2014-2015学年江苏省南通市七年级上学期期末数学试卷(解析版)
苏教版2014-2015学年七年级上册数学期末考试试卷及分析答案

2014-2015学年七年级上册数学期末考试试卷及分析答案(因本学期已教部分下册内容,故新增部分下册题目。
)一、选择题1.我县2011年12月21日至24日每天的最高气温与最低气温如下表:其中温差最大的一天是………………………………………………………………………………………【 B 】A.12月21日B.12月22日C.12月23日D.12月24日注意:温差计算是正负数相减。
2.如图1所示,A,B两点在数轴上,点A对应的数为2.若线段AB的长为3,则点B对应的数为【A 】A.-1 B.-2 C.-3 D.-43.与算式232233++的运算结果相等的是…………………………………………………………………【 A 】A.33B.32C.53D.634.化简)3232)21(x--x(+的结果是………………………………………………………………【 D 】A.317+x-B.315+x-C.6115x--D.6115+x-7.如图2,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于……………【 A 】A.30°B.45°C.50°D.60°分析:这个题目以前考过的。
注意三角板的每个角的度数都是已知的了。
现在求∠BOC,它是在三角形AOB里,∠AOB是90度,先求∠AOC,∠AOC是大角∠AOD的一部分,因为∠AOD是150度,而∠DOC是90度,所以可以求出∠AOC。
图2 图38.如图3,下列说法中错误..的是……………………………………………………………………………【D 】A.OA的方向是东北方向B.OB的方向是北偏西60°C.OC的方向是南偏西60°D.OD的方向是南偏东60°二、填空题(本大题共4小题,每小题5分,满分20分)11.已知∠α=36°14′25″,则∠α的余角的度数是_53°45′35″.【注意:进率是60】12.王老师每晚19:00都要看央视的“新闻联播”节目,这一时刻钟面上时针与分针的夹角是 150 度.【每二个数字之间的度数是360÷12=30度】13.按下图所示的程序流程计算,若开始输入的值为3=x,则最后输出的结果是__231__ .【第一步把X的值代入进去后,计算,计算结果如果不大于100,就要把这个结果当作X的值,返回到前面的式子里,再继续计算】图114.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm ,M 是线段BC 的中点,则AM 的长是 8或12 cm .【做的时候要画出这个线段,另外要注意,这个C 点的位置,可以在AB 中间,也可以在B 的右侧】三、解答题(共90分)15.计算下列各式(本题共2小题,每小题8分,共计16分)(1))23(24)32(412)3(22---×++÷÷ (2)24)75.337811()1()21(25.032×++×÷---- =)23(44)23(949--×++×× =244152********)1(441××+×+××---=646--+ =9056331-++ =8- =0【计算时注意负号】20. 如图所示,已知O 为AD 上一点,∠AOC 与∠AOB 互补,OM 、ON 分别是∠AOC 、∠AOB 的平分线,若∠MON=40°,试求∠AOC 与∠AOB 的度数.(10分)解题分析: OM 、ON 分别是∠AOC 、∠AOB 的平分线,那么,∠AOM=21∠AOC ,∠AON=21∠AOB ,现在已知的是∠MON=40°,它是∠AOM -∠AON ,所以可以把∠MON =21∠AOC -21∠AOB 这样可以得出∠AOC=∠AOB+80°,∠AOC 与∠AOB 互补,说明这二个角加起来是180度。
七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库一、选择题1.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A.183 B.157 C.133 D.912.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A.87 B.91 C.103 D.1113.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形4.下列四个选项中,不是正方体展开图形的是()A.B.C.D .5.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .201620156. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm7.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -8.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 9.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( )A .2B .4C .6D .810.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9411.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度 B .7度 C .8度 D .9度 12.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2 B .﹣2 C .8 D .﹣8 13.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°14.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或315.若m 5=,n 3=,且m n 0+<,则m n -的值是( )A.8-或2-B.8±或2±C.8-或2 D.8或216.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 17.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n=( )A.9 B.11 C.13 D.1518.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( ) A.1985 B.-1985 C.2019 D.-201919.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C .D .20.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强21.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .622.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 23.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7- 24.“比a 的3倍大5的数”用代数式表示为( ) A .35a +B .3(5)a +C .35a -D .3(5)a -25.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱B .旅客上高铁列车前的安检C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量26.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条27.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-28.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<29.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >030.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论. 【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.2.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.3.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒, 第2个图形有8根火柴棒, 第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12, 若5+7(n-1)×12=295,没有整数解, 若8+7(n-2)×12=295,解得n=84, 即用295根火柴搭成的图形是第84个图形, 故选:C . 【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.4.A解析:A 【解析】 【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体. 【详解】正方体共有11种表面展开图, B 、C 、D 能围成正方体;A 、不能,折叠后有两个面重合,不能折成正方体. 故选:A . 【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.5.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=1111111 12233420152016 -+-+-++-=1 12016 -=2015 2016故选:C.【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.6.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.7.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.8.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.9.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.10.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.11.D解析:D【解析】【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度),∴估计他家6月份日用电量为9度,故选:D.【点睛】本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.12.B解析:B【解析】【分析】把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.【详解】把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.13.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B .【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.14.A解析:A【解析】【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得.【详解】∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负∵0a b c ++=∴a ,b ,c 的符号为1负2正令0a <,0b >,0c > ∴a a =-,b b =,c c = ∴a b c a b c ++1111=-++= 故选:A .【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.15.A解析:A【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.16.A解析:A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.18.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.19.D解析:D【解析】【分析】做出点A 关于OB 和OC 的对称点A′和A″,连接A′A″,与OB 、OC 分别交与点M ,N ,则沿AM-MN-NA 的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A 点的对称点A',连接A'N 与河流相交于M 点,再连接AM ,则张大伯可沿着AM 走一条直线去河边M 点挑水,然后再沿MN 走一条直线到菜园去,同理,画出回家的路线图如下:故选D .本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.20.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.22.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.解析:B 【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.24.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.25.B解析:B【解析】A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B.26.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条. 故选:A .【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.27.D解析:D【解析】【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断.【详解】解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的;故选:D .【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.28.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.29.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.30.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.。
江苏省南通市年七年级上学期数学期末考试试卷含解析答案

七年级上学期数学期末考试试卷一、单项选择题1.的相反数是〔〕A. B. C. 5 D.2.苏中国际集装箱码头位于国家一类开放口岸——如皋港,2021年该码头集装箱吞吐量目标突破500000箱,致力打造长江下游集装箱港口“小巨人〞.请将数500000用科学记数法表示为〔〕A. B. C. 500000 D.3.将以下平面图形绕轴旋转一周,能得到图中所示立体图形的是〔〕A. B. C. D.4.如果是关于的方程的解,那么的值是〔〕A. B. C. D.5.以下各式中,与3x2y3是同类项的是〔〕A. B. C. D.6.如图,,以为一边作,那么的度数为〔〕A. B. C. 或 D. 或7.九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x人,那么〔〕A. B. C. D.8.延长线段到,使,假设,点为线段的中点,那么的长为〔〕A. 2B. 4C. 6D. 89.在有理数范围内定义运算“ 〞:,如:.如果成立,那么的值是〔〕A. B. 5 C. 0 D. 210. 都是不等于0的有理数,假设,那么等于1或;假设,那么等于2或或0;假设,那么所有可能等于的值的绝对值之和等于〔〕A. 0B. 110C. 210D. 220二、填空题11.计算:________.12.,那么的补角等于 .13.某正方体每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“爱〞字所在面相对的面上的汉字是 .14.古代名著?算学启蒙?中有一题:“良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.〞意思是:“跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马天可追上慢马.〞15.关于的多项式与多项式的和不含项,那么的值为 .16.如图,平分,,那么 .17.历史上数学家欧拉最先把关于的多项式用记号来表示,把等于某数时的多项式的值用来表示.例如,对于多项式,当时,多项式的值为,假设,那么 .18.“数形结合〞思想在数轴上得到充分表达,如在数轴上表示数5和的两点之间的距离,可列式表示为,或;表示数和的两点之间的距离可列式表示为.,那么的最大值为 .三、解答题19.计算:〔1〕;〔2〕.20.解方程〔1〕;〔2〕21.化简求值:,其中,.22.某公司去年1~3月平均每月亏损3.8万元,4~6月平均每月盈利3.6万元,7~10月平均每月盈利2.5万元,11~12月平均每月亏损3.5万元.〔1〕如果把7~10月平均每月的盈利额记为万元,那么,11~12月平均每月的盈利额可记为________万元;〔2〕请通过计算说明这个公司去年的盈亏情况;〔3〕这个公司去年下半年平均每月盈利比上半年平均每月盈利多多少万元?23.如图,线段,,射线.点,为射线上两点,且,.〔1〕请用尺规作图确定,两点的位置〔要求:保存作图痕迹,不写作法〕;〔2〕假设,,求的长.24.某超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如下表:〔1〕该超市第一次购进的甲、乙两种商品各多少件?〔2〕该超市第一次购进的甲、乙两种商品售完后,该超市第二次又以第一次的进价购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润少400元,求笫二次乙商品是按原价打几折销售?25.如图是一个运算程序:〔1〕假设,,求的值;〔2〕假设,输出结果与相同,求的值.26.定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线〞.如图为一量角器的平面示意图,为量角器的中心.作射线,,,并将其所对应的量角器外圈刻度分别记为,,.〔1〕假设射线,,为“共生三线〞,且为的角平分线.①如图1,,,那么▲;②当,时,请在图2中作出射线,,,并直接写出的值;③根据①②的经验,得▲〔用含,的代数式表示〕.〔2〕如图3,,.在刻度线所在直线上方区域内,将,,按逆时针方向绕点同时旋转,旋转速度分别为每秒,,,假设旋转秒后得到的射线,,为“共生三线〞,求的值.答案解析局部一、单项选择题1.【解析】【解答】由相反数的定义可知,−5的相反数为5.故答案为:C.【分析】相反数:根据只有符号不同的两个数互为相反数解答即可.2.【解析】【解答】解:将500000用科学记数法表示为:5×105.故答案为:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.3.【解析】【解答】解:A、绕轴旋转一周,图中所示的立体图形,故此选项符合题意;B、绕轴旋转一周,可得到圆台,故此选项不合题意;C、绕轴旋转一周,可得到圆柱,故此选项不合题意;D、绕轴旋转一周,可得到圆锥,故此选项不合题意;故答案为:A.【分析】所示立体图形上半局部是圆锥,下半局部是圆柱,然后结合面动成体的相关知识判断即可.4.【解析】【解答】解:∵x=3是关于x的方程2x-3m=4的解,∴2×3-3m=4,解得m= ,故答案为:D.【分析】根据方程解的概念,将x=3代入方程中可得2×3-3m=4,求解可得m的值.5.【解析】【解答】解:A. 与不是同类项,故本选项不符合题意;3y2与不是同类项,故本选项不符合题意;C. 与是同类项,故本选项符合题意;D. 与不是同类项,故本选项不符合题意;故答案为:C.【分析】所含字母相同,并且相同字母指数也相同的项,叫做同类项,据此判断即可.6.【解析】【解答】解:如图,∠AOB=60°,∠AOC=15°,当点C在∠AOB内部时,∠BOC=∠AOB-∠AOC=45°,当点C在∠AOB外部时,∠BOC=∠AOB+∠AOC=75°,故答案为:D.【分析】画出图形,分①点C在∠AOB内部;②点C在∠AOB外部,结合角的和差关系计算即可.7.【解析】【解答】设男生x人,那么女生有(30-x)人,由题意得:,故答案为:D.【分析】先设男生x人,根据题意可得.8.【解析】【解答】解:∵AC=12,BC= AB,∴AB= AC=8,∵D是AC中点,∴AD= AC=6,∴BD=AB-AD=8-6=2,故答案为:A.【分析】由条件可求得AB的长,然后由线段中点的概念求得AD的长,接下来根据BD=AB-AD计算即可.9.【解析】【解答】解:∵,∴可化为,解得:x=5,故答案为:B.【分析】由定义的新运算可得方程,求解即可.10.【解析】【解答】解:假设,那么等于1或-1;假设,那么等于2或或0;…,假设y20中有20项为1,0项为-1,那么y20=20,假设y20中有19项为1,1项为-1,那么y20=18,…以此类推,假设y20中有0项为1,20项为-1,那么y20=-20,∴y20的所有可能的取值为-20,-18,…,0,…,18,20,那么y20的这些所有的不同的值的绝对值的和等于0+〔2+4+…+20〕×2=220,故答案为:D.【分析】根据绝对值的性质,分①y20中有20项为1,0项为-1;②y20中有19项为1,1项为-1;…y20中有0项为1,20项为-1,分别求出y20,进而求得这些所有的不同的值的绝对值的和.二、填空题11.【解析】【解答】解:.故答案为:3.【分析】根据有理数的减法法那么,减去一个数等于加上这个数的相反数将减法转变为加法,再利用有理数加减法法那么进行计算即可.12.【解析】【解答】解:根据题意,∠α=24°37′,那么∠α的补角=180°-24°37′=155°23′.故答案为:155°23′.【分析】由补角的概念可得:∠α的补角=180°-24°37′,然后结合1°=60′计算即可.13.【解析】【解答】解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“我〞与“伟〞是相对面.“爱〞与“大〞是相对面.“祖〞与“国〞是相对面.故答案为:大.【分析】正方体的外表展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.14.【解析】【解答】解:设快马x天可以追上慢马,据题题意:240x=150x+12×150,解得:x=20.答:快马20天可以追上慢马.故答案为:20【分析】设快马x天可以追上慢马,那么可得:240x=150x+12×150,求解即可.15.【解析】【解答】解:∵多项式与多项式的和不含项,∴∴.故答案为:.【分析】根据合并同类项法那么可得:x2+2axy-xy2+3xy-axy2-y3=x2+(2a+3)xy-(1+a)xy2-y3,结合题意可得2a+3=0,求解即可.16.【解析】【解答】解:∵∠AOB=∠BOC,∠BOC:∠COD:∠DOA=2:5:3,∴设∠AOB=∠BOC=2x,∠COD=5x,∠DOA=3x,∴2x+2x+5x+3x=360°,解得:x=30°,那么2x=60°,∴∠AOB=60°,故答案为:60°.【分析】由角平分线的概念可得∠AOB=∠BOC,设∠AOB=∠BOC=2x,∠COD=5x,∠DOA=3x,然后根据∠COD+∠BOC+∠AOB+∠AOD=360°进行求解即可.17.【解析】【解答】解:∵,∴,∴,∴===-2,故答案为:-2.【分析】由f(3)=8可得27m+3n+3=8,据此可得27m+3n的值,f(-3)=-27m-3n+3=-(27m+3n)+3,然后将27m+3n的值代入计算即可.18.【解析】【解答】解:由题意可得:表示x与-3的距离和x与1的距离之和,表示y与-2的距离和y与3的距离之和,∴当-3≤x≤1时,有最小值,且为1-〔-3〕=4,当-2≤x≤3时,有最小值,且为3-〔-2〕=5,∵,∴=4,=5,∴x+y的最大值为:1+3=4,故答案为:4.【分析】由题意可得:|x+3|+|x-1|=4,|y+2|+|y-3|=5,据此不难求得x+y的最大值.三、解答题19.【解析】【分析】〔1〕根据有理数的乘方法那么、有理数的除法法那么以及绝对值的性质可得:原式=-1+2×3-9,据此计算即可;〔2〕原式可变形为:,据此计算即可.20.【解析】【分析】〔1〕根据去括号、移项、合并同类项的步骤求解即可;〔2〕根据去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.21.【解析】【分析】首先对待求式子去括号、然后合并同类项可得:a2-8ab,接下来将a、b的值代入计算即可.22.【解析】【解答】解:〔1〕根据盈利为正,亏损为负可得:11~12月平均每月的盈利额可记为-3.5万元;【分析】〔1〕正数与负数可以表示一对具有相反意义的量,假设规定盈利为正,那么亏损为负,据此解答;〔2〕计算出1~12月的总额,然后根据结果的正负判断即可;〔3〕首先分别求出下半年平均每月盈利以及上半年平均每月盈利,然后相减即可.23.【解析】【分析】〔1〕分别作出线段AB、AC就可得到B、C的位置;〔2〕由题意可得BC=m+n-(2m-n),然后去括号、合并同类项即可.24.【解析】【分析】〔1〕设第一次购进乙种商品x件,根据题意得:40×2x+60x=7000,求解即可;〔2〕分别求出甲商品、乙商品的利润,然后相加即可求出总利润;设第二次乙种商品是按原价打y折销售,根据题意得:(50-40)×100+(80×-60)×50×3=2000-400,求解即可.25.【解析】【分析】〔1〕当x=-3,y=2时,m=|-3|-2×2,计算即可;〔2〕由题意可得:当x=-4时,y=m,然后分①m<-4;②m≥-4,分别列出关于m的方程,求解即可. 26.【解析】【解答】解:〔1〕①∵OA,OB,OC为“共生三线〞,OC平分∠AOB,∴∠AOB=b°-a°=80°,∴m°= ∠AOB= ×80°=40°,故m=40;②如图,∵,,∴m=〔a+b〕÷2=95;③根据①②的经验可得:m= ;【分析】〔1〕①由题意可得∠AOB=80°,然后根据角平分线的概念就可求出m的值;②由题意可得m=(a+b)÷2,代入计算即可;③根据①②的结论解答即可;〔2〕由题意可得t秒后,a=12t,b=60+6t,m=60+8t,然后分①OB′为∠A′OC′的平分线;②OA′为∠B′OC′的平分线;③OC′为∠A′OB′的平分线,分别列出关于t的方程,求解即可.。
南通市七年级上册数学期末试卷及答案-百度文库

南通市七年级上册数学期末试卷及答案-百度文库一、选择题1.4 =( )A.1 B.2 C.3 D.42.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为()A.0.1289×1011B.1.289×1010C.1.289×109D.1289×1073.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是()A.B.C.D.4.下列判断正确的是()A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.5.如图,点A,B在数轴上,点O为原点,OA OB=.按如图所示方法用圆规在数轴上截取BC AB=,若点A表示的数是a,则点C表示的数是( )A.2a B.3a-C.3a D.2a-6.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A.1005006 2x x+=B.1005006 x2x+=C .10040062x x +=D .1004006x 2x+= 7.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个 8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对 9.下列各数中,有理数是( )A .2B .πC .3.14D .37 10.当x=3,y=2时,代数式23x y -的值是( ) A .43 B .2C .0D .3 11.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+112.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上 D .AD 上二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.14.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.15.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.16.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.17.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.18.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________. 19.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.20.计算7a 2b ﹣5ba 2=_____.21.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.22.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.23.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.24.规定:用{m}表示大于m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}=-1等;用[m] 表示不大于m 的最大整数,例如[72]= 3,[2]= 2,[-3.2]=-4,如果整数x 满足关系式:3{x}+2[x]=23,则x =________________.三、解答题25.如图,AB和CD相交于点O,∠A=∠B,∠C=75°求∠D的度数.26.微信运动和腾讯公益推出了一个爱心公益活动:一天中走路步数达到10000步及以上可通过微信运动和腾讯基金会向公益活动捐款,如果步数在10000步及以上,每步可捐....0.0002元;若步数在10000步以下,则不能参与捐款.(1)老赵某天的步数为13000步,则他当日可捐多少钱?(2)已知甲、乙、丙三人某天通过步数共捐了8.4元,且甲的步数=乙的步数=丙步数的3倍,则丙走了多少步?27.(1)先化简,再求值:当(x﹣2)2+|y+1|=0时,求代数式4(12x2﹣3xy﹣y2)﹣3(x2﹣7xy﹣2y2)的值;(2)关于x的代数式(x2+2x)﹣[kx2﹣(3x2﹣2x+1)]的值与x无关,求k的值.28.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)111234x yx y-+⎧+=⎪⎨⎪+=⎩29.解方程:(1)()()32324y y -=-;(2)13124x x +--=. 30.O 为数轴的原点,点A 、B 在数轴上表示的数分别为a 、b ,且满足(a ﹣20)2+|b+10|=0.(1)写出a 、b 的值;(2)P 是A 右侧数轴上的一点,M 是AP 的中点.设P 表示的数为x ,求点M 、B 之间的距离;(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度?四、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.32.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.33.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 4.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D ∵0的绝对值是0,故本选项错误.故选C .5.B解析:B【解析】【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数.【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数,点A 表示的数是a ,所以B 表示的数为-a ,又因为BC AB =,所以点C 表示的数为3a -.故选B.【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.6.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x 个零件, 根据题意得:1004006x 2x+= 故选:D .【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键. 7.C解析:C【解析】①∵AD 平分△ABC 的外角∠EAC ,∴∠EAD=∠DAC ,∵∠EAC=∠ACB+∠ABC ,且∠ABC=∠ACB ,∴∠EAD=∠ABC ,∴AD ∥BC ,故①正确.②由(1)可知AD ∥BC ,∴∠ADB=∠DBC ,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.8.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC ,又∵AB=5,BC=3,∴AC=5−3=2;②当点C 在线段AB 的延长线上时,如图,∵AC=AB+BC ,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C .【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.9.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】 2B. π是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D. 37故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.10.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.11.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,2+, (2)22∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.14.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=12AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键16.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.17.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.18.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 20.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a 2b【解析】【分析】根据合并同类项法则化简即可.【详解】()2222﹣﹣.7a b5ba=75a b=2a b2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.21.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.22.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体. 【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 23.40【解析】【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可. 【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.24.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 三、解答题25.75°.【解析】【分析】先判断AC//BD ,然后根据平行线的性质进行求解即可得.【详解】∵∠A=∠B,∴AC//BD,∴∠D=∠C=75°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 26.(1)2.6元;(2)7000步.【解析】【分析】(1)用步数×每步捐的钱数0.0002元即可;(2)设丙走了x步,则甲走了3x步,乙走了3x步,分两种情况讨论即可.【详解】(1)13000×0.0002=2.6元,∴他当日可捐了2.6元钱;(2)设丙走了x步,则甲走了3x步,乙走了3x步,由题意得若丙参与了捐款,则有0.0002(3x+3x+x)=8.4,解之得:x=6000,不合题意,舍去;若丙没参与捐款,则有0.0002(3x+3x)=8.4,解之得:x=7000,符合题意,∴丙走了7000步.【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题也考查了分类讨论的数学思想. 27.(1)﹣x2+9xy+2y2,﹣20;(2)k=4.【解析】【分析】(1)根据|x﹣2|+(y+1)2=0可以求得x、y的值,然后将题目中所求式子化简,再将x、y的值代入化简后的式子即可解答本题.(2)利用多项式的值与x无关,得出x的系数和为0,即可得出k的值,进而求出答案.【详解】解:(1)∵(x﹣2)2+|y+1|=0,∴x=2、y=﹣1,则原式=2x2﹣12xy﹣4y2﹣3x2+21xy+6y2=﹣x2+9xy+2y2=﹣22+9×2×(﹣1)+2×(﹣1)2=﹣4﹣18+2=﹣20;(2)原式=x2+2x﹣kx2+3x2﹣2x+1=(4﹣k)x2+1∵代数式的值与x无关,∴k=4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.28.(1)x=12;(2)15xy=-⎧⎨=⎩.【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=12,(2)111234x yx y-+⎧+=⎪⎨⎪+=⎩,整理得:3x+2y=72x+2y=8①②⎧⎨⎩,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:15xy=-⎧⎨=⎩.【点睛】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键.29.(1)14y=;(2)1x=-.【解析】【分析】(1)根据一元一次方程的解法过程,去括号,移项,合并同类项,系数化为1解决即可.(2)根据一元一次方程的解法过程,去分母,去括号,移项,合并同类项,系数化为1解决即可.【详解】解方程:(1)3(2y-3)=2(y-4);6928y y-=-.6298y y-=-.41y =.14y =. (2)13124x x +--=. 2(1)(3)4x x +--=.2234x x +-+=.-1x =.【点睛】本题考查了一元一次方程的解法,解决本题的关键是熟练掌握一元一次方程的解法过程,在去分母时不要漏乘项.30.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C 表示的数为3t ,当203<t≤503时,点C 表示的数为20﹣3(t ﹣203)=40﹣3t ;当0≤t≤5时,点D 表示的数为﹣2t ,当5<t≤20时,点D 表示的数为﹣10+2(t ﹣5)=2t ﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD =5可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a ﹣20)2+|b+10|=0,∴a ﹣20=0,b+10=0,∴a =20,b =﹣10.(2)∵设P 表示的数为x ,点A 表示的数为20,M 是AP 的中点.∴点M 表示的数为202x +. 又∵点B 表示的数为﹣10,∴BM =202x +﹣(﹣10)=20+2x . (3)当0≤t≤203时,点C 表示的数为3t ;当203<t≤503时,点C 表示的数为:20﹣3(t ﹣203)=40﹣3t ; 当0≤t≤5时,点D 表示的数为﹣2t ;当5<t≤20时,点D 表示的数为:﹣10+2(t ﹣5)=2t ﹣20.当0≤t≤5时,CD =3t ﹣(﹣2t )=5,解得:t =1; 当5<t≤203时,CD =3t ﹣(2t ﹣20)=5, 解得:t =﹣15(舍去); 当203<t≤503时,CD =|40﹣3t ﹣(2t ﹣20)|=5, 即60﹣5t =5或60﹣5t =﹣5,解得:t =11或t =13. 答:1秒、11秒或13秒后,C 、D 两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a ,b 的值;(2)根据各点之间的关系,用含x 的代数式表示出BM 的长;(3)找准等量关系,正确列出一元一次方程.四、压轴题31.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.32.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.33.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.。
南通市七年级上册数学期末试题及答案解答

南通市七年级上册数学期末试题及答案解答 一、选择题 1.下列判断正确的是( )A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2 C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max{}21,,2x x x =时,则x 的值为( ) A .14- B .116 C .14 D .123.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125° 4.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( ) A . B .C .D .5.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)36.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯7.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱 8.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+ 9.若2m ab -与162n a b -是同类项,则m n +=( ) A .3 B .4C .5D .7 10.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人 11.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元 12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题13.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.14.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.15.分解因式: 22xy xy +=_ ___________16.15030'的补角是______.17.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.18.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.19.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.20.化简:2x+1﹣(x+1)=_____.21.数字9 600 000用科学记数法表示为 .22.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm .23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.24.若4a +9与3a +5互为相反数,则a 的值为_____.三、解答题25.数学课上老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”。
南通市七年级(上)期末数学试卷含答案

七年级(上)期末数学试卷 题号一二三四总分得分一、选择题(本大题共10小题,共20.0分)1.下列几何体中,是圆柱的为( )A. B.C. D.2.下列各数中,小于的数是−3( )A. 2B.C.D. −13−52−43.下列计算结果与的结果相同的是−12+12( )A. B. C. D. 12−120−1(−12)−(12+12)4.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A. B. C. D. |a|>4c−b >0ac >0a +c >05.如图,直线AB 、CD 相交于点O ,,垂足为O ,EO ⊥AB 则的度数为∠EOC =35°15′.∠AOD ( )A. B. C. D. 55°15′65°15′125°15′165°15′6.一个整数用科学记数法表示为,则原数中“0”的个数为2019…0 2.019×1010( )A. 5B. 6C. 7D. 87.有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现两个同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )A. B.C. D.8.如图,直线AB ,CD 相交于点O ,OE ,OF ,OG 分别是,,的平分线,以下说法不正确的是∠AOC ∠BOD ∠BOC ( )A. 与互为余角∠DOF ∠COG B. 与互为补角∠COG ∠AOG C. 射线OE ,OF 不一定在同一条直线上D. 射线OE ,OG 互相垂直9.用一根长为单位:的铁丝,首尾相接围成一个正方形,l(cm)要将它按如图的方式向外等距扩单位:,得到新的正方2(cm)形,则这根铁丝需增加( )A. 8cmB. 16cmC. 9cmD. 17cm10.数轴上原点左边有一点A ,点A 对应着数a ,有如下说法:表示的数一定是一个正数.①−a 若时,则.②|a|=9a =−9在,,,中,最大的数值是.③−a 1a a 2a 3a 2式子的最小值为2.④|a +1a |其中正确的个数是( )A. 1 B. 2 C. 3 D. 4二、填空题(本大题共8小题,共16.0分)11.已知与互为补角,当时,则______∠α∠β∠α=90°∠β=°.12.若x ,y 互为相反数,则多项式的值为______.x 2−y 213.如图,直线DE 经过三角形ABC 的顶点A ,则与∠DAC 的关系是______填“内错角”或“同旁内角”∠C .()14.如图,阶梯图每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着,,8,5,任−3−2意相邻四个台阶上数的和都相等,则第6个台阶上数y 的值为______.15.观察下表:x 的值−2−1012代数式−kx +4的值2468从表中可以“看”出k 的值为______.16.把一个周角7等分,每一份的角度是______精确到分.()17.一列火车匀速行驶,经过一条长510m 的隧道需要25s 的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是这列火车的长度为______8s.m.18.进入初中后,代数式书写有一些规范,比如教材上指出:“在含有字母的式子中如果出现乘号“,通常将乘号写作“或省略不写.”其实还有一些书写规范,×’⋅’比如,在代数式中如果出现除号“”,通常用分数线“”来取代;数字与字母÷−相乘时,一般数字写在前面.根据以上书写要求,将代数式简写为:______.(ac ×4−b 2)÷(4a)三、计算题(本大题共5小题,共44.0分)19.计算或化简求值:;(1)(−2)2×5−(−2)3÷4;(2)(−10)3+[(−4)2−(1−32)×2]求代数式的值,其中,,.(3)3a +abc−13c 2−13(9a−c 2)a =−16b =2c =−3先化简再求值:,其中,.(4)(−32x +13y 2)+12x−2(x−13y 2)x =−2y =2320.解下列方程:;(1)16(3x−6)=25x−3.(2)1−2x 3=3x +17−321.一个两位数的个位数字是a ,十位数字是b .列式表示这个两位数与9的乘积;(1)这个两位数与它的22倍的和,这个和是23的倍数吗?为什么?(2)22.【阅读理解】小海喜欢研究数学问题,在计算整式加减(−4x 2−7+5x)+(2x +3x 2的时候,想到了小学的列竖式加减法,令,,然)A =−4x 2−7+5x B =2x +3x 2后将两个整式关于x 进行降幂排列,,,最后只要写A =−4x 2+5x−7B =3x 2+2x 出其各项系数对齐同类项进行竖式计算如下:所以,.(−4x 2−7+5x)+(2x +3x 2)=−x 2+7x−7【模仿解题】若,,请A =−4x 2y 2+2x 3y−5xy 3+2x 4B =3x 3y +2x 2y 2−y 4−4xy 3你按照小海的方法,先对整式A ,B 关于某个字母进行降幂排列,再写出其各项系数进行竖式计算,并写出的值.A−B A−Bb.a<0b>023.如图,数轴上点A,B分别对应数a,其中,.(1)a=−2b=6()当,时,线段AB的中点对应的数是______;直接填结果(2)若该数轴上另有一点M对应着数m.当,,且时,求代数式的值;①m=2b>2AM=2BM a+2b+20当,且时,小安演算发现代数式是一个定值.②a=−2AM=3BM3b−4m老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?四、解答题(本大题共3小题,共20.0分)24.如图,已知线段a,b,c,用圆规和直尺作线段AB,使它等a+2b−c.()于保留作图痕迹,不写作法20%25.某商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利,另一件20%亏损,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?26.如图,长方形纸片ABCD,点E,F分别在边AB,CDEF.∠BEF B′上,连接将对折,点B落在直线EF上的点处,∠AEF A′得折痕EM;将对折,点A落在直线EF上的点处,得折痕EN.(1)判断直线EN,ME的位置关系,并说明理由;(2)∠MEN∠MEN设的平分线EP交边CD于点P,的一条三等分线EQ交边CD于Q.∠PEQ点求的度数.答案和解析1.【答案】A【解析】解:A 、此几何体是圆柱体;B 、此几何体是圆锥体;C 、此几何体是正方体;D 、此几何体是四棱锥;故选:A .根据立体图形的定义及其命名规则逐一判断即可.本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.【答案】D【解析】解:小于的数是,−3−4故选:D .根据有理数的大小比较法则正数都大于0,负数都小于0,正数都大于负数,两个负数,(其绝对值大的反而小比较即可.)本题考查了有理数的大小比较法则的应用,注意:理数的大小比较法则是:正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小.3.【答案】A【解析】解:.−12+12=12−12故选:A .依据有理数的加法交换律即可求出选A .此题主要考查了有理数的加法交换律,即:.a +b =b +a 4.【答案】B【解析】解:不正确;∵−4<a <−3∴|a|<4∴A 又 不正确;∵a <0c >0∴ac <0∴C 又 不正确;∵a <−3c <3∴a +c <0∴D 又 B 正确;∵c >0b <0∴c−b >0∴故选:B .本题由图可知,a 、b 、c 绝对值之间的大小关系,从而判断四个选项的对错.本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.5.【答案】C【解析】解:,∵EO ⊥AB .∴∠EOB =90°又,.∴∠COB =∠COE +∠BOE =125°15′对顶角相等,∵∠AOD =∠COB().∴∠AOD =125°15′故选:C .根据图形求得;然后由对顶角相等的性质来求∠COB =∠COE +∠BOE =125°15′的度数.∠AOD 本题考查了垂线,对顶角、邻补角等知识点.求的度数时,也可以利用邻补角的∠AOD 定义先求得,再由邻补角的定义求的度数.∠BOD =55°∠AOD 6.【答案】D【解析】【分析】本题考查了把科学记数法表示的数还原成原数,当时,n 是几,小数点就向后移n >0几位.把写成不用科学记数法表示的原数的形式即可得.2.019×1010【解答】解:表示的原数为20190000000,∵2.019×1010原数中“0”的个数为8,∴故选:D .7.【答案】B【解析】解:设“”的质量为x ,“”的质量为y ,“”的质量为:a ,假设A 正确,则,此时B 选项中是,C 、D 选项中都是,x =2y x =1.5y x =2y 故只有选项B 一组左右质量不相等,符合题意.故选:B .直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.此题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.8.【答案】C【解析】解:,∵∠AOC =∠BOD ,OF 分别是,的平分线,∵OE ∠AOC ∠BOD ,,∴∠COE =12∠AOC ∠DOF =∠BOF =12∠BOD ,∴∠COE =∠BOF 是BOC 的平分线,∵OG ,∴∠COG =∠BOG ,∴∠COE +∠COG =∠BOF +∠BOG =12×180°=90°,∴∠EOG =∠FOG =90°与互为余角;故A 正确;射线OE ,OG 互相垂直;故D 正确;∴∠DOF ∠COG ,∵∠AOG +∠BOG =180°,∴∠AOG +∠COG =180°与互为补角,故B 正确;∴∠COG ∠AOG ,∵∠EOG +∠FOG =180°射线OE ,OF 一定在同一条直线上,故C 错误.∴故选:C .根据角平分线的性质得到,,求得∠COE =12∠AOC ∠DOF =∠BOF =12∠BOD ,得到,求得与互为余角;故A 正确;∠COE =∠BOF ∠EOG =∠FOG =90°∠DOF ∠COG 射线OE ,OG 互相垂直;故D 正确;推出与互为补角,故B 正确;由于∠COG ∠AOG ,得到射线OE ,OF 一定在同一条直线上,故C 错误.∠EOG +∠FOG =180°本题考查了垂线,对顶角,角平分线的定义,正确的识别图形是解题的关键.9.【答案】A【解析】解:原正方形的周长为1cm ,∵原正方形的边长为,∴14cm 将它按图的方式向外等距扩2cm ,∵新正方形的边长为,∴94cm 则新正方形的周长为,4×94=9(cm)因此需要增加的长度为.9−1=8cm 故选:A .根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.本题主要考查列代数式,解题的关键是根据题意表示出新正方形的边长及代数式的书写规范.10.【答案】C【解析】解:数轴上原点左边有一点A ,点A 对应着数a ,∵表示的数一定是一个正数,故正确,∴−a ①若时,则,故正确,|a|=9a =−9②在,,,中,当时,最大的数值是,当时,最大的数是−a 1a a 2a 3a <−1a 2−1<a <0,故错误,−a ③式子的最小值为2,故正确,|a +1a |④故选:C .根据各个小题中的说法可以判断是否正确,从而可以解答本题.本题考查数轴、正数和负数、绝对值,解答本题的关键是明确题意,可以判断各个小题中的结论是否正确.11.【答案】90∵∠α∠β【解析】解:与互为补角,∴∠α+∠β=180°,∴∠β=180°−∠α=180°−90°=90°.故答案为90.∵∠α∠β∴∠α+∠β=180°∠β与互为补角,,很容易得出的度数.180°本题考查了补角的知识,属于基础题,掌握互补两角之和为是关键.12.【答案】0∵x【解析】解:,y互为相反数,∴x+y=0,∴x2−y2=(x+y)⋅(x−y)=0×(x−y)=0.故答案为0.x+y=0x2−y2=(x+y)(x−y)=0由x,y互为相反数,可得,本题考查了分解因式的运用,正确运用平方差公式分解因式是解题的关键.13.【答案】同旁内角∠DAC∠C【解析】解:由图可知:与的关系是同旁内角,故答案为:同旁内角根据同位角、内错角、同旁内角解答即可.本题考查了同位角、内错角、同旁内角:掌握同位角、内错角、同旁内角的概念,识别同位角、内错角、同旁内角.14.【答案】−2−3−2+8+5=8【解析】解:由题意得前4个台阶上数的和是,x=8−5−8+2=−3y=8+3−5−8=−2,;−2故答案为:.将前4个数字相加可得;根据“相邻四个台阶上数的和都相等”列出方程求解可得y.本题主要考查图形的变化规律,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环.15.【答案】−2x=−2−kx+4=0【解析】解:当时,,∴2k+4=0,∴k=−2,故答案为:−2根据表格即可列出等式求出k的值.本题考查代数式求值,解题的关键根据表格列出等式,本题属于基础题型.16.【答案】51°26′【解析】解:一个周角,余,,∵=360°∴360°÷7=51°3°∵3°=180′,把一个周角7等分,每一份的角度约为故答案为:.180′÷7≈26′∴51°26′.51°26′分析:用周角的度数除以7,若不能整除,把余下的度数化为分,再除以7,若不能整除,四舍五入.本题考查了角的度数的除法运算.先从度开始除,若能整除就是结果,若不能整除,把余数度化为分再除,若能整除,就是最后的结果,若不能整除,把余数分化为秒,依此类推.若有精确度的要求,就在相应的要求处四舍五入.17.【答案】240【解析】解:设这列货车的长度为xm ,依题意,得:,510+x 25=x 8解得:.x =240故答案为:240.设这列货车的长度为xm ,根据速度路程时间结合火车过隧道的速度不变,即可得=÷出关于x 的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.【答案】4ac−b 24a【解析】解:简写为:,4ac−b 24a故答案为:4ac−b 24a 根据题意即可写出答案.本题考查代数式的写法,解题的关键是正确理解题意给出的方法,本题属于基础题型.19.【答案】解:(1)(−2)2×5−(−2)3÷4=4×5−(−8)÷4=20+2=22(2)(−10)3+[(−4)2−(1−32)×2]=−1000+[16−(−8)×2]=−1000+32=−968(3)3a +abc−13c 2−13(9a−c 2)=3a +abc−13c 2−3a +13c 2=abc当,,时,原式.a =−16b =2c =−3=1(4)(−32x +13y 2)+12x−2(x−13y 2)=−32x +13y 2+12x−2x +23y 2=−3x +y 2当,时,原式x =−2y =23=−3×(−2)+(23)2=649【解析】先算乘方、再算乘法和除法,最后计算减法;(1)按照有理数混合运算的顺序和法则进行计算,注意;(2)−32=−9先去括号,然后合并同类项,最后代值即可解决;(3)根据正式的运算顺序和和合并同类项发法则先将式子进行化简,最后带入x ,y 的值(4)即可解决.考查了有理数的混合运算、整式的运算.对有理数的混合运算关键是掌握有理数(1)(2)的混合运算顺序和运算法则.本题考查了整式的加减,先化简然后再代入数据进行求值更加简便,整式的加减(3)(4)实质就是去括号,合并同类项的运算.20.【答案】解:去分母得:,(1)5(3x−6)=12x−90去括号得:,15x−30=12x−90移项合并得:,3x =−60解得:;x =−20去分母得:,(2)7(1−2x)=3(3x +1)−63去括号得:,7−14x =9x +3−63移项合并得:,−23x =−67解得:.x =6723【解析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(2)此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.【答案】解:这两位数为,(1)10b +a ;∴9(10b +a)=90b +9a 这个两位数与它的22倍的和,(2),∴10b +a +22(10b +a)=23(10b +a)两位数与它的22倍的和是23的倍数;∴【解析】根据题目给出的等量关系即可求出答案.(1)列出代数式后即可判定是否为23的倍数.(2)本题考查列代数,解题的关键正确理解题意给出的等量关系,本题属于基础题型.22.【答案】解:然后将两个整式关于x进行降幂排列,,A=2x4+2x3y−4x2y2−5xy3 B=3x3y+2x2y2−4xy3−y4,各项系数进行竖式计算:∴A−B=2x4−x3y−6x2y2−xy3+y4;【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.【答案】2(1)【解析】解:由题意得出,线段AB的中点对应的数是2,故答案为2;当,时,点M在点A,B之间,(2)①m=2b>2∵AM=2BM,∴m−a=2(b−m),∴2−a=2(b−2),∴a+2b=6,∴a+2b+20=6+20=26;小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.②a=−2当点M在点A,B之间时,,∵AM=3BM,∴m+2=3(b−m),∴m+2=3b−3m,∴3b−4m=2,∴3b−4m代数式是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m−b),∴m+2=3m−3b,∴2m−3b=2,∴2m−3b代数式也是一个定值.(1)根据题意直接得出答案即可;根据,,得出的值,得出结果;(2)①AM=2BM m=2a+2b因为m的值不确定,则点M在数轴上的位置也不确定,可能在点A,B之间,也可②能在点B右侧.本题考查了实数和数轴,掌握数轴上两点间的距离的求法是解题的关键,还应注意用分类讨论思想来确定点的不同位置.24.【答案】解:如图,线段AE为所作.AB=a BC=CD=b DE=c【解析】在射线AP上依次截取,,再截取,则AE=a+2b−c.−本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.【答案】解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,120−x=20%x120−y=−20%y依题意,得:,,x=100y=150解得:,,∴120+120−x−y=−10()元.答:卖这两件衣服总的是亏损,亏损了10元钱.=−【解析】设盈利的衣服的进价为x元,亏损的衣服的进价为y元,根据利润售价进x(y)x(y)=价,即可得出关于的一元一次方程,解之即可求出的值,再由总利润两家衣−服的售价进价,即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.26.【答案】解:,(1)EN⊥ME∠AEN=∠A′EN∠BEM=∠B′EM理由:由折叠的性质得,,,∵∠AEN+∠A′EN+∠BEM+∠B′EM=180°,∴∠A′EN+∠B′EM=90°,∴EN⊥ME;(2)∵EP∠MEN∠MEN=90°平分,,∴∠MEP=45°,∵EQ∠MEN三等分,∴∠MEQ=30°,∴∠PEQ=∠MEP−∠MEQ=15°.(1)∠AEN=∠A′EN∠BEM=∠B′EM【解析】由折叠的性质得到,,根据平角的定义得∠A′EN+∠B′EM=90°到,于是得到结论;(2)∠MEP=45°∠MEN∠MEQ=30°根据角平分线的定义得到,由EQ三等分得到,于是得到结论.()本题考查了翻折变换折叠问题,矩形的性质,角平分线的定义,正确的识别图形是解题的关键.。
【解析版】2014-2015学年江苏省南通市七年级上期末数学试卷

1.﹣3的绝对值是() A. 3 B.﹣3 C. D.2.“天上星星有几颗,7后跟上22个0”这是国际天文学联合会上宣布的消息,用科学记数法表示宇宙空间星星颗数为()颗 A. 700×1020 B. 7×1023 C. 0.7×1023 D. 7×10223.﹣2,O,2,﹣3这四个数中最大的是() A. 2 B. 0 C.﹣2 D.﹣34.下列运算正确的是()A﹣3(x﹣1)=﹣3x﹣1 B﹣3(x﹣1)=﹣3x+1 C﹣3(x﹣1)=﹣3x﹣3 D﹣3(x﹣1)=﹣3x+35.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为() A.﹣1 B. 0 C. 1 D.6.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()A. 70° B. 65° C. 50° D. 25°7.若某天的最高气温是为6℃,最低气温是﹣3℃,则这天的最高气温比最低气温高℃.8.方程2x+8=0的解是.9.已知∠A=35°35′,则∠A的补角等于.10.已知某商店有两个不同进价的计算器都卖91元,其中一个盈利30%,另一个亏损30%,在这个买卖中这家商店共亏损元.11.按上图的程序计算,若开始输入的值x为正分数,最后输出的结果为13,请写出一个符合条件的x的值.12.计算:(1)23+(﹣17)+6+(﹣22);(2)﹣3+5×2﹣(﹣2)3÷4.13.如图,已知AB=16cm,C是AB上一点,且AC=10cm,点D是线段AC的中点,点E是线段BC的中点.求线段DE的长度.14.先化简,再求值:,其中x=2,y=﹣1.15.解方程(1)4x+3(2x﹣3)=12﹣2(x+4);(2)+=2﹣.16.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.请根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.答:你设计的问题是解:.17.如图,直线AB与CD相交于点O,OE⊥CD,OF⊥AB,∠DOF=65°.求:(1)∠AOC的度数;(2)∠BOE的度数.18.如图,已知∠A=∠F,∠C=∠D,问BD与CE平行吗?并说明理由.19.已知∠AOB=20°,∠AOE=100°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以O为观察中心,OA为正东方向,射线OD的方向角是;(3)若∠AOE的两边OA、OE分别以每秒5°、每秒3°的速度,同时绕点O逆时针方向旋转,当OA回到原处时,OA、OE停止运动,则经过几秒,∠AOE=42°.20.某自行车队进行训练,训练时所有队员都以35km/h的速度前进,突然,1号队员以45km/h的速度独自前进,行进一段路程后又调转车头,仍以45km/h的速度往回骑,直到与其他队员汇合,1号队员从离队开始到与其他队员重新汇合共行进了15分钟,问1号队员掉转车头时离队的距离是多少km?2014-2015学年江苏省南通市七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.﹣3的绝对值是()A. 3 B.﹣3 C. D.考点:绝对值.分析:根据一个负数的绝对值等于它的相反数得出.解答:解:|﹣3|=﹣(﹣3)=3.故选:A.点评:考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.“天上星星有几颗,7后跟上22个0”这是国际天文学联合会上宣布的消息,用科学记数法表示宇宙空间星星颗数为()颗.A. 700×1020 B. 7×1023 C. 0.7×1023 D. 7×1022考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法表示为a×10n(1≤|a|<10,n是整数).解答:解:7后跟上22个0就是7×1022.故选D.点评:此题主要考查科学记数法.3.﹣2,O,2,﹣3这四个数中最大的是()A. 2 B. 0 C.﹣2 D.﹣3考点:有理数大小比较.专题:推理填空题.分析:根据有理数的大小比较法则:比较即可.解答:解:2>0>﹣2>﹣3,∴最大的数是2,故选A.点评:本题考查了有理数的大小比较法则的应用,正数都大于0,负数都小于0,正数都大于一切负数,两个负数绝对值大地反而小.4.下列运算正确的是()A.﹣3(x﹣1)=﹣3x﹣1 B.﹣3(x﹣1)=﹣3x+1 C.﹣3(x﹣1)=﹣3x﹣3 D.﹣3(x﹣1)=﹣3x+3考点:去括号与添括号.分析:去括号时,要按照去括号法则,将括号前的﹣3与括号内每一项分别相乘,尤其需要注意,﹣3与﹣1相乘时,应该是+3而不是﹣3.解答:解:根据去括号的方法可知﹣3(x﹣1)=﹣3x+3.故选D.点评:本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是﹣3只与x相乘,忘记乘以﹣1;二是﹣3与﹣1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分.5.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A.﹣1 B. 0 C. 1 D.考点:一元一次方程的解.专题:计算题.分析:根据方程的解的定义,把x=2代入方程2x+3m﹣1=0即可求出m的值.解答:解:∵x=2是关于x的方程2x+3m﹣1=0的解,∴2×2+3m﹣1=0,解得:m=﹣1.故选:A.点评:本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.6.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是()A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格考点:平移的性质.专题:网格型.分析:根据图形,对比图①与图②中位置关系,对选项进行分析,排除错误答案.解答:解:观察图形可知:平移是先向下平移3格,再向右平移2格.故选:D.点评:本题是一道简单考题,考查的是图形平移的方法.7.下列命题中的假命题是()A.两条直线被第三条直线所截,同位角相等B.两点之间线段最短C.邻补角的平分线互相垂直D.对顶角的平分线在一直线上考点:命题与定理.分析:利用平行线的性质、线段公理、邻补角的定义及对顶角的性质分别判断后即可确定正确的选项.解答:解:A、两条直线被第三条直线所截,同位角相等,错误,为假命题;B、两点之间,线段最短,正确,为真命题;C、邻补角的平分线互相垂直,正确,为真命题;D、对顶角的平分线在一直线上,正确,为真命题,故选A.点评:本题考查了命题与定理的知识,解题的关键是了解平行线的性质、线段公理、邻补角的定义及对顶角的性质等知识,难度不大.8.如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是()A. B.C. D.考点:展开图折叠成几何体.分析:利用三棱柱及其表面展开图的特点解题.三棱柱上、下两底面都是三角形.解答:解:A、折叠后有二个侧面重合,不能得到三棱柱;B、折叠后可得到三棱柱;C、折叠后有二个底面重合,不能得到三棱柱;D、多了一个底面,不能得到三棱柱.故选B.点评:本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且都是三角形.9.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()A. 70° B. 65° C. 50° D. 25°考点:平行线的性质;翻折变换(折叠问题).分析:由平行可求得∠DEF,又由折叠的性质可得∠DEF=∠D′EF,结合平角可求得∠AED′.解答:解:∵四边形ABCD为矩形,∴AD∥BC,∴∠DEF=∠EFB=65°,又由折叠的性质可得∠D′EF=∠DEF=65°,∴∠AED′=180°﹣65°﹣65°=50°,故选C.点评:本题主要考查平行线的性质及折叠的性质,掌握两直线平行内错角相等是解题的关键.10.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米.设需更换的新型节能灯为x盏,则可列方程() A. 70x=106×36 B. 70×(x+1)=36×(106+1)C. 106﹣x=70﹣36 D. 70(x﹣1)=36×(106﹣1)考点:由实际问题抽象出一元一次方程.分析:设需更换的新型节能灯为x盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程即可.解答:解:设需更换的新型节能灯为x盏,根据题意得70(x﹣1)=36×(106﹣1).故选D.点评:本题考查了由实际问题抽象出一元一次方程,关键是找出题目中的相等关系.二、填空题:本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.11.若某天的最高气温是为6℃,最低气温是﹣3℃,则这天的最高气温比最低气温高9 ℃.考点:有理数的减法.专题:应用题.分析:用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:6﹣(﹣3)=6+3=9℃.故答案为:9.点评:本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.12.方程2x+8=0的解是x=﹣4 .考点:解一元一次方程.分析:移项,然后系数化成1即可求解.解答:解:移项,得:2x=﹣8,解得:x=﹣4.故答案是:x=﹣4.点评:本题考查了一元一次方程的解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.13.已知∠A=35°35′,则∠A的补角等于144°25′.考点:余角和补角;度分秒的换算.分析:根据互为补角的两个角的和等于180°列式计算即可得解.解答:解:180°﹣35°35′=144°25′.故答案为:144°25′.点评:本题考查了余角和补角,熟记概念是解题的关键,要注意度分秒是60进制.14.如图,直线a∥b.直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=32°,则∠2= 58°.考点:平行线的性质.分析:如图,证明∠3=90°,即可解决问题.解答:解:如图,∵a∥b,且AM⊥b,∴∠3=∠AMB=90°,而∠1=32°,∴∠2=180°﹣90°﹣32°=58°,故答案为58°.点评:该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的判定及其性质.15.a,b是有理数,它们在数轴上的对应点的位置如图,把a,﹣a,b,﹣b按由大到小的顺序排列,并用“>”连接为﹣a>b>﹣b>a .考点:有理数大小比较;数轴.分析:先根据数轴得出a<0<b,|a|>|b|,再根据相反数和有理数的大小比较法则比较大小,即可得出答案.解答:解:∵从数轴可知:a<0<b,|a|>|b|,∴a<﹣b<b<﹣a,故答案为:﹣a>b>﹣b>a.点评:本题考查了对有理数的大小比较法则,相反数,绝对值,数轴的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小,在数轴上表示的数,右边的数总比左边的数大.16.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是2m+3 .考点:完全平方公式的几何背景.专题:几何图形问题.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=m2+6m+9﹣m2=6m+9,而拼成的矩形一边长为3,∴另一边长是(6m+9)÷3=2m+3.故答案为:2m+3.点评:本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.17.已知某商店有两个不同进价的计算器都卖91元,其中一个盈利30%,另一个亏损30%,在这个买卖中这家商店共亏损18 元.考点:一元一次方程的应用.分析:设出两个计算器不同的进价,列出两个一元一次方程,求得进价,同卖价相比,即可解决问题.解答:解:设盈利30%的计算器进价为x元,由题意得,x+30%x=91,解得:x=70;设亏本30%的计算器进价为y元,由题意得,y﹣30%y=91,解得y=130;91×2﹣(130+70)=﹣18(元),即这家商店赔了18元.故答案为:18.点评:此题主要考查了一元一次方程的应用,正确理清打折与商品定价、以及进价与利润之间的关系是解题关键.18.按下面的程序计算,若开始输入的值x为正分数,最后输出的结果为13,请写出一个符合条件的x的值6或或.考点:代数式求值.专题:图表型.分析:根据结果为13,由程序框图得符合条件x的值即可.解答:解:根据题意得:2x+1=13,解得:x=6;可得2x+1=6,解得:x=;可得2x+1=,解得:x=,则符合条件x的值为6或或,故答案为:6或或点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.三、解答题:本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.19.计算:(1)23+(﹣17)+6+(﹣22);(2)﹣3+5×2﹣(﹣2)3÷4.考点:有理数的混合运算.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=23+6﹣17﹣22=29﹣39=﹣10;(2)原式=﹣3+10+2=9.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.如图,已知AB=16cm,C是AB上一点,且AC=10cm,点D是线段AC的中点,点E是线段BC的中点.求线段DE的长度.考点:两点间的距离.分析:根据线段的和差,可得CB的长,根据线段中点的性质,可得DC、CE的长,根据线段的和差,可得答案.解答:解:由AB=16cm,AC=10cm,得CB=AB﹣AC=16﹣10=6cm,由点D是线段AC的中点,点E是线段BC的中点,得DC=AC=×10=5cm,CE=CB=×6=3cm,由线段的和差,得DE=DC+CE=5+3=8cm.点评:本题考查了两点间的距离,利用了线段的和差,线段中点的性质.21.在三个整式m2﹣1,m2+2m+1,m2+m中,请你任意选择两个进行整式的加法或减法运算,并进行化简,再求出当m=2时整式的值.考点:整式的加减—化简求值.专题:开放型.分析:选取m2﹣1,m2+2m+1,相减后去括号合并得到最简结果,把m的值代入计算即可求出值.解答:解:根据题意得:(m2﹣10)﹣(m2+2m+1)=m2﹣1﹣m2﹣2m﹣1=﹣2m﹣2,当m=2时,原式=﹣4﹣2=﹣6.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.先化简,再求值:,其中x=2,y=﹣1.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=2,y=﹣1时,原式=﹣6+1=﹣5.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程:(1)4x+3(2x﹣3)=12﹣2(x+4);(2)+=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.解答:解:(1)去括号得:4x+6x﹣9=12﹣2x﹣8,移项合并得:8x=13,解得:x=;(2)去分母得:4(5y+4)+3(y﹣1)=24﹣(5y﹣5),去括号得:20y+16+3y﹣3=24﹣5y+5,移项合并得:28y=16,解得:y=.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.24.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.请根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.答:你设计的问题是该班有多少名同学?解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45.答:这个班有45名学生..考点:一元一次方程的应用.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:答:你设计的问题是:该班有多少名同学?设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45.答:这个班有45名学生.点评:本题考查了一元一次方程的应用,根据该班人数表示出图书数量得出等式方程是解题关键.25.如图,直线AB与CD相交于点O,OE⊥CD,OF⊥AB,∠DOF=65°.求:(1)∠AOC的度数;(2)∠BOE的度数.考点:对顶角、邻补角;垂线.分析:(1)根据OF⊥AB得出∠BOF是直角,则∠BOD=90°﹣∠DOF,再利用对顶角相等得出∠AOC=∠BOD;(2)由OE⊥CD得出∠DOE=90°,则∠BOE=90°﹣∠BOD.解答:解:(1)∵OF⊥AB,∴∠BOF=90°,∴∠BOD=90°﹣∠DOF=90°﹣65°=25°,∴∠AOC=∠BOD=25°;(2)∵OE⊥CD,∴∠DOE=90°,∴∠BOE=90°﹣∠BOD=90°﹣25°=65°.点评:本题考查了对顶角相等的性质,垂直的定义以及角的计算,是基础题,比较简单.准确识图是解题的关键.26.如图,已知∠A=∠F,∠C=∠D,问BD与CE平行吗?并说明理由.考点:平行线的判定与性质.分析:由∠A=∠F可判定AC∥DF,可得到∠ABD=∠D=∠C,可判定BD∥CE.解答:解:平行.理由如下:∵∠A=∠F,∴AC∥DF,∴∠ABD=∠D,且∠C=∠D∴∠ABD=∠C,∴BD∥CE.点评:本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行,同旁内角互补.27.实验与探究:我们知道写为小数形式即为0.,反之,无限循环小数0.写成分数形式即.一般地,任何一个无限循环小数都可以写成分数形式,现以无限循环小数0.为例进行讨论:设0.=x,由0.=0.777…可知,10x﹣x=7.﹣0.=7,即10x﹣x=7.解方程,得x=.于是,得0.=.现请探究下列问题:(1)请你把无限小数0.写成分数形式,即0.= ;(2)请你把无限小数0.写成分数形式,即0.= ;(3)你能通过上面的解答判断0.=1吗?说明你的理由.考点:一元一次方程的应用.分析:(1)根据题意设0.=x,由0.=0.444…可知,10x﹣x的值进而求出即可;(2)根据题意设0.=x,由0.=0.7575…可知,100x﹣x的值进而求出即可;(3)根据题意设0.=x,由0.=0.999…可知,10x﹣x的值进而求出即可.解答:解:(1)设0.=x,由0.=0.444…可知,10x﹣x=4.﹣0.=4,即10x﹣x=4.解方程,得x=.于是,得0.=.故答案为:.(2)设0.=x,由0.=0.7575…可知,100x﹣x=75.﹣0.=75,即100x﹣x=75.解方程,得x=.于是,得0.=.故答案为:.(3)设0.=x,由0.=0.999…可知,10x﹣x=9.﹣0.=9,即10x﹣x=9.解方程,得x=1.于是,得0.=1.点评:此题主要考查了一元一次方程的应用,解答本题的关键是找出其中的规律,即通过方程形式,把无限小数化成整数形式.28.已知∠AOB=20°,∠AOE=100°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以O为观察中心,OA为正东方向,射线OD的方向角是北偏东40°;(3)若∠AOE的两边OA、OE分别以每秒5°、每秒3°的速度,同时绕点O逆时针方向旋转,当OA回到原处时,OA、OE停止运动,则经过几秒,∠AOE=42°.考点:角的计算;方向角;角平分线的定义.分析:(1)根据图示得到∠EOB=80°;然后由角平分线的定义来求∠COD的度数;(2)根据方向角的表示方法,可得答案;(3)设经过x秒,∠AOE=42°则依据题意列出方程并解答即可.解答:解:(1)∵∠AOB=20°,∠AOE=100°,∴∠EOB=∠AOE﹣∠AOB=80°.又∵OB平分∠AOC,OD平分∠AOE,∴∠AOC=2∠AOB=40°,∠AOD=∠AOE=50°,∴∠COD=∠AOD﹣∠AOC=50°﹣40°=10°;(2)由(1)知,∠AOD=50°,射线OD在东偏北50°,即射线OD在北偏东40°;故答案是:北偏东40°;(3)设经过x秒,∠AOE=42°则3x﹣5x+100°=42°,解得 x=29.即经过29秒,∠AOE=42°.点评:本题考查了方向角,利用了角平分线的性质,角的和差,方向角的表示方法.。
2014-2015学年初一数学期末试题及答案

2014~2015学年度七年级第一学期期末数学试卷 2015.1(时间:100分钟 满分:100分)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表1.有理数6的相反数是( ) A.-6 B.6 C.61 D.-612. 下列数轴画正确的是( )3.在32)5(,5,)5(),5(-------中正数有()A.1个B.2个C.3个D.4个 4.如图是一个正方体的表面展开图,则原正方体中与“我”字所在的面 相对的面上标的字是 A .爱 B .的C .学D .美5.单项式-2ab的系数是A.1B.-1 C .2 D . 36. 8点30分时,时钟的时针与分针所夹的锐角是( )A 、70°B 、75°C 、80°D 、60°7. 如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( )展开A1-1B1 2C1 22- DAB C第7题图上折右折 沿虚线剪下8.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),按收方由密文→明文(解密),已知加密规则为明文a ,b ,c 对应的密文a+1,2b+4,3c+9,例如明文1,2,3对应的密文为2,8,18,如果接收的密文7,18,15,•则解密得到的明文为( ) A .4,5,6 B .2,6,7 C . 6,7,2 D .7,2,6二、填空题(本题共24分,每小题3分)9. 现在网购越来越多地成为人们的一种消费方式,刚刚过去的2014年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破57000 000 000元,将57000 000 000元用科学记数法表示为 .10.把两块三角板按如图所示那样拼在一起,那么∠ABC 的度数是11.若427y x m +-2z 与n y x 33-tz 是同类项,则=m ____, =n _____;t =12. 如图,∠AOB=90°,以O 为顶点的锐角共有 个13. 如图是小明家的楼梯示意图,其水平距离(即:AB 的长度)为)2(b a +米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了)3(b a -米. 那么小明家楼梯的竖直高度(即:BC 的长度)为 米.14.方程413)12(2=++-x x a是一元一次方程,则=a ______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015 学年江苏省南通市七年级上学期数学期末试卷
一、选择题:本大题共 10 小题,每小题 2 分,共 20 分.在每小题给出的四个 选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题 卡相应位置上. 1. (2 分)﹣3 的绝对值是( A.3 B.﹣3 C. D. )
26. (6 分)如图,已知∠A=∠F,∠C=∠D,问 BD 与 CE 平行吗?并说明理由.
27. (6 分)实验与探究: 我们知道 写为小数形式即为 0. , 反之, 无限循环小数 0. 写成分数形式即 . 一 般地,任何一个无限循环小数都可以写成分数形式,现以无限循环小数 0. 为例 进行讨论:设 0. =x,由 0. =0.777…可知,10x﹣x=7. ﹣0. =7,即 10x﹣x=7.解
6. (2 分)如图,在 5×5 方格纸中,将图①中的三角形甲平移到图②中所示的 位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )
A.先向下平移 3 格,再向右平移 1 格 B.先向下平移 2 格,再向右平移 1 格 C.先向下平移 2 格,再向右平移 2 格 D.先向下平移 3 格,再向右平移 2 格 7. (2 分)下列命题中的假命题是( )
C.106﹣x=70﹣36 D.70(x﹣1)=36×(106﹣1)
二、填空题:本大题共 8 小题,每小题 2 分,共 16 分.不需写出解答过程,请 把答案直接填写在答题卡相应位置上. 11. (2 分)若某天的最高气温是为 6℃,最低气温是﹣3℃,则这天的最高气温
第 2 页(共 17 页)
比最低气温高
第 1 页(共 17 页)
A.两条直线被第三条直线所截,同位角相等 B.两点之间线段最短 C.邻补角的平分线互相垂直 D.对顶角的平分线在一直线上 8. (2 分)如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是 ( )ຫໍສະໝຸດ A.B.C
.
D. 9. (2 分)如图所示,把一个长方形纸片沿 EF 折叠后,点 D,C 分别落在 D′,C′ 的位置.若∠EFB=65°,则∠AED′等于( )
24. (6 分)把一些图书分给某班学生阅读,如果每人分 3 本,则剩余 20 本;如 果每人分 4 本,则还缺 25 本.请根据以上信息,提出一个用一元一次方程解决 的问题,并写出解答过程. 答:你设计的问题是 解: .
25. (6 分)如图,直线 AB 与 CD 相交于点 O,OE⊥CD,OF⊥AB,∠DOF=65°. 求: (1)∠AOC 的度数; (2)∠BOE 的度数.
第 4 页(共 17 页)
方程,得 x= .于是,得 0. = .现请探究下列问题: (1)请你把无限小数 0. 写成分数形式,即 0. = (2)请你把无限小数 0. 写成分数形式,即 0. = ; ;
(3)你能通过上面的解答判断 0. =1 吗?说明你的理由. 28. (6 分)已知∠AOB=20°,∠AOE=100°,OB 平分∠AOC,OD 平分∠AOE. (1)求∠COD 的度数; (2)若以 O 为观察中心,OA 为正东方向,射线 OD 的方向角是 ;
A.70° B.65° C.50° D.25° 10. (2 分)某道路一侧原有路灯 106 盏,相邻两盏灯的距离为 36 米,现计划全 部更换为新型的节能灯,且相邻两盏灯的距离变为 70 米.设需更换的新型节能 灯为 x 盏,则可列方程( A.70x=106×36 )
B.70×(x+1)=36×(106+1)
4. (2 分)下列运算正确的是( A.﹣3(x﹣1)=﹣3x﹣1
B.﹣3(x﹣1)=﹣3x+1 C .﹣ 3 ( x ﹣ 1 ) = ﹣ 3x ﹣ 3
D.﹣3(x﹣1)=﹣3x+3 5. (2 分)若 x=2 是关于 x 的方程 2x+3m﹣1=0 的解,则 m 的值为( A.﹣1 B.0 C.1 D. )
2. (2 分)“天上星星有几颗,7 后跟上 22 个 0”这是国际天文学联合会上宣布的 消息,用科学记数法表示宇宙空间星星颗数为( A.700×1020 B.7×1023 C.0.7×1023 )颗.
D.7×1022 )
3. (2 分)﹣2,0,2,﹣3 这四个数中最大的是( A.2 B.0 C.﹣2 D.﹣3 )
第 3 页(共 17 页)
20. (6 分)如图,已知 AB=16cm,C 是 AB 上一点,且 AC=10cm,点 D 是线段 AC 的中点,点 E 是线段 BC 的中点.求线段 DE 的长度.
21. (4 分)在三个整式 m2﹣1,m2+2m+1,m2+m 中,请你任意选择两个进行整 式的加法或减法运算,并进行化简,再求出当 m=2 时整式的值. 22. (6 分)先化简,再求值: 23. (10 分)解方程: (1)4x+3(2x﹣3)=12﹣2(x+4) ; (2) + =2﹣ . ,其中 x=2,y=﹣1.
16. (2 分)如图,边长为(m+3)的正方形纸片剪出一个边长为 m 的正方形之 后,剩余部分又剪拼成一个矩形(不重叠无缝隙) ,若拼成的矩形一边长为 3, 则另一边长是 .
17. (2 分) 已知某商店有两个不同进价的计算器都卖 91 元, 其中一个盈利 30%, 另一个亏损 30%,在这个买卖中这家商店共亏损 元.
℃. . .
12. (2 分)方程 2x+8=0 的解是
13. (2 分)已知∠A=35°35′,则∠A 的补角等于
14. (2 分)如图,直线 a∥b.直线 c 与直线 a,b 分别相交于点 A、点 B,AM⊥ b,垂足为点 M,若∠1=32°,则∠2= .
15. (2 分)a,b 是有理数,它们在数轴上的对应点的位置如图,把 a,﹣a,b, ﹣b 按由大到小的顺序排列,并用“>”连接为 .
18. (2 分)按下面的程序计算,若开始输入的值 x 为正分数,最后输出的结果 为 13,请写出一个符合条件的 x 的值 .
三、解答题:本大题共 10 小题,共 64 分.请在答题卡指定区域内作答,解答 时应写出文字说明、证明过程或演算步骤. 19. (8 分)计算: (1)23+(﹣17)+6+(﹣22) ; (2)﹣3+5×2﹣(﹣2)3÷4.