一汇地层中的任一点势值计算公式为(φM=Q h/2π· ln·r1/r2+C)等势线方程为(r1/r2=C0)23、等产量一源一汇流场图中流线是(一组编心圆),x轴为(主流线),等势线是(一组偏心圆),y轴是(等势线)。
24、等产量两汇地层中任一点势值计算公式为(φM=Q h/2π· ln·r1/r2+C),等势线方程为(r1/r2=C0)25、油井干扰的结果体现为(压力重新分布),其是按着(压降迭加)原则进行的。
26、不稳定试井的目的是确定(油层压力),(渗透率),(导压系数),(折算半径)等参数。
27、由于(井筒储存)和(边界)影响使实测压力恢复曲线与理论曲线不一致。
28、导压系数表达式为(η=K/φμC t)它表示(单位时间压力传播的面积)。
29、注水开发油田水驱油第一阶段地层中存在着(纯水区),(油水两相区)和(纯油区)三个地区。
30、由于注水开发油田油藏中存在着(毛细管力)(油水粘度差)(重率差)因此形成油水两相区。
31、气体的体积随着温度和压力而变化,一般以温度为(20摄氏度)及压力为(760毫米水银柱)为标准条件。
32、描述高速非线性渗流规律有两种形式,一种是(指数式),其表达式为(q sc=c(p e2-p wf2)n)),另一种是(二项式)其表达式为(p e2-p wf2=Aq sc +Bq sc).33、绝对无阻流量是指气井井底压力为(1个绝对大气压)时的流量。
34、双重介质地层中存在着(两种孔隙空间),其中(裂缝)为流油通道,(孔隙)为储油空间。
35、实测双重介质地层中一口井压力恢复曲线在半对数坐标中有(两条)直线,而且(互相平行)。
36、油气储集层是(油气储集)的场所和(油气运移)的通道。
37、油藏的驱动方式可以分为重力水压驱动、(弹性驱动)、溶解气驱动、(气压驱动)、重力驱动。
38、打开性质不完善井其不完善性取决于(射孔数)、(射孔子弹的直径)和射入深度。
39、所谓合理的工作制度是指油井以尽可能大的(产量)生产,同时尽量要小(能量消耗)。
40、在注水开发油田上,根据油田接近于的(圆形)或(条带形)的不同,生产井往往呈圆形或排状分布。
41、多排井同时工作时,根据(水电相似)原理,同样可以画出电路图,然后按照有关的(电学)定律来求解,得到多排井同时工作时各排井产量或各排井的井底压力。