高等渗流力学(程林松)玻尔兹曼变换
渗流力学要点整理

第一章 渗流力学基本概念和定律1、多孔介质(porous medium ):含有大量任意分布的彼此连通的且形状各异、大小不一的孔隙的固体介质。
2、渗流(permeability ):流体通过多孔介质的流动,也叫渗滤。
3、油藏:具有统一压力系统的油气聚集体4、渗流力学:研究流体在多孔介质中的运动形态和规律的科学。
5、油气层是油气储集的场所和流动空间6、定压边界油藏:层体延伸到地表,有边水供给区,在边界上保持一个恒定的压头。
7、封闭边界油藏:边界为断层或尖灭 没有边水供给 渗流中的力学分析及驱动类型:力学分析:重力、惯性力、粘滞力(大小用牛顿内摩擦定律表示1mPa·s =lcP )、弹性力、毛管力。
驱动类型:依靠何种能量把原油驱入井底。
弹性驱动、水压驱动、溶解气驱、气压驱动(主要靠气顶气或注入气的膨胀能或压能驱油的驱动方式。
刚性气压驱动、弹性气压驱动)、重力驱动 不同驱动方式及开采特征总结:1、能量补充充足(边、底水,气顶、注水/气):刚性驱动:刚性气/水驱;开采特征:Pe 、 Ql 、 Qo 有稳产段。
2、能量补充不充足(无边底水气顶注水注气或有而不足): 弹性驱动:弹性驱动、溶解气驱、弹性气/水驱;开采特征:Pe 、 Ql 、 Qo 均不断下降。
3、 凡是气驱的Rp 都有上升的过程,其它驱动方式Rp 不变。
溶解气驱、刚/弹性气驱4、 Qo 或Rp 的突然变化反映水或气的突破。
供给压力Pe :油藏中存在液源供给区时,在供给边缘上的压力。
井底压力Pw :油井正常生产时,在生产井井底所测得的压力称为井底压力,也称为流动压力,简称流压。
折算压力Pr :油藏中某点折算到某一基准面时的压力,它表示油层中各点流体所具有的总能量。
达西定律:在一定范围内△P 与Q 成直线关系,当流量不断增大,直线关系就会被破坏。
真实流速与渗流速度的关系达西定律适用条件: 液流处于低速、层流,粘滞力占主导地位,惯性主力很小,可忽略。
高等渗流力学(2017)-第四章

高等渗流力学
黄世军
2017
第四章 孔隙介质中的多相多组分渗流理论
由于多相多分组系统是一个很复杂的物理化学系统,因此无论 在对系统本身的物理化学性质的研究还是对于流动规律的研究, 包括对物理化学过程的描述和流动规律的描述,都遇到极为困难 的问题。即使有可能建立起基本微分方程,其求解也是相当困难
第一节 多相多组分渗流数学模型 渗流数学模型解法思路
1、总物质守恒: L V Lw 1 (1个) (Nc-1个)
2、某一烃组分守恒:
Lxi Vyi 1,(i 2、 3...NC )
3、二氧化碳组分守恒: Lx1 Vy1 Lwn1,w 1 4、相平衡:
fi , L fi ,V i 1、 2...NC
7、选取未知量:
Y V , y1 , y2 ... yN
C
Fi fi ,V fi , L NC 8、构造牛顿迭代方程组,余量形式: FNC 1 1 yi i 1
第一节 多相多组分渗流数学模型 渗流数学模型解法思路
9、构造迭代式:
J Y F
(6)
由(6)和(7)可写出Nc+1个方程组成的方程组。 利用Newton-Raphson方法求解。
第二节 相态平衡闪蒸计算方法
一、一般相态平衡闪蒸计算方法
迭代求解过程:
Newton-Raphson方法求解要点是形成Jacobi矩阵元素:
高等渗流力学

浅谈非牛顿流体的渗流理论一.基本概念服从牛顿粘性定律的流体称为牛顿流体,所有气体和大多数液体都属于这一类。
水,酒精等大多数纯液体,轻质油,低分子化合物溶液以及低速流动的气体均是牛顿流体。
高分子聚合物的浓溶液和悬浮液一般是非牛顿流体。
从流体力学的角度,凡是服从牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。
所谓服从牛顿内摩擦定律是指在温度不变的情况下,随着流体梯度的变化, 值始终保持是常数。
度量液体粘滞性大小的物理量,简称为粘度。
物理意义是产生单位剪切速率所需要的剪切应力。
早在人类出现之前,非牛顿流体就已存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体,而且非牛顿流体在化工方面宜属常见。
牛顿粘性定律的表达式为:(1-1)其中为牛顿粘度 为在剪切平面平行于流动平面的剪切应力,垂直于剪切平面的剪切速率。
二.非牛顿流体的分类下面是牛顿流体与非牛顿流体的流变图。
图牛顿流体与非牛顿流体的流变图根据流体的流变方程式,将非牛顿流体分类为:1.与时间无关的流体在流变图上来看对的曲线或是通过原点的曲线,或是不通过原点的直线,如图中b,c,d图线所示。
对于b,c这样的曲线来讲,斜率是变化的。
因此,对与时间无关的粘性流体来讲,粘度一词便失去了意义。
但是这些特定的曲线在任一特定点上都有一定的斜率,故与时间无关的粘性流体来讲,指在特定的剪切速率下,有一个表观粘度值。
即表观粘度是剪切速率的函数,不依赖时间的非牛顿液的流变特性只依赖于剪切应力的大小而不依赖于剪切应力的持续时间。
这样的流体可分为:(1)假塑性流体这种流体的表观粘度随剪切速率的增大而减小,其中的曲线关系为一下降的曲线,该曲线可用指数方程式表示:(1-2)大多数与时间无关的粘性流体都属于此类型,其中包括聚合物溶液,油脂,淀粉悬浮液,油漆等。
(2)涨塑性流体这种流体与假塑性流体相反,这种流体的表观粘度随剪切速率的增加而增大,其关系曲线为一上升的曲线。
如曲线c所示。
高等渗流力学习题集答案

作业1—程林松写出下列问题的运动方程:(1)多相渗流(油、气、水)(2)多重介质渗流(孔隙-裂缝-溶洞介质)(3)各向异性介质(4)非线性渗流(低渗)(5)非牛顿渗流作业2—程林松如下图所示,水平、均质、等厚、长度为a2,宽度为b2的长方形地层(两条断层和两条供给边界),地层厚度为h ,渗透率为K ,流体粘度为μ,综合压缩系数为t C ,在地层中间有一口生产井,弹性不稳定渗流,油井半径为w R ,原始地层压力为e p (供给边界压力也为e p ),导压系数:tC K μη=。
要求: (1) 在0=t 时刻以定产量Q 生产时,建立描述该流动的数学模型;(2) 在0=t 时刻以定压Pw 生产时,建立描述该流动的数学模型;(3) 在0=t 时刻以定产量Q 生产时,简述两种求解任一时刻地层任一点压力的思路和方法。
作业3—程林松要求:(1)推导该流场的等势线和流线方程,并画出渗流场示意图;(2)以此为例说明复势叠加原理;(3)定量分析在x轴和y轴上等势线、流线、渗流速度的特点和变化规律;(4)说明这是一个什么流动过程?作业4—程林松推导底水油藏水平井产量计算公式,油井见水时间计算公式。
作业5—程林松利用保角变换方法求解三分支裂缝井渗流问题:(1)写出等势线和流线方程;(2)绘制相应的渗流场图,分析三分支裂缝井渗流场的特点;(3)推导相应的产量计算公式。
作业6—程林松对比说明常规黑油模型和多相多组分模型流体物性参数的计算方法的差别。
作业7—程林松与常规油藏相比,低渗、特低渗油藏渗流特征的差别,建立渗流数学模型时如何考虑?作业8—程林松写出你理解的N-R迭代求解方法及过程(举例说明)?作业9—程林松如图所示有一边水油藏,已知地层厚度h,孔隙度Φ,流体粘度µ,刚性稳定渗流,已知Pe,Pw,Rw,a,B。
要求:(1)简述用势的迭加原理求油井产量Q的方法和步骤?(2)用保角变换方法推导油井产量Q的计算公式?作业10—程林松如图所示,距直线供给边a处有一产量为Q的生产井,已知Pe,Pw,Q,h,K,µ,a,Rw,刚性稳定渗流,试利用复势函数理论,定量分析该流场的特点(等势线分布及特点、流线分布及特点、渗流速度)作业11—程林松写出黑油与多组份渗流数学模型,说明物性参数计算方法的差别?作业12—程林松写出完成一流体混合物完整PT相图的求解过程和方法?黄世军老师作业绪论1、水平、均质、等厚三角形油藏(如图所示,两侧具有封闭边界、一侧具有恒定定压边界,压力为Pi,渗透率K,流体粘度为μ,厚度为h,弹性压缩系数为Ct,在油藏中部(位置如图所示)有一口井初始时刻(t=0)恒定产量 Q 生产,井筒半径为 Rw,地层原始压力为 Pi,弹性不稳定渗流;请写出该渗流问题的渗流数学模型。
4-2、渗流力学油水两相

第三节 非活塞式水驱油理论
2、水驱油前缘动态—思考题:不同时刻规律
对于t1时刻:
xf1 x0
f′w swf φA
t1
Q t dt
0
x1 x0
f′w sw1 φA
t1
Q t dt
0
xf1 x0 x1 x0
f′w swf f′w sw1
石油工程学院2012年渗流力学PPT
第三节 非活塞式水驱油理论
Swf
'
∫ w
wc
w Sw m
Sw m w
w
wc fw'
( ) ∫ = S − S
f − df ' Swf
Swf
w
wc
w Sw m
Sw m
w
⎡⎣( ) f ⎤⎦ = S − S f ' −
w
wc w
石油工程学院2012年渗流力学PPT
w
Swf Sw m
( ) f = S − S f − ' Swf
Swf
一、单向渗流(一维驱替)
供
排
给
液
边
坑
缘
道
供 给 边 缘
初始油水界面
排 液 坑 道
目前油水界面
供 给 边
缘
排 液 坑 道
石油工程学院2012年渗流力学PPT
回顾二、活塞式水驱油理论
一、单向渗流(一维驱替)
渗流阻力=水区渗流阻力 +油区渗流阻力
供 给 边
缘
排
液 坑 道
活塞式水驱油示意图(单向流)
总的渗流阻力:
Sw
?
fw
f
′
w
石油工程学院2012年渗流力学PPT
[实用参考]渗流力学
![[实用参考]渗流力学](https://img.taocdn.com/s3/m/e9b5905df242336c1eb95ec9.png)
化学工业的催化塔利用多孔渗流改造工艺技术。
3、生物渗流:研究对认识生命活动规律及其控制,动植物 体内→大量毛管及微细孔隙,其间有流体流动,动物血液流动。 矿物质输送等都是渗流问题。
8
《渗流力学》绪论
四、渗流力学研究方法
• 发现问题;分析问题;解决问题。
•
• •
渗流的宏观问题;
渗流的微观问题; 多孔介质微观运动。 结构及流体的微观运动
广度:多孔介质理论,表面物理固体力学等
14
《渗流力学》绪论
六、渗流力学发展方向特点
3、研究渗流力学带有根本性变化的新方向,油气层 连续介质场变 为随机变量场,概率渗流力学,随机场渗流力学: A:微扰法——地层参数分成有规律和随机部分 B:斯克天尔左右法——随机的 C:实用计算机——正态分布显示 油田开发信息处理:渗流过程与自动控制理论结合,对油气田 开发过程进行控制,分析,调整,进行自动处理。控制油田开采过 程的信息量,处理开发信息,定量估计开发状况,评价开发方案的 效果。建立起描述开采过程的统计模型,对油气田开发进行自动调 整和预报。用数模和最优化理论制定合理的油气井工作制度,把渗 流过程的研究与自动化管理油气田生产结合起来。
特点:
1,2,3—基础→教材;4,5—研究生;6,7—参考;8,9,10—经典著作 2
四、讲课内容及学时分配(一)
前言(2)- 程林松 第一章 渗流规律和渗流数学模型(6) – 黄世军 第二章 单相不可压液体稳定渗流规律(6) – 黄世军 第三章 多井干扰理论(12) - 程林松 第四章 弹性不稳定渗流规律(8) - 程林松 第五章 油水两相渗流规律(8) - 程林松 第六章 油气两相渗流规律(2) - 程林松 第七章 天然气渗流规律(2) - 程林松 机动(2) - 程林松
程林松 7、第七章-双重介质渗流

22
第三节 双重介质简化渗流模型的无限大地层典型解
实例:假设有一等厚无限大地层,被一完善井打开,并设井半 径为零,此处有一点源,其产量为Q,则流动为平面径向流, 流动模型如图所示,此时公式(3)就可以展开为:
∂p f ∂t
−η ∂
∂t
⎧⎪1
⎨ ⎪⎩
r
∂ ∂r
⎛ ⎜ ⎝
r
∂p f ∂r
⎞⎫⎪ ⎟⎠⎬⎪⎭
将双重介质油藏简化为正交裂缝
裂缝
切割基质岩块呈六面体的地质模
型,裂缝方向与主渗透率方向一
基质
致,并假设裂缝的宽度为常数。
裂缝网络可以是均匀分布,也可以是非均匀分布的,采 用非均匀的裂缝网格可研究裂缝网络的各向异性或在某一方 向上变化的情况。
5
第一节 双重介质油藏模型
2.Kazemi模型
该模型是把实际的双重介 质油藏简化为由一组平行层理 的裂缝分割基质岩块呈层状的 地质模型,即模型由水平裂缝 和水平基质层相间组成。
13
第二节 双重介质单相渗流的数学模型
二、窜流方程
在基岩与裂缝之间存在着压力差异,因而存在流体交换,
但这种流体交换进行是较缓慢,可将其视为稳定过程。一般认为
单位时间内从基岩排至裂缝中的流量与以下因素有关:
(1) 流体粘度; (2) 孔隙和裂缝之间的压差; (3) 基岩团块的特征量,如长度、面积和体积等; (4) 基岩的渗透率。 通过分析可以得出窜流速度q为:
r
∂U ∂r
⎞⎫ ⎟⎠⎬⎭
=
β
1 r
1 ∂r
⎛ ⎜⎝
r
∂U ∂r
⎞ ⎟⎠
(5)
U
(r, 0)
=
0,U
《渗流力学模型》课件

$number {01}
目录
• 引言 • 渗流力学基础 • 线性稳定渗流模型 • 非线性不稳定渗流模型 • 数值模拟方法在渗流力学中的应
用 • 实际应用案例分析
01 引言
课程背景
渗流力学是石油工程学科中的重要分支,主要研究流体在多孔介质中的流动规律。
随着石油工业的发展,渗流力学在油田开发、油气储运等领域的应用越来越广泛, 对提高石油采收率和降低能耗具有重要意义。
多相流动模型等。
应用
渗流模型在工程实践中具有广泛 的应用价值,如地下水资源评价 、油气田开发、污染物迁移等领
域的模拟分析。
03
线性稳定渗流模型
线性稳定渗流模型概述
线性稳定渗流模型是一种描述地 下水在稳定流动状态下的数学模 型,主要应用于水资源管理、水
文地质学等领域。
该模型假设地下水流速和压力梯 度呈线性关系,忽略非线性因素 的影响,如流体的压缩性和粘性
模型考虑了流体的非线性性质,如粘度、密度 、压力等随流动状态的变化,以及多孔介质中 流体的流动特性,如渗透率、孔隙率等。
模型还考虑了流体流动的不稳定性,如波动、 分岔等现象,以更准确地描述实际流动情况。
非线性不稳定渗流模型的求解方法
非线性不稳定渗流模型的求解方 法主要包括有限差分法、有限元 法、有限体积法等数值计算方法
成本。
水库设计中的渗流力学模型应用
总结词
渗流力学模型在水库设计中具有重要意 义,能够确保水库的安全运行和经济效 益。
VS
详细描述
在水库设计中,渗流力学模型用于研究水 库的渗漏问题、库底岩层的稳定性和水库 的调蓄能力等。通过建立渗流模型,可以 预测水库的渗漏量、评估库底岩层的稳定 性以及优化水库的调度方案。这有助于确 保水库的安全运行,提高水库的调蓄能力 ,为水库的经济效益和社会效益提供保障 。