开放性与探索性问题

合集下载

高考数学复习综合讲解----第28讲 结论开放的探索性问题(含详解)

高考数学复习综合讲解----第28讲 结论开放的探索性问题(含详解)

1 2
2
其体积分别为:
11 ,
14 ,
11 .
12 12 6
点评:数学需要解题,但题海战术绝对不是学习数学的最佳策略.如何能
够跳出题海,事半功倍,关键是找到好的切入点.从本题来说,一方面当然要
最快找到一个可能的结果,另一方面,对于这种具有多重结果的结论开放性试
题,抓住条件中那些影响结果的动态因素,全面考察问题的各个方面,不仅可
以其中某一论断为条件,另一论断为结论(例如:⑤ ①),至少写出你
认为正确的三个命题:
.
讲解:本题考察对于函数性质的理解.
根据单调性的定义,不难知道:②⑤等价,又由于单调函数必有反函数,
所以,不难写出三个正确命题:② ⑤;④ ⑤;② ④(或④ ②).
进一步思考,函数的值域与单调性、奇偶性并无直接联系,而且单调性与
高考数学复习综合讲解----结论开放的探索性问题
题型预测
探索性问题是指那些题目条件不完备、结论不明确、或者答案不唯一,给学生留有较 大探索余地的试题.这一类问题立意于对发散思维能力的培养和考察,具有开放性,解法 活、形式新,无法套用统一的解题模式,不仅有利于考查和区分考生的数学素质和创新能 力,而且还可以有效地检测和区分考生的学习潜能,因而受到各方面的重视,近年来已成 为高考试题的一个新亮点.探索性问题一般有三类:(1)探索结论的开放性问题;(2) 探索条件的开放性问题;(3)探索规律(或策略)的问题.
例 3. 如 右 图 , 在 正 方 体 ABCD A1B1C1D1
A1
中,写出过顶点 A 的一个平面,使该平面与正 C1
B1 D1
方体的 12 条棱所成角都相等(写出你认为正确 的一个平面即可,不必考虑所有可能的情况).

开放性与探索性问题

开放性与探索性问题

探索型问题一(开放性问题)【考点透视】习惯上,人们把命题者对解题者的要求,将数学问题分为两类:一类是问题的条件和结论都有确定要求的题型;另一类是条件和结论中至少有一个没有确定要求的题型,并称前者为封闭题型,后者为开放题型.开放性问题的基本形式有:条件开放题(问题的条件不完备);结论开放题(问题的结论不确定或不唯一),这些问题的解决,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答. 现在还出现一些其他形式的开放题,如解题策略的开放题和题干结构的开放题. 前者主要侧重于解题方法或策略的选择和设计,后者主要是所给题目不完整,需要解题者把题目补充完整,然后完成解答.开放性问题对于训练和考查学生的发散思维,进而培养学生的创新意识和创新能力是十分有益的.教育部在《2000年初中毕业、升学考试改革的指导意见》中特别指出:数学考试“应设计一定结合情境的问题和开放性问题”.由于各地认真贯彻执行这一指导意见,所以在近年的各地中考中,开放性试题越来越受到命题者的青睐,也越来越受到广大初中教师和学生的重视. 【典型例题】 一、条件开放题解条件开放题,一种是直接补齐条件,使题目结论成立;另一种是需要我们作出探索去补齐条件使题目结论成立. 这两种情况所需补充的条件往往不惟一.例1 (1)如图7.1,△ABC 中,AB=AC ,D 为AC 边上的一点,要使 △ABC∽△BCD,还需要添加一个条件,这个条件可以是__________ _______________________(只需填写一个你认为适当的条件即可).(2001年淄博市中考题) (2)如图7.2,在△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条 件:__________________时,就可得到△ABC≌△FED(只需填写一个你认为正确的条件). (2003年无锡市中考题) 解:(1)BD=BC.(也可以是:∠ABC=∠BDC;或∠A=∠DBC;或BC∶CD=AC∶BC;或BC 2=AC•CD 中的某一个)(2)∠A=∠F. (或BC=ED 等) 说明:开放题的一个显著特点是:答案的不唯一性. 第(1)小题中,我们只需给出能使结论成立的一个答案即可.例2 一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是2,4x y =⎧⎨=⎩和2,4x y =-⎧⎨=-⎩,试写出符合要求的方程组____________________________.(只要填写一个即可)(2000年安徽省中考题)分析:我们只要分别构造出一个既含x ,又含y 的一个二元一次方程和一个二元二次方程. 构造方程实际上就是寻找x 与y 之间的关系.解:2,8.y x xy =⎧⎨=⎩说明:方程与函数有着紧密的联系,如果我们把方程组的解看作对应于平面直角坐标系中的两个点A (2,4),B (-2,-4),则我们可以写出过这两个点的一个一次函数的解析式(也是一个二元一次方程)和一个二次函数的解析式(也是一个二元二次方程,这个方程不唯一).B A CD 图7.1AB C DEF 图7.2本题在解法上可以用代数的方法来解,也可用几何的方法来解(形数结合——一种重要的数学思想方法);可以用待定系数法,运用演绎推理的方法来解,也可用直觉思维的方法来解,所以本题既是一个条件开放题,也是一个策略开放题.例3 已知:如图7.3.1,四边形ABCD 是⊙O 的内接四边形,A 是BD 的中点,过A 点的切线与CB 的延长线交于点E.(1)求证:AB•DA=CD•BE;(2)若点E 在CB 延长线上运动,点A 在BD 上运动,使切线EA 变为割线EFA ,其它条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)(2000年北京海淀区中考题)分析:本题的(2)是一个条件开放题.由于本题的结论与(1)相同,所以这一条件的获得,我们可以从(1)的证明过程中受到启示.(1)证明:连结AC.∵A 是BD 的中点,∴AB AD =,∠ACB=∠ACD.∵EA 切⊙O 于A ,∴∠EAB=∠ACB.又∵∠ABE=∠D,∴△EAB∽△ACD,∴AB∶CD=EB∶AD, ∴AB•AD=CD•BE.(2)解:如图7.3.2中,若有△EAB∽△ACD,则原结论成立,故我们只需探求使△EAB∽△ACD 的条件. 由于∠ABE=∠D,所以只要∠BAE=∠DAC 即可,这只要BF CD =即可.所以本题只要BF AD =,原结论就成立.说明:探求条件的过程,是一个由果索因的过程,这是数学中的一种重要的解题方法——分析法. 例4 如图7.4,AB 、AC 分别是⊙O 的直径和弦,D 为劣弧AC 上一点,DE⊥AB 于点H ,交⊙O 于点E ,交AC 于点F ,P 为ED 的延长线上一点.(1)当△PCF 满足什么条件时,PC 与⊙O 相切?为什么?(2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE·DF?为什么? (2002年济南市中考题)分析:(1)连OC.要使PC 与⊙O 相切,则只需∠PCO=900即可. 由∠OCA=∠OAC,∠PFC=∠AFH,即可寻找出△PCF 所要满足的条件 (2)要使AD 2=DE·DF,即AD DFDE AD=,也就是要使△DAF∽△DEA, 这样问题就较容易解决了.解:(1)当PC=PF (或∠PCF=∠PFC,或△PCF 是等边三角形)时,PC 与⊙O 相切. 连OC.∵PC=PF,∴∠PCF=∠PFC,图7.3.1图7.3.2H BAEP O CD F 图7.4∴∠PCO=∠PCF+∠OCA=∠PFC+∠OAC=∠AFH+∠AHF=900, ∴PC 与⊙O 相切.(2)当点D 是AC 的中点时,AD 2=DE·DF. 连结AE.∵AD CD =,∴∠DAF=∠DEA. 又∵∠ADF=∠EDA,∴△DAF∽△DEA, ∴AD DF DE AD=,即AD 2=DE·DF. 说明:本题是探索性开放题,在解决这类问题时,我们常从要获得的结论出发来探求该结论成立的条件.如第(1)小题中,若要PC 与⊙O 相切,则我们需要怎样的条件.第(2)小题也是如此.二、结论开放题结论开放题通常是结论不确定或不惟一,解题时,需作出探索来确定结论是否成立或会有那些结论. 例5 如图7.5.1,以等腰三角形ABC 的一腰AB 为直径的⊙O 交BC 于D ,过D 作DE⊥AC 于E ,可得结论DE 是⊙O 的切线.问:(1)若点O 在AB 上向点B 移动,以O 为圆心,OB 长为半径的圆 仍交BC 于D ,DE⊥AC 的条件不变,那么上述结论是否还成立?请说明理由.(2)如果AB=AC=5cm, sinA=35,那么圆心O 在AB 的什么位置时,⊙O与AC 相切? (2001年黑龙江省中考题)分析:(1)连OD. ∵OB=OD,∴∠OBD=∠ODB=∠C,∴ OD∥AC, 从而可得OD⊥DE,结论仍然成立.(2)若⊙O 与AC 相切,设切点为F ,连OF ,则由Rt△AOF 中可 求得OF=158,即OB=158. 解:(1)结论仍然成立. 如图7.5.2,连OD ,则OD=OB ,∠OBD=∠ODB. 又AB=AC ,∴∠B=∠C,∴∠ODB=∠C, ∴OD∥AC.∵DE⊥AC,∴OD⊥DE, ∴DE 是⊙O 的切线.(2)如图7.5.3,若AC 与⊙O 切于点F ,连OF ,则OF⊥AC,即△AOF 是直角三角形,∴sinA=355OF OB AO OB ==-, ∴OB=158, 即当OB=158时,⊙O 与AC 相切.说明:本例的两小题都属于结论不确定性的开放性问题. 第(1)小题是直接从题设条件出发探求结论是否成立;第(2)小题是从题设的结论出发来探求结论成立的条件,这也是解决这类问题的常用图7.5.1AOBECD图7.5.2ABCO F图7.5.3方法.例6 如图7.6.1,⊙O 的直径AB ,过半径OA 的中点G 作弦CE⊥AB,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F 、M.(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM∽△COM;(3)如图7.6.2,若将垂足G 改取为半径OB 上任意一 点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线 AB 于点F 、M. 试判断:此时是否仍有△FDM∽△COM? 证明你的结论. (2003年苏州市中考题)(1)解:∵AB 是⊙O 的直径,CE⊥AB,∴AC CE ,CG=EG.在Rt△COG 中,∵OG=12OC ,∴∠OCG=30,∴∠COA=60. 又∠CDE 的度数=12CAE 的度数=AC 的度数=∠COA=60,∴∠FDM=180-∠COA=120.(2)证明:∵∠COM=180-∠COA=120,∴∠COM=∠FDM. 在Rt△CGM 和Rt△EGM 中, GM=GM ,CG=EG ,∴Rt△CGM≌Rt△EGM, ∴∠GMC=∠GME.又∠DMF=∠GME,∴∠OMC=∠DMF, ∴△FDM∽△COM.(3)解:结论仍然成立.∵∠FDM=180-∠CDE, ∴∠CDE 的度数=12CAE 的度数=AC 的度数=∠COA, ∴∠FDM=180-∠COA=∠COM.∵AB 为直径,CE⊥AB,∴在Rt△CGM 和Rt△EGM 中, GM=GM ,CG=EG ,∴Rt△CGM≌Rt△EGM, ∴∠GMC=∠GME, ∴△FDM∽△COM.说明:本题的第(3)小题是在第(2)小题改变条件的情况下,探求结论是否还成立. 在探求时应寻着(2)的解题思路来进行.三、解题策略开放题解题策略开放题,现在更多的是以要求解题者设计解题方案来设计题目.例7 一副三角板由一个等腰直角三角形和一个含300的直角三角形组成,利用这副三角板构成一个含15DAF C EDM OG BAF CEMO G B 图7.6.1图7.6.20角的方法很多,请你画出其中两种不同构成的示意图,并在图上作出必要的标注,不写作法.(2000年荆州市中考题)分析:本题可利用这副三角板中的角做“加减运算”:600-450,或450-300,或600+450-900等来得到150的角.解:如图所示. 图7.7.1中就包含有两中构造方法,∠ABD和∠ACD都等于15;图7.7.2中,∠EFG=15.请同学们试着拼出其它的图形.说明:这类拼图组合,给出了一定的条件,但解决问题的办法需要我们自己来寻找. 通常解决这类问题的方法不惟一. 用现有的工具去解决问题,这在实际生产和生活中常会遇到.例8 如图,把边长为2cm的正方形剪成四个全等的直角三角形.请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),并把你的拼法仿照图1按实际大小画在方格纸内(方格为1cm×1cm).(1)不是正方形的菱形(一个);(2)不是正方形的矩形(一个);(3)梯形(一个);(4)不是矩形和菱形的平行四边形(一个);(5)不是梯形和平行四边形的凸四边形(一个);(6)与以上画出的图形不全等的其他凸四边形(画出的图互不全等,能画出几个画几个,至少画三个). (2001年徐州市中考题)解:(1)(2)3)(4)(5)(6)说明:本例是一道设计图形的开放性试题,这类题近几年在全国各地的中考试题中经常出现.设计型开放题,有利于培养学生的发散性思维能力,有利于充分发挥学生的想象力和创造力,这对培养学生的创新意识和创新精神具有着积极的作用,例9 有一种“二十四点”游戏,其规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可以运算得(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,-6,10,用上述规则写出三种不同方法的算式,使其结果等于24,运算如下:(1)_____________________;(2)________________________;(3)_________________________.AB CD EFG图7.7.1 图7.7.1图7.8另有四个有理数3,-5,7,-13,可通过运算式(4)____________________________,使其结果等于24. (2001年杭州市中考题)分析:“二十四点”游戏,小学生也可参加. 本题将数的范围扩大到整数范围,变成新的游戏,其实就是有理数的运算.本题具有开放性,答案是不唯一的.解:(1)3×[4+(-6)+10]=24;(2)4-(-6)÷3×10=24;(3)(10-4)-3×(-6)=24. (4)[(-5)×(-13)+7]÷3=24.说明:本题将有理数的运算与学生熟知的游戏结合起来,使数学学习更具趣味性.四、题目结构开放题以看作是一个条件开放题.例10 某一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.(2001年吉林省中考题)分析:这里“距离”和“速度”都有了,故我们可以考虑从时间上去把本题补完整. 解一:摩托车和运货汽车同时从甲地驶向乙地,则摩托车比运货汽车早到几分钟?设摩托车比运货汽车早到x 分钟,则4040603545x ⎛⎫-⨯= ⎪⎝⎭,x=4021.答:摩托车比运货汽车早到4021分钟. 解二:摩托车和运货汽车分别从甲地和乙地同时相向而行,则几分钟后它们相遇? 设摩托车与运货汽车出发x 分钟后相遇,则(45+35)×60x= 40,x=30. 答:摩托车与运货汽车出发30分钟后相遇.解三:运货汽车从甲地出发10分钟后,摩托车从甲地出发去追赶运货汽车,问在到达乙地前,摩托车能否追上运货汽车?运货汽车走完全程需408357=小时,摩托车走完全程需408459=小时, 摩托车比运货汽车少用88167963-=小时.∵1610906360126-=>, ∴摩托车在运货汽车到达乙地前能追上.解四:摩托车和运货汽车分别从甲、乙两地沿由甲地往乙地的方向同向而行,问经过几小时摩托车可追上运货汽车?设经过x 小时摩托车可追上运货汽车,则 45x=40+35x ,解得x=4.答:经过4小时摩托车可追上运货汽车.说明:由于行程问题是大家比较熟悉的应用问题,所以我们还可以编出很多这样的问题来,同学们不妨试试.习题七一、填空题 1.(1)写出和为6的两个无理数_________________.(2003年绍兴市中考题)(2)若关于x 的方程x 2+kx-12=0的两根均是整数,则k 的值可以是______________.(只要求写出两个) (2001年浙江省中考题) 2.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点D ,连结AD ,请你添加一个条件,使△ABD≌△ACD,并说明全等的理由. 你添加的条件是_________________________.(2002年金华市中考题) 二、解答题3.做一做:用四块如图1的瓷砖聘成一个正方形,使 拼成的图案成轴对称图形.请你在图2、图3 图4中各画出一种拼法(要求三种拼法各不 相同,所画图案中的阴影部分用斜线表示).(2003年无锡市中考题)4.先根据要求编写应用题,再解答你所编写的应用题.编写要求:(1)编写一道行程问题的应用题,使得根据题意列出的方程为120120110x x -=+; (2)所编应用题完整,题意清楚,联系生活实际且解符合实际. (2001年青岛市中考题)5.同学们知道:只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3)、(4). 解:设有两边和一角对应相等的两个三角形. 方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等.(2000年广东省中考题)6.如图,⊙O 与⊙O 1完外切于点T ,PT 为其内公切线,AB 为其外公切线,A 、B 为切点,AB 与TP 相交于点P,根据图中所给出的已知条件及线段,请写出一个正确结论,并加以证明.(2001年杭州市中考题) 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,给出5个论断: ①CD⊥AB;②BE⊥AC;③AE=CE;④∠ABE=30;⑤CD=BE. (1)如果论断①②③④都成立,那么论断⑤一定成立吗? 答:____________;(2)从论断①②③④中选取3个作为条件,将论断⑤作为结论, 组成一个真命题,那么你选的3个论断是__________________ (只需填论断的序号);(3)用(2)中你选的3个论断作为条件,论断⑤作为结论,组图1 图2 图3 图4 第3题A BP TO O 第6题ABD C E第7题BAE成一道证明题,画出图形,写出已知、求证,并加以证明.(2003年徐州市中考题)8.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.(1)求证:AF⊥CD;(2)在你连接BE后,还能得出什么新的结论?请写出三个(不要求证明).(2002年江西省中考题)9.已知在直角坐标系中,直线y=+x轴、y轴分别交于点A、点B,以AB为一边的等腰△ABC的底角为300,请在坐标系中画出△ABC,并求出点C的坐标.(2000年北京市崇文区中考题)10.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28.(1)求∠ACM的度数;(2)在MN上是否存在点D,使AB•CD=AC•BC?为什么?(2001年广州市中考题)参考答案:1. (1(2) 1,-1(或4,-4;或11,-11)2.答案不唯一. 添加的条件可以是:①AB=AC;②∠B=∠C;③BD=DC(或D是BC中点);④∠BAD=∠CAD (或AD平分∠BAC)等.3.略.4.所编应用题符合编写要求. 正确设未知数、列方程,正确求出方程的解.5.方案(2):若这角是直角,则这两个三角形全等.方案(3):在两个钝角三角形中,有两边和一角对应相等的两个三角形.方案(4):在两个锐角三角形中,有两边和一角对应相等的两个三角形.6.AB=2PT. 证明略.7.(1)一定. (2)①、③、④. (3)已知,如图,在△ABCD、E分别在AB、AC上,CD⊥AB,AE=CE,∠ABE=30. 求证:CD=BE. 证明:作EF∥CD交AB于F. ∵AE=CE,∴AF=FD,∴CD=2EF. ∵CD⊥AB,∴EF⊥AB. 在Rt△EFB中,∠EFB=90,∠EBF=30,∴BE=2EF,∴CD=BE. 图要正确.8.(1)证明:连结AC、AD,∵AB=AE,∠ABC=∠AED,BC=ED,∴△ABC≌△AED,∴AC=A D. 又∵F为CD的中点,∴AF⊥CD.(2)①BE∥CD;②AF⊥BE;③△ACF≌△ADF;④∠BCF=∠EDF;⑤五边形ABCDE是以直线AF为对称轴的轴对称图形. (还可写出其它的结果)9.如图,C1(6,0),C2(0,-,C3(0),C4(-4,A BCMN第10题ACBDEF第7题C5(2),C6(2,.10.(1)∵AB是直径,∠ACB=90. 又∠A=28,∴∠B=62.又MN是切线,C为切点,∴∠ACM=62.(2)在MN上存在符合条件的点D. 证明:过点A作AD⊥MN 于D. 在Rt△ABC和Rt△ACD中,MN切半圆ACB于点C,∴∠B=∠ACD,∴△ABC∽△ACD,∴AB BCAC CD,即AB•CD=AC•BC.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

技术人员面试提问技巧

技术人员面试提问技巧

技术人员面试提问技巧在招聘技术人员的过程中,面试被视为最重要的环节之一。

面试时,面试官通过提问来了解应聘者的技术能力、专业知识和解决问题的能力。

本文将介绍几个技术人员面试的提问技巧,帮助面试官有效评估应聘者的能力。

1. 开放性问题:面试官可以通过开放性问题来了解应聘者的思维方式和解决问题的能力。

开放性问题要求应聘者详细解释自己的思路和展示解决问题的能力。

例如,面试官可以询问应聘者在处理复杂技术问题时的思考过程,或者要求应聘者解释一个技术概念。

2. 行动性问题:行动性问题可以帮助面试官了解应聘者在特定情况下如何采取行动。

这些问题要求应聘者提供实际的解决方案,而不仅仅停留在理论层面。

例如,面试官可以要求应聘者描述一个技术项目的实施过程,包括计划、执行和评估。

3. 探索性问题:探索性问题用于评估应聘者的深度和广度。

面试官可以通过这些问题来了解应聘者对技术领域的全面理解。

这些问题通常需要应聘者进行实际操作,展示他们的技术知识和技能。

例如,面试官可以要求应聘者编写一个简单的程序或解释一个复杂的算法。

4. 填空问题:填空问题可以帮助面试官评估应聘者对技术领域的熟悉程度。

面试官可以提供一些相关的技术术语或概念,并要求应聘者填写具体的定义或解释。

这些问题要求应聘者在短时间内提供准确的答案。

5. 心理学问题:心理学问题可以帮助面试官了解应聘者外在条件和内在素质。

这些问题可以从应聘者的个人发展和团队合作等方面进行提问。

例如,面试官可以询问应聘者在遇到困难时如何应对,或者能否适应不同的工作环境。

通过运用上述提问技巧,面试官能够更好地了解应聘者的技术能力和解决问题的能力。

在面试过程中,面试官还应该注意综合考虑应聘者的实际经验、专业技能和团队协作能力,以便做出全面的评估。

当然,面试官在提问时应该遵循公平公正的原则,以确保面试的公正性和准确性。

总结起来,技术人员面试提问技巧至关重要。

开放性问题、行动性问题、探索性问题、填空问题和心理学问题都是评估应聘者能力的有效方法。

重视开放性、探索性问题教学提高学生思维品质

重视开放性、探索性问题教学提高学生思维品质
(2 )已知a=1,c=2 , ; 求b
五、 探究定理的证明, 拓宽定理的应用 目 前, 世界上可以查到的证明勾股定理的方法有 几百种。 教材中虽然已对勾股定理进行了证明, 但在教 学中, 若能够根据学生的能力,适当引导补充一些证 法, 不仅有利于定理的应用和理解, 而且能使学生获得 探究解决问题的新方法, 更有利于培养学生的创造性
学科教学
重_ 开欢性一 o 问题教_ 视 一 探索rm 学
开远布第‘中学 普 一 母
由于开放性问题要么条件不完备 ,要么结论不确
4 !产_ c * 0** f i/ 71 ,* v4 4
庚,曾建议发射一种勾股定理的图形,如果宇宙人是 “ 文明的人”那么他们一定会认识这种“ , 语言” 你认 的,
为这有可能吗?
定, 因此这类试题具有新颖 、 灵活、 发散的特点。 而且解
答这类问题往往没有固定 的模式 ,需要应用观察 、 类
比、 归纳、 推测等多种思维活动来寻找解题的策略, 具
有较为广阔的思维空间,因而更能考查学生的探索能
力和创新精神。
此问题提出后, 学生会展开激烈的争论, 调动了学
生思维的积极性, 急于知道新知识的欲火被点燃 , 激发
七 2 一一 户T 图 (4 )
。I_ \ /
C比
说明:对于此例的研究, 不仅使学生掌握了多种证 明问题的方法, 培养其思维能力, 而且丰富了研究数学
问题的方法和手段。
C B
E
D
这样的问题系列富有探索性,学生纷纷动脑、 动 口、 动手, 积极参与探索, 不仅获得了知识, 而且自己总
结了一般规律, 真正感受到了探索的艰难和成功的欣
球的“ , 人”向宇宙发出了许多信号。 如地球上的人类的 语言 、 、 音乐 各种图形等, 说我国著名的 学家华罗

开放性探索性问题专题复习

开放性探索性问题专题复习

N M HD CFE O图1一、双基强化一、 选择题【下列各题的四个选项中,有且只有一个选项是正确的.】1.9的平方根是……………………………………………………………………( ) (A )3; (B )-3; (C )3和-3; (D )9. 2.下列实数中,是无理数的是……………………………………………………( ) (A )2; (B )25; (C )722; (D )cos 60. 3.在下列二次根式中,与a 是同类二次根式的是………………………………( )(A )2a ; (B )23a ; (C )3a ; (D )4a4.下列方程有实数根的是 ………………………………………………………( ) (A )210x x -+=; (B )40x =; (C )111x x x =--; (D )210x +=. 5.某中学篮球队14名队员的年龄情况如下表,则这些队员年龄的众数和中位数分别是…………………………………………………………………………………………( ) (A )15,16; (B )16,16; (C )16,16.5; (D )17,16.5. 6.如图1,EF 是⊙O 的直径,CD 交⊙O 于M 、N ,H 为MN 的中点,EC ⊥CD于点C ,FD ⊥CD 于点D ,则下列结论错误的是……( ) (A )CM ﹦DN ; (B ) CH ﹦HD ;(C )OH ⊥CD ; (D )EC OHOH FD=. 二、填空题:7.我国最长的河流长江全长约为6300千米,用科学记数法表示为 千米. 8.计算:4nn xx ÷= .9.因式分解:2a 2-2= . 10.化简221(1)(1)x x x ---的结果是 . 11.方程+12x =的解是 .年龄(单位:岁) 1415 16 17 18 人数23432Oxy图3图6DCB A图5则实数m 的取值范围是 .13.从等边三角形、平行四边形、矩形、菱形、圆、等腰梯形共6个图形中任选一个图形,选出的图形恰好是中心对称图形的概率为 .14.某校对初中学生开展的四项课外活动进行了一 次抽样调查(每人只参加其中的一项活动),调查结果如图3 所示.根据图示所提供的样本数据,可得学生参加科技活动 的频率是 .15.已知3,5a b ==,且b 与a 反向,则用向量b 表示向量a ,即a = b . 16.如图4,自动扶梯AB 段的长度为20米,倾斜角A 为α, 高度BC 为 米.(结果用含α的三角比表示)17.如图5,在四边形ABCD 中,点M ,N 分别在AB 、BC 上, 将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B = 度.18.如图6,等腰△ABC 的顶角A 的度数是36°,点D 是腰AB 的 黄金分割点(AD >BD ),将△BCD 绕着点C 按照顺时针方向旋转一个角 度后点D 落在点E 处,联结AE ,当AE ∥CD 时,这个旋转角是 度. 三、解答题:19.计算:120213tan 6014π-⎛⎫++-+ ⎪+⎝⎭(-1).20.解不等式组:⎪⎩⎪⎨⎧≤--+<+-.1312412x x x x , ,并把解集在数轴上表示出来.ACBα图4①② 3 0 21 -1-2 45D'D CBADCBA二、例题引路例1.(1) 如图,点D 是等腰△ABC 的底边AB 上的点,若AC=BC 且∠ACB=100°,将△ACD 绕点C 逆时针旋转,使它与△BCD ’重合,则∠D ’BA = 度.(2) 如图,在四边形ABCD 中,若AD//BC ,BC=CD=AC =6, AB =23,则BD 长为例2.二次函数223y x =的图像如图所示,点0A 位于坐标原点, 点1A ,2A ,3A ,…, 2012A 在y 轴的正半轴上,点1B ,2B ,3B ,…, 2012B 在二次函数223y x =位于第一象限的图像上,若△011A B A,△122A B A ,△233A B A ,…,△201120122012A B A 都为等边三角形,求△201120122012A B A 的边长。

学术论文撰写中的开放性问题和探索性研究

学术论文撰写中的开放性问题和探索性研究

学术论文撰写中的开放性问题和探索性研究学术论文是研究者交流和传播研究成果的重要方式,它不仅要求准确地表达研究结果,还要能够引发读者的思考和进一步的探索。

然而,在学术论文撰写中存在一些开放性问题,如何进行探索性研究也是一个值得关注的话题。

一、开放性问题1. 数据的可信性和可重复性在学术研究中,数据的可信性和可重复性是保证研究结果可靠性的基础。

然而,一些研究中的数据来源不明确,或者数据处理方法不透明,导致读者对研究结果的可信性产生怀疑。

此外,一些研究结果无法被其他研究者重复,也给学术界带来了困扰。

2. 结果的解释和推广学术论文中的研究结果需要进行合理的解释和推广,以便读者能够理解和应用。

然而,有时候研究者在解释结果时过于简单或过于复杂,导致读者无法真正理解研究的意义和应用价值。

此外,一些研究结果的推广性也存在问题,因为不同研究对象和环境的差异可能导致结果的不适用性。

3. 方法的创新和改进学术研究需要不断创新和改进研究方法,以提高研究的准确性和有效性。

然而,一些研究中的方法可能存在局限性,或者没有充分考虑到研究对象的特点。

因此,研究者需要思考如何创新和改进研究方法,以解决现有方法存在的问题。

二、探索性研究1. 深入挖掘问题背后的原因和机制学术研究应该不仅仅关注问题的表面现象,还要深入挖掘问题背后的原因和机制。

通过探索问题的本质,研究者可以更好地理解和解决问题。

例如,对于一个社会问题,研究者可以通过深入调查和分析,找出问题的根源和影响因素,从而提出更有效的解决方案。

2. 跨学科研究的重要性在学术研究中,跨学科研究可以帮助研究者从不同角度理解和解决问题。

通过与其他学科的专家合作,研究者可以借鉴其他学科的理论和方法,为自己的研究提供新的思路和视角。

例如,生物学和计算机科学的结合可以推动生物信息学的发展,为生物研究提供更多的工具和方法。

3. 鼓励创新性思维和实践学术研究需要鼓励创新性思维和实践,以推动学术界的发展。

四种形态谈话表

四种形态谈话表

四种形态谈话表.四种形态谈话表是一种用于展示不同谈话形式的工具,它有助于我们在不同的情境下使用适合的技巧和策略进行有效的交流。

以下是对四种形态谈话表的介绍:1. 提问形态:这种形态的谈话表包含了各种类型的问题,如开放式问题、封闭式问题、探索性问题等。

提问形态的目的是引导对方思考和表达意见,帮助我们了解对方的观点和想法。

通过提问形态,我们可以激发对话的活跃性,促进信息的交流和共享。

2. 听取形态:这种形态的谈话表注重倾听和理解对方的观点和感受。

通过使用积极的非言语和言语反馈,如头点、微笑、掌声、鼓励性的话语等,表明我们正在倾听和关注对方。

这种形态的谈话表有助于建立信任和深入的沟通。

同时,它也强调了重要的沟通技巧,如主动倾听和理解对方的意图。

3. 陈述形态:这种形态的谈话表用于阐述我们自己的观点和观点。

通过使用清晰的语言和逻辑性的陈述,我们可以有效地传达信息和支持自己的观点。

陈述形态的谈话表强调了自信和自信的表达能力,同时也提醒我们要尊重他人的观点和回应。

4. 引导形态:这种形态的谈话表着重于指导对话的方向和进程。

通过使用指导性问题和建议,我们可以推动对话的发展,并解决可能出现的争议和冲突。

引导形态的谈话表重视谈话的目标和结果,强调合作和协作,以实现共同的利益。

四种形态谈话表共同构成了一个全面和多样化的工具箱,帮助我们在不同情境下灵活地应对各种沟通需求。

无论是在工作场所、家庭、社交场合还是其他环境中,这些形态的谈话表都能够提供有效的交流方式,促进有效的沟通和理解。

四种形态谈话表是非常有用的工具,可以帮助我们在各种情况下进行有效的交流。

它们可以应用于各个领域,包括工作场所、家庭、社交场合等,为我们提供了灵活、多样化的交流方式。

下面将详细介绍四种形态谈话表以及它们的应用。

第一种形态是提问形态。

通过提问,我们可以主动引导对方思考和表达意见。

开放式问题,如:“你对这个问题有什么看法?”可以促使对方更深入地思考,并表达出他们的观点。

探索性问题

探索性问题

[规律方法] 对于结论探索性问题,需要先得出一个结论, 再进行证明.注意含有两个变量的问题,变量归一是常用 的解题思想,一般把其中的一个变量转化为另一个变量, 根据题目条件,确定变量的值,遇到数列中的比较大小问 题可以采用构造函数,根据函数的单调性进行证明,这是 解决复杂问题常用的方法.
存在探索性问题
(1)求证:A1C⊥平面 AB1C1; (2)若 D 是棱 CC1 的中点,在棱 AB 上是否存在一点 E,使 得 DE∥平面 AB1C1?若存在,请确定点 E 的位置;若不 存在,请说明理由.
[解]
(1)证明:∵AB=2BC,AC= 3BC,
π ∴△ABC 为直角三角形且∠ACB= , 2 ∴BC⊥AC,又 AA1⊥平面 ABC, ∴BC⊥AA1,又 AA1∩AC=A, ∴BC⊥平面 ACC1A1, ∴BC⊥A1C,B1C1⊥A1C. ∵AC=AA1, ∴侧面 ACC1A1 为正方形, ∴AC1⊥A1C. 又 B1C1∩AC1=C1, ∴A1C⊥平面 AB1C1.
n n
[规律方法]
对于数列问题,一般要先求出数列的通项,
不是等差数列和等比数列的要转化为等差数列或等比数 列.遇到 Sn 要注意利用 Sn 与 an 的关系将其转化为 an,再 研究其具体性质.遇到(-1)n 型的问题要注意分 n 为奇数 与偶数两种情况进行讨论,本题易忘掉对 n 的奇偶性的讨 论而致误.
条件探索性问题
此类问题的基本特征是: 针对一个结论, 条件未知需探求, 或条件增删需确定,或条件正误需判定,解决此类问题的 基本策略是:执果索因,先寻找结论成立的必要条件,再 通过检验或认证找到结论成立的充分条件,在“执果索 因”的过程中,常常会犯的一个错误是不考虑推理过程的 可逆与否,误将必要条件当作充分条件,应引起注意.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探索型问题一(开放性问题)【考点透视】习惯上,人们把命题者对解题者的要求,将数学问题分为两类:一类是问题的条件和结论都有确定要求的题型;另一类是条件和结论中至少有一个没有确定要求的题型,并称前者为封闭题型,后者为开放题型.开放性问题的基本形式有:条件开放题(问题的条件不完备);结论开放题(问题的结论不确定或不唯一),这些问题的解决,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答. 现在还出现一些其他形式的开放题,如解题策略的开放题和题干结构的开放题. 前者主要侧重于解题方法或策略的选择和设计,后者主要是所给题目不完整,需要解题者把题目补充完整,然后完成解答.开放性问题对于训练和考查学生的发散思维,进而培养学生的创新意识和创新能力是十分有益的.教育部在《2000年初中毕业、升学考试改革的指导意见》中特别指出:数学考试“应设计一定结合情境的问题和开放性问题”.由于各地认真贯彻执行这一指导意见,所以在近年的各地中考中,开放性试题越来越受到命题者的青睐,也越来越受到广大初中教师和学生的重视. 【典型例题】 一、条件开放题解条件开放题,一种是直接补齐条件,使题目结论成立;另一种是需要我们作出探索去补齐条件使题目结论成立. 这两种情况所需补充的条件往往不惟一.例1 (1)如图7.1,△ABC 中,AB=AC ,D 为AC 边上的一点,要使 △ABC∽△BCD,还需要添加一个条件,这个条件可以是__________ _______________________(只需填写一个你认为适当的条件即可).(2001年淄博市中考题) (2)如图7.2,在△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条 件:__________________时,就可得到△ABC≌△FED(只需填写一个你认为正确的条件). (2003年无锡市中考题) 解:(1)BD=BC.(也可以是:∠ABC=∠BDC;或∠A=∠DBC;或BC∶CD=AC∶BC;或BC 2=AC •CD 中的某一个)(2)∠A=∠F. (或BC=ED 等) 说明:开放题的一个显著特点是:答案的不唯一性. 第(1)小题中,我们只需给出能使结论成立的一个答案即可.例2 一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是2,4x y =⎧⎨=⎩和2,4x y =-⎧⎨=-⎩,试写出符合要求的方程组____________________________.(只要填写一个即可)(2000年安徽省中考题)分析:我们只要分别构造出一个既含x ,又含y 的一个二元一次方程和一个二元二次方程. 构造方程实际上就是寻找x 与y 之间的关系.解:2,8.y x xy =⎧⎨=⎩说明:方程与函数有着紧密的联系,如果我们把方程组的解看作对应于平面直角坐标系中的两个点A (2,4),B (-2,-4),则我们可以写出过这两个点的一个一次函数的解析式(也是一个二元一次方程)和一个二次函数的解析式(也是一个二元二次方程,这个方程不唯一).B A CD 图7.1AB C DEF 图7.2本题在解法上可以用代数的方法来解,也可用几何的方法来解(形数结合——一种重要的数学思想方法);可以用待定系数法,运用演绎推理的方法来解,也可用直觉思维的方法来解,所以本题既是一个条件开放题,也是一个策略开放题.例3 已知:如图7.3.1,四边形ABCD 是⊙O 的内接四边形,A 是BD 的中点,过A 点的切线与CB 的延长线交于点E.(1)求证:AB •DA=CD •BE ;(2)若点E 在CB 延长线上运动,点A 在BD 上运动,使切线EA 变为割线EFA ,其它条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)(2000年北京海淀区中考题)分析:本题的(2)是一个条件开放题.由于本题的结论与(1)相同,所以这一条件的获得,我们可以从(1)的证明过程中受到启示.(1)证明:连结AC.∵A 是BD 的中点,∴AB AD =,∠ACB=∠ACD.∵EA 切⊙O 于A ,∴∠EAB=∠ACB.又∵∠ABE=∠D,∴△EAB∽△ACD,∴AB∶CD=EB∶AD, ∴AB •AD=CD •BE.(2)解:如图7.3.2中,若有△EAB∽△ACD,则原结论成立,故我们只需探求使△EAB∽△ACD 的条件. 由于∠ABE=∠D,所以只要∠BAE=∠DAC 即可,这只要BF CD =即可.所以本题只要BF AD =,原结论就成立.说明:探求条件的过程,是一个由果索因的过程,这是数学中的一种重要的解题方法——分析法. 例4 如图7.4,AB 、AC 分别是⊙O 的直径和弦,D 为劣弧AC 上一点,DE⊥AB 于点H ,交⊙O 于点E ,交AC 于点F ,P 为ED 的延长线上一点.(1)当△PCF 满足什么条件时,PC 与⊙O 相切?为什么?(2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE·DF?为什么? (2002年济南市中考题)分析:(1)连OC.要使PC 与⊙O 相切,则只需∠PCO=900即可. 由∠OCA=∠OAC,∠PFC=∠AFH,即可寻找出△PCF 所要满足的条件 (2)要使AD 2=DE·DF,即AD DFDE AD=,也就是要使△DAF∽△DEA, 这样问题就较容易解决了.解:(1)当PC=PF (或∠PCF=∠PFC,或△PCF 是等边三角形)时,PC 与⊙O 相切. 连OC.∵PC=PF,∴∠PCF=∠PFC,图7.3.1图7.3.2H BAEP O CD F 图7.4∴∠PCO=∠PCF+∠OCA=∠PFC+∠OAC=∠AFH+∠AHF=900, ∴PC 与⊙O 相切.(2)当点D 是AC 的中点时,AD 2=DE·DF. 连结AE.∵AD CD =,∴∠DAF=∠DEA. 又∵∠ADF=∠EDA,∴△DAF∽△DEA, ∴AD DF DE AD=,即AD 2=DE·DF. 说明:本题是探索性开放题,在解决这类问题时,我们常从要获得的结论出发来探求该结论成立的条件.如第(1)小题中,若要PC 与⊙O 相切,则我们需要怎样的条件.第(2)小题也是如此.二、结论开放题结论开放题通常是结论不确定或不惟一,解题时,需作出探索来确定结论是否成立或会有那些结论. 例5 如图7.5.1,以等腰三角形ABC 的一腰AB 为直径的⊙O 交BC 于D ,过D 作DE⊥AC 于E ,可得结论DE 是⊙O 的切线.问:(1)若点O 在AB 上向点B 移动,以O 为圆心,OB 长为半径的圆 仍交BC 于D ,DE⊥AC 的条件不变,那么上述结论是否还成立?请说明理由.(2)如果AB=AC=5cm, sinA=35,那么圆心O 在AB 的什么位置时,⊙O与AC 相切? (2001年黑龙江省中考题)分析:(1)连OD. ∵OB=OD,∴∠OBD=∠ODB=∠C,∴ OD∥AC, 从而可得OD⊥DE,结论仍然成立.(2)若⊙O 与AC 相切,设切点为F ,连OF ,则由Rt△AOF 中可 求得OF=158,即OB=158. 解:(1)结论仍然成立. 如图7.5.2,连OD ,则OD=OB ,∠OBD=∠ODB. 又AB=AC ,∴∠B=∠C,∴∠ODB=∠C, ∴OD∥AC.∵DE⊥AC,∴OD⊥DE, ∴DE 是⊙O 的切线.(2)如图7.5.3,若AC 与⊙O 切于点F ,连OF ,则OF⊥AC,即△AOF 是直角三角形,∴sinA=355OF OB AO OB ==-, ∴OB=158, 即当OB=158时,⊙O 与AC 相切.说明:本例的两小题都属于结论不确定性的开放性问题. 第(1)小题是直接从题设条件出发探求结论是否成立;第(2)小题是从题设的结论出发来探求结论成立的条件,这也是解决这类问题的常用图7.5.1AOBECD图7.5.2ABCO F图7.5.3方法.例6 如图7.6.1,⊙O 的直径AB ,过半径OA 的中点G 作弦CE⊥AB,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F 、M.(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM∽△COM;(3)如图7.6.2,若将垂足G 改取为半径OB 上任意一 点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线 AB 于点F 、M. 试判断:此时是否仍有△FDM∽△COM? 证明你的结论. (2003年苏州市中考题)(1)解:∵AB 是⊙O 的直径,CE⊥AB,∴AC CE ,CG=EG.在Rt△COG 中,∵OG=12OC ,∴∠OCG=30,∴∠COA=60. 又∠CDE 的度数=12CAE 的度数=AC 的度数=∠COA=60,∴∠FDM=180-∠COA=120.(2)证明:∵∠COM=180-∠COA=120,∴∠COM=∠FDM. 在Rt△CGM 和Rt△EGM 中, GM=GM ,CG=EG ,∴Rt△CGM≌Rt△EGM, ∴∠GMC=∠GME.又∠DMF=∠GME,∴∠OMC=∠DMF, ∴△FDM∽△COM.(3)解:结论仍然成立.∵∠FDM=180-∠CDE, ∴∠CDE 的度数=12CAE 的度数=AC 的度数=∠COA, ∴∠FDM=180-∠COA=∠COM.∵AB 为直径,CE⊥AB,∴在Rt△CGM 和Rt△EGM 中, GM=GM ,CG=EG ,∴Rt△CGM≌Rt△EGM, ∴∠GMC=∠GME, ∴△FDM∽△COM.说明:本题的第(3)小题是在第(2)小题改变条件的情况下,探求结论是否还成立. 在探求时应寻着(2)的解题思路来进行.三、解题策略开放题解题策略开放题,现在更多的是以要求解题者设计解题方案来设计题目.例7 一副三角板由一个等腰直角三角形和一个含300的直角三角形组成,利用这副三角板构成一个含15DAF C EDM OG BAF CEMO G B 图7.6.1图7.6.20角的方法很多,请你画出其中两种不同构成的示意图,并在图上作出必要的标注,不写作法.(2000年荆州市中考题)分析:本题可利用这副三角板中的角做“加减运算”:600-450,或450-300,或600+450-900等来得到150的角.解:如图所示. 图7.7.1中就包含有两中构造方法,∠ABD和∠ACD都等于15;图7.7.2中,∠EFG=15.请同学们试着拼出其它的图形.说明:这类拼图组合,给出了一定的条件,但解决问题的办法需要我们自己来寻找. 通常解决这类问题的方法不惟一. 用现有的工具去解决问题,这在实际生产和生活中常会遇到.例8 如图,把边长为2cm的正方形剪成四个全等的直角三角形.请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),并把你的拼法仿照图1按实际大小画在方格纸内(方格为1cm×1cm).(1)不是正方形的菱形(一个);(2)不是正方形的矩形(一个);(3)梯形(一个);(4)不是矩形和菱形的平行四边形(一个);(5)不是梯形和平行四边形的凸四边形(一个);(6)与以上画出的图形不全等的其他凸四边形(画出的图互不全等,能画出几个画几个,至少画三个). (2001年徐州市中考题)解:(1)(2)3)(4)(5)(6)说明:本例是一道设计图形的开放性试题,这类题近几年在全国各地的中考试题中经常出现.设计型开放题,有利于培养学生的发散性思维能力,有利于充分发挥学生的想象力和创造力,这对培养学生的创新意识和创新精神具有着积极的作用,例9 有一种“二十四点”游戏,其规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可以运算得(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,-6,10,用上述规则写出三种不同方法的算式,使其结果等于24,运算如下:(1)_____________________;(2)________________________;(3)_________________________.AB CD EFG图7.7.1 图7.7.1图7.8另有四个有理数3,-5,7,-13,可通过运算式(4)____________________________,使其结果等于24. (2001年杭州市中考题)分析:“二十四点”游戏,小学生也可参加. 本题将数的范围扩大到整数范围,变成新的游戏,其实就是有理数的运算.本题具有开放性,答案是不唯一的.解:(1)3×[4+(-6)+10]=24;(2)4-(-6)÷3×10=24;(3)(10-4)-3×(-6)=24. (4)[(-5)×(-13)+7]÷3=24.说明:本题将有理数的运算与学生熟知的游戏结合起来,使数学学习更具趣味性.四、题目结构开放题以看作是一个条件开放题.例10 某一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.(2001年吉林省中考题)分析:这里“距离”和“速度”都有了,故我们可以考虑从时间上去把本题补完整. 解一:摩托车和运货汽车同时从甲地驶向乙地,则摩托车比运货汽车早到几分钟?设摩托车比运货汽车早到x 分钟,则4040603545x ⎛⎫-⨯= ⎪⎝⎭,x=4021.答:摩托车比运货汽车早到4021分钟. 解二:摩托车和运货汽车分别从甲地和乙地同时相向而行,则几分钟后它们相遇? 设摩托车与运货汽车出发x 分钟后相遇,则(45+35)×60x= 40,x=30. 答:摩托车与运货汽车出发30分钟后相遇.解三:运货汽车从甲地出发10分钟后,摩托车从甲地出发去追赶运货汽车,问在到达乙地前,摩托车能否追上运货汽车?运货汽车走完全程需408357=小时,摩托车走完全程需408459=小时, 摩托车比运货汽车少用88167963-=小时.∵1610906360126-=>, ∴摩托车在运货汽车到达乙地前能追上.解四:摩托车和运货汽车分别从甲、乙两地沿由甲地往乙地的方向同向而行,问经过几小时摩托车可追上运货汽车?设经过x 小时摩托车可追上运货汽车,则 45x=40+35x ,解得x=4.答:经过4小时摩托车可追上运货汽车.说明:由于行程问题是大家比较熟悉的应用问题,所以我们还可以编出很多这样的问题来,同学们不妨试试.习题七一、填空题 1.(1)写出和为6的两个无理数_________________.(2003年绍兴市中考题)(2)若关于x 的方程x 2+kx-12=0的两根均是整数,则k 的值可以是______________.(只要求写出两个) (2001年浙江省中考题) 2.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点D ,连结AD ,请你添加一个条件,使△ABD≌△ACD,并说明全等的理由. 你添加的条件是_________________________.(2002年金华市中考题) 二、解答题3.做一做:用四块如图1的瓷砖聘成一个正方形,使 拼成的图案成轴对称图形.请你在图2、图3 图4中各画出一种拼法(要求三种拼法各不 相同,所画图案中的阴影部分用斜线表示).(2003年无锡市中考题)4.先根据要求编写应用题,再解答你所编写的应用题.编写要求:(1)编写一道行程问题的应用题,使得根据题意列出的方程为120120110x x -=+; (2)所编应用题完整,题意清楚,联系生活实际且解符合实际. (2001年青岛市中考题)5.同学们知道:只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3)、(4). 解:设有两边和一角对应相等的两个三角形. 方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等.(2000年广东省中考题)6.如图,⊙O 与⊙O 1完外切于点T ,PT 为其内公切线,AB 为其外公切线,A 、B 为切点,AB 与TP 相交于点P,根据图中所给出的已知条件及线段,请写出一个正确结论,并加以证明.(2001年杭州市中考题) 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,给出5个论断: ①CD⊥AB;②BE⊥AC;③AE=CE;④∠ABE=30;⑤CD=BE. (1)如果论断①②③④都成立,那么论断⑤一定成立吗? 答:____________;(2)从论断①②③④中选取3个作为条件,将论断⑤作为结论, 组成一个真命题,那么你选的3个论断是__________________ (只需填论断的序号);(3)用(2)中你选的3个论断作为条件,论断⑤作为结论,组图1 图2 图3 图4 第3题A BP TO O 第6题ABD C E第7题BAE成一道证明题,画出图形,写出已知、求证,并加以证明.(2003年徐州市中考题)8.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.(1)求证:AF⊥CD;(2)在你连接BE后,还能得出什么新的结论?请写出三个(不要求证明).(2002年江西省中考题)9.已知在直角坐标系中,直线y=+x轴、y轴分别交于点A、点B,以AB为一边的等腰△ABC的底角为300,请在坐标系中画出△ABC,并求出点C的坐标.(2000年北京市崇文区中考题)10.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28.(1)求∠ACM的度数;(2)在MN上是否存在点D,使AB•CD=AC•BC?为什么?(2001年广州市中考题)参考答案:1. (1(2) 1,-1(或4,-4;或11,-11)2.答案不唯一. 添加的条件可以是:①AB=AC;②∠B=∠C;③BD=DC(或D是BC中点);④∠BAD=∠CAD (或AD平分∠BAC)等.3.略.4.所编应用题符合编写要求. 正确设未知数、列方程,正确求出方程的解.5.方案(2):若这角是直角,则这两个三角形全等.方案(3):在两个钝角三角形中,有两边和一角对应相等的两个三角形.方案(4):在两个锐角三角形中,有两边和一角对应相等的两个三角形.6.AB=2PT. 证明略.7.(1)一定. (2)①、③、④. (3)已知,如图,在△ABCD、E分别在AB、AC上,CD⊥AB,AE=CE,∠ABE=30. 求证:CD=BE. 证明:作EF∥CD交AB于F. ∵AE=CE,∴AF=FD,∴CD=2EF. ∵CD⊥AB,∴EF⊥AB. 在Rt△EFB中,∠EFB=90,∠EBF=30,∴BE=2EF,∴CD=BE. 图要正确.8.(1)证明:连结AC、AD,∵AB=AE,∠ABC=∠AED,BC=ED,∴△ABC≌△AED,∴AC=A D. 又∵F为CD的中点,∴AF⊥CD.(2)①BE∥CD;②AF⊥BE;③△ACF≌△ADF;④∠BCF=∠EDF;⑤五边形ABCDE是以直线AF为对称轴的轴对称图形. (还可写出其它的结果)9.如图,C1(6,0),C2(0,-,C3(0),C4(-4,C5(2),C6(2,.A BCMN第10题ACBDEF第7题10.(1)∵AB是直径,∠ACB=90. 又∠A=28,∴∠B=62.又MN是切线,C为切点,∴∠ACM=62.(2)在MN上存在符合条件的点D. 证明:过点A作AD⊥MN 于D. 在Rt△ABC和Rt△ACD中,MN切半圆ACB于点C,∴∠B=∠ACD,∴△ABC∽△ACD,∴AB BCAC CD,即AB•CD=AC•BC..。

相关文档
最新文档