函数的基本性质说课材料

合集下载

人教版高中数学《函数的基本性质》优质教案

人教版高中数学《函数的基本性质》优质教案

2.1函数的基本性质一、教学目标1.结合具体函数,了解函数单调性的含义;2.会运用函数奇偶性的定义和函数的图象理解研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、教学重点1.回顾和理解函数的三大性质单调性、奇偶性以及周期性基础知识,掌握其概念的应用,一般是判断单调性、求参数或求值;2.掌握运用基础知识处理函数性质的综合应用题的解题思路. 其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.三、教学难点掌握周期性与抽象函数结合类的题型.高考对函数周期性的考查,常与抽象函数结合,题型主要以选择题或填空的形式出现,常涉及函数求值问题,且与函数的单调性、奇偶性相结合命题.四、教学过程(一)考情解读设计意图:对2016年广东开始高考卷之后的全国卷类型题进行整合,以表格形式呈现,一目了然,分析可得函数的基本性质是高考的常考内容,题型一般为选择填空,占分一般为5-10分.紧接着分析考点内容,明确复习方向.(二)知识梳理设计意图:对函数的单调性、奇偶性、周期性的定义、图像特点等进行梳理,把重点内容标红,并进行相应讲解,为后面的题型讲解奠定知识基础.1.单调函数的定义及几何意义2.函数的最值3.函数的奇偶性4.周期性(三)典例分析题型一:函数的单调性设计意图:精选了两道单调性的题目作为例题,例1为简单地应用单调性定义及函数图像特征判断单调性的题目,通过此题老师可带领学生总结判断函数单调性的方法:定义法、图像法等;例2为已知分段函数单调性求参数范围的题目,通过此题巩固应用单调性求参数、不等式等题型.【例1】(2021·全国甲卷)下列函数中是增函数的为()A .()f x x =-B .()23x f x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x 【例2】已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 题型二:函数的奇偶性设计意图:精选了两道奇偶性的题目作为例题,例1为简单地应用奇偶性定义求参数的题目,通过此题老师可带领学生巩固奇偶性的定义及图像特征;例2为奇偶性与分段函数结合的题目,但只要把握奇偶性的定义,可很快解决,通过此题再次强化奇偶性相关知识.【例1】(2021·全国Ⅰ卷)已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【例2】(2019·全国Ⅰ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+题型三:函数的周期性设计意图:由于周期性一般与抽象函数及奇偶性相结合,题目比较综合.这里选取了一道直接利用周期性定义进行求值的题目,教师通过此题引导学生回顾求值由内到外的原则及分段函数求值的相关知识,巩固周期性的定义,为下一题型综合题奠定基础.【例1】(2018·江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 题型四:函数性质的综合应用设计意图:精选了两道函数性质的综合应用的题型.例1为单调性与奇偶性相结合解不等式 的相关问题,教师可引导学生将此类已知单调性和奇偶性的抽象函数问题具体化画图来思考,紧紧扣住定义解题.例2为奇偶性与周期性相结合求值的题,通过此题再次巩固奇偶性和周期性的定义,将题目已知条件转化为熟悉的定义再去解题.()2017(,)(1)11(2)1A.[2,2] B.[1,1] C.[0,4] D.[1,3]f x f f x x ⋅-∞+∞ =- -- --【例1】(全国Ⅰ卷)函数在单调递减,且为奇函数,若,则满足的的取值范围是()≤≤ ()(,)(1)(1).(1)2(1)(2)(3)(502018A.50 B.0 C.2 D.0)5f x f x f f f f f f x -∞+∞ -=+=++++= ⋅-若,则…(【例2】(全国Ⅱ卷)已知是定义域为的奇函数,满足)(四)巩固练习设计意图:精选了三道题作为练习题.第一题考查单调性的判断和奇偶性定义,再次巩固函数基本性质的概念,为基础题.第二题为单调性与奇偶性相结合解不等式的相关问题,巩固数形结合思想.第三题为奇偶性和周期性相结合求值的题,为自编题,难度系数不高,巩固学生对周期性和奇偶性的概念理解,提高信心.1.(2020·全国Ⅰ卷)设函数()331f x x x =-,则()f x ( )A .是奇函数,且在()0,+∞单调递增B .是奇函数,且在()0,+∞单调递减C .是偶函数,且在()0,+∞单调递增D .是偶函数,且在()0,+∞单调递减2.(2014·全国Ⅰ卷)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f x >(-1)0,则x 的取值范围是__________.()()()()()3R ,R,4,22,2022=A.2022 B.2 C.2022 D.2f x x f x f x f f ∈ +=-= --.已知函数是上的奇函数对任意都有若则()(五)总结提升设计意图:制作了本节课的思维导图,引导同学们再次巩固函数基本性质高考重点考查的题型及其对应方法.五、作业设计设计意图:作业选取了两道单选题,一道多选题,四道填空题.题一考查单调性判断和奇偶性定义;题二考查奇偶性的定义,深化概念;题三考查单调性解不等式,为单调性的应用类题;题四考查奇偶性应用求解析式;题五考查偶函数的定义,跟2021出现的题目非常相像,说明研究高考题的重要性,值得深思;题六考查周期性的定义,为周期性和奇偶性的简单综合题;题七需要将题目所给等式经过化简才能变为周期性的定义的模式,进一步深化周期性与奇偶性的概念及其应用.。

函数说课稿人教版版

函数说课稿人教版版

函数说课稿人教版版一、说课背景与目标本次说课的内容为人教版高中数学教材中的函数章节。

函数作为数学中的一个核心概念,是高中数学教学的重要组成部分。

通过本章节的学习,学生将能够理解函数的基本概念、性质和应用,掌握函数的图象和变换,提高解决实际问题的能力。

二、教学内容与分析1. 函数的基本概念首先,我们将介绍函数的定义,包括函数的表达式、定义域和值域。

通过实例讲解,帮助学生理解函数是如何将输入值(自变量)映射到输出值(因变量)的。

此外,还将讨论常函数、一次函数、二次函数等常见函数类型的特点和性质。

2. 函数的图象在这一部分,我们将学习如何通过图象来表示函数,包括坐标系中的点和线。

通过绘制函数图象,学生可以直观地理解函数的性质,如单调性、奇偶性和周期性。

此外,还将介绍如何通过图象判断函数的交点、零点和极值点。

3. 函数的变换函数的变换是本章节的重点之一。

我们将讲解水平变换、垂直变换、伸缩变换和对称变换等基本变换规则,并通过实例演示如何应用这些规则来得到新的函数表达式和图象。

通过这部分的学习,学生将能够灵活地处理函数的变换问题。

4. 函数的应用最后,我们将探讨函数在实际问题中的应用,如物理中的运动规律、经济学中的成本和收益分析等。

通过解决实际问题,学生可以加深对函数概念的理解,并提高运用数学知识解决实际问题的能力。

三、教学方法与策略1. 启发式教学在讲解函数概念时,我们将采用启发式教学方法,通过提问和讨论引导学生自主思考和探索。

这种方法可以激发学生的学习兴趣,培养他们的批判性思维能力。

2. 案例分析通过分析具体的函数案例,学生可以更好地理解函数的性质和应用。

案例分析也有助于学生将理论知识与实际问题相结合,提高他们的实践能力。

3. 分组合作在探讨函数变换和应用时,我们将组织学生进行分组合作。

通过小组讨论和合作解决问题,学生可以相互学习,提高团队协作能力。

四、教学评价与反馈1. 课堂提问与小测在教学过程中,我们将通过课堂提问和小测来检测学生对函数概念的理解程度。

函数的基本性质说课稿必修1

函数的基本性质说课稿必修1

函数的单调性我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计.一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.二、教法学法为了实现本节课的教学目标,在教法上我采取了:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.在学法上我重视了:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.三、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)= 4”这一情形进行描述.引导学生回答:对于自变量8<10,对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1< t2时,是否都有f(t1)<f(t2)呢?[学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明在区间(0,+ ∞)上是单调减函数.[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较与的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念[教师活动]给出一组题:1、定义在R上的单调函数满足,那么函数是R上的单调增函数还是单调减函数?2、若定义在R上的单调减函数满足,你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P34-35例2 (2)书面作业:必做:教材P43 1、7、11选做:二次函数在[0,+∞)是增函数,满足条件的实数的值唯一吗?探究:函数在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论.[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.四、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.函数的奇偶性(说课稿)尊敬的各位专家评委、老师们:上午好!我是12号说课教师。

函数的基本性质说课课件

函数的基本性质说课课件

学情分析
学生在初中学习函数知识时 已有了函数单调性的感性认识.
教学重难点
重点
对函数单调性的有关概念的本质理解
难点
利用函数单调性的概念证明或判断具 体函数的单调性
教法学法
创设情境 直观感受

启发引导 观察发现
学 法Байду номын сангаас
理解领悟 深化认识

合作探究 反思评价
教学设计
设计理念:为了遵循从特殊 到一般的认知规律,结合可接受 和可操作的原则,把教学目标的 落实融入到教学过程之中,通过 函数单调性概念的形成,发展和应 用过程,帮助学生主动建构概念.
试举几个熟悉的 有“上升”“下 降”特点的函数 的例子
教学流程
创 设 情 境 导 入 新 课
归 纳 探 索 形 成 概 念
掌 握 证 法 适 当 延 展
归 纳 小 结 提 高 认 识
(1)借助图象,直观感知
y 5 4 3 y 6 4 3 2 1 -2 -1 O 1 2 3 x -3 -2 -1 -1 5 y y 3 2 1 -3 -2 -1 O 1 2 3 x
• 作业
• 书面作业:课本第45页 2,3题. • x • 课后探究:证明函数 y 在 0, 内是 x 1 增函数.
板书设计
2.3函数的单调性

影 减函数的定义 增函数的定义
例题1的过程

教后反思
函数的单调性的教学加强了对数形 结合等数学思想方法学习的要求,让学 生尽量从图形上直观的认识函数的性质, 然后再从理论上进行研究,这种发现问 题、提出问题、研究问题的探究方式, 也是新课程提出的新的教学理念的一个 体现。
(1) 1<2, f (1)

函数的基本性质 学案 说课稿 课件

函数的基本性质   学案  说课稿  课件

月记忆量y(百分比)100%58.2%44.2%35.8%33.7%27.8%25.4%21.1%观察这些数据,可以看出:记忆量y是时间间隔t的函数.当自变量(时间间隔t)逐渐增大时,你能看出对应的函数值(记忆量y)有什么变化趋势吗?描出这个函数图象的草图(这就是著名的艾宾浩斯曲线).从左向右看,图象是上升的还是下降的?你能用数学符号来刻画吗?通过这个实验,你打算以后如何对待刚学过的知识?(二)经典例题二、知识要点1.增函数和减函数: 一般地,设函数()f x的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量的值12,x x,当12x x<时,都有12()()f x f x<,那么就说函数()f x在区间D上是增函数.如果对于定义域I内某个区间D上的任意两个自变量的值12,x x,当12x x<时,都有12()()f x f x>,那么就说函数()f x在区间D上是减函数.2.单调性与单调区间如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.依据函数单调性的定义证明函数单调性的步骤:(1)取值.即设12,x x是该区间内的任意两个值且12x x<.(2)作差变形.求21()()f x f x-,通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.(3)定号.根据给定的区间和21x x -的符号确定21()()f x f x -的符号.当符号不确定时,可以进行分类讨论. (4)判断.根据单调性定义作出结论.即取值——作差——变形——定号——判断.函数()f x 在给定区间上的单调性,反映了函数()f x 在区间上函数值的变化趋势,是函数在区间上的整体性质,即若证明()f x 在[a ,b ]上是递增的,就必须证明对于区间[a ,b ]上任意的两个自变量12,x x ,当12x x <时,都有12()()f x f x <成立,而不可以用两个特殊值来替换,但是要否定一个函数在某一区间上的单调性,只要举一个反例即可.误区警示 函数单调性定义中的12,x x 有三个特征:一是同属一个单调区间;二是任意性,即“任意”取12,x x ,“任意”二字决不能丢掉,证明单调性时更不可随意以两个特殊值替换;三是有大小,通常规定12x x <三者缺一不可. ( 三)经典例题1.根据函数图象判定单调性例1 如图是定义在区间[5,5]-上的函数()y f x =,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数? 【思路分析】利用函数单调性的几何意义.图象上升则在此区间上是增函数,图象下降则在此区间上是减函数. 【解析】☆变式练习2根据函数()y f x =的图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数? 【解析】2. 函数单调性的证明例2 证明函数()21f x x =-在区间(,)-∞+∞上是增函数.【思路分析】根据函数单调性的定义进行证明,要注意证明的方法和步骤. 【证明】☆变式练习2 证明函数1()f x x=在区间(0,)+∞上是减函数. 【证明】三、总结提升1、本节课你主要学习了2、依据函数单调性的定义证明函数单调性的步骤: 四、问题过关1、函数()y f x =的图象如图1所示,则函数()f x 的单调递增区间为 单调递减区间为2、函数()y f x =的图象如图2所示,则函数()f x 的单调递增区间为 单调递减区间为3、函数()y f x =的图象如图3所示,则函数()f x 的单调递增区间为 单调递减区间为图1 图2 图3 4、如图所示的是定义在闭区间[-4,7]上的函数()y f x =的图象,根据图象说出函数的单调区间,并回答:在每一个单调区间上,f (x )是增函数还是减函数?。

高中数学必修一 《3 2 函数的基本性质》获奖说课导学案

高中数学必修一 《3 2 函数的基本性质》获奖说课导学案

3.2.1 函数的单调性与最大(小)值1.理解增函数、减函数、单调区间、单调性概念;2.掌握增(减)函数的证明与判断;3.能利用单调性求函数的最大(小)值;4.学会运用函数图象理解和研究函数的性质。

1.教学重点:函数单调性的概念,函数的最值;2.教学难点:证明函数的单调性,求函数的最值。

1、增函数与减函数的定义:一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是增函数。

一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是减函数2.函数的单调性与单调区间如果函数y =f (x )在区间D 上是 ,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的 。

3.函数的最大(小)值一般地,设函数y =f(x)的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f(x) M ,存在x 0∈I ,使得 =M 。

称M 是函数y =f(x)的最大值。

一般地,设函数y =f(x)的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f(x) M ,存在x 0∈I ,使得 =M 。

称M 是函数y =f(x)的最小值。

一、探索新知探究一 单调性1、思考:如何利用函数解析式2)(x x f 描述“随着x 的增大,相应的f(x)随着增大?”2、你能类似地描述2)(x x f =在区间)0,(-∞上是减函数吗?3、思考:函数||)(x x f =,2)(x x f -=各有怎样的单调性 ?吗?该区间上一定是增函数在那么函数且满足在定义域的某区间上、思考:函数)(),()(,,存在)(4212121x f y x f x f x x x x x f y =<<=5、思考:函数的单调性是对定义域内某个区间而言的,你能举出在整个定义域内是单调递增的函数例子吗?你能举出在定义域内的某些区间单调递增但在另一些区间上单调递减的函数例子吗?牛刀小试:1、如图是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一个单调区间上,f(x)是增函数还是减函数。

函数的基本性质说课

函数的基本性质说课

二、教学目标分析

3、情感态度与价值观 通过让学生自己观察、讨论、归纳培养学生自 主学习、合作学习的意识和对新知识的好奇心。
三、教法学法分析

根据本节内容特点,我主要运用了自主探究教 学模式,让学生采取自主式、合作式、探讨式 的学习方法,充分利用教具使知识直观化、趣 味化。老师引导学生从简单的直观形象得出严 谨的数学概念,同时利用相关例题和练习题使 学生巩固所学知识。

从之前的探究出发,与学生共同归纳给出偶函 数的定义: 对于函数f(x)的定义域内任意一个x,都 有f(-x)=-f(x),那么函数f(x)就叫偶函数。 强调偶函数的定义域必须关于原点对称,给出 奇偶函数的表达式。给出定义后针对学生的不 懂之处再加以解释,深化学生对定义的理解。 然后让学生自己写出奇函数的定义。
(1)小结:
(2)作业
请同学们从知识和方法两个方面 谈谈本节课的收获?
层次一:教材P39习题1.3A组的第6题; 层次二:课外思考题:在我们所学习的函数中, 是否存在既不是奇函数又不是偶函数的函数,如 果存在,请举例说明。
设计意图:通过分层作业使学生进一步巩固本节课所学
内容,并为学有余力和学习兴趣浓厚的学生 提供进一步学习的机会。
x
探究交流

该环节让学生积极讨论给出四个函数的函数图 象以及各个函数值之间的关系,引导学生得出 前两个函数中“当自变量x取一对相反数时, 相应的两个函数值相同”的结论,然后让学生 自己对比说出后两个函数的特点,该环节通过 让学生直观感知数学知识,深化理解,强化记 忆。为奇偶函数下定义做好铺垫。
定义解析
我的说课到此结束,谢谢!
《函数的基本性质 奇偶性》说课稿
人教版普通高中课程标准实验教科书必修一第一章第三节第二课时

高中数学函数性质说课稿及教学反思

高中数学函数性质说课稿及教学反思

高中数学函数性质说课稿及教学反思函数(function)表示每个输入值对应唯一输出值的一种对应关系。

函数f中对应输入值的输出值x的标准符号为f(x)。

下面我给你分享,欢迎阅读。

高中数学函数性质说课稿一.教材分析1本节的地位和作用函数的基本性质包括函数的单调性与最大(小)值,奇偶性,在函数的学习中起着承上启下的作用,是函数概念的延续和拓展,又是后续研究指数函数,对数函数,三角函数的性质的基础;在研究各种具体函数的性质和应用,解决各种问题中都有广泛的应用。

函数的基本性质的概念建立过程中蕴含着数形结合,从特殊到一般等数学思想方法,对研究具体函数的性质有很强的启发和示范作用,为后续具体函数的学习奠定了重要的基础。

2教学目标定位(1)知识与技能理解函数单调性及最值的概念,函数的单调性是函数的局部性质,最值是在整个定义域上来研究的;让学生能判断一些简单函数在给定区间上的单调性,函数的最值是函数单调性的应用。

理解函数的奇偶性及其几何意义,掌握判断函数奇偶性的方法。

启发学生发现问题、提出问题、培养学生分析问题、解决问题的能力;培养学生观察、抽象的能力,从特殊到一般的概括、归纳问题的能力。

(2)过程与方法通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。

学会应用函数的图像理解和研究函数的性质。

利用函数图象会找出函数的单调区间,求函数的最大(小)值或者无最值。

利用图像是否关于Y轴和原点对称,判断函数的奇偶性。

会用单调性求最值。

(3)情感态度与价值观理解描述生活中的增长、递减现象和对称性图像。

使学生感受到学习本节知识的必要性和重要性,激发学生学习的积极性,并渗透数形结合、观察、抽象概括的思想方法。

3. 重点难点的确定重点:函数的单调性、最值、奇偶性概念的理解。

难点:函数单调性的概念及其应用定义判断或证明函数在某一区间上单调,求函数的最值,函数奇偶性的概念及其应用定义判断或证明。

重、难点确立的依据:函数的单调性、最值、奇偶性是函数的最基本的性质,在后面学习指数函数、对数函数、三角函数时,仍然要研究它们的这些性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一函数的基本性质(说课稿)
师大附中---------巴争刚
一.教材分析:
1.教材地位和作用:人教版《普通高中课程标准实验教科书A》必修一第1.3.1“函数的基本性质”是在学生系统地学习了第一章中的函数概念后对函数的性质展开研究的,其第一课时主要是研究函数的单调性.
函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究函数的值域、定义域、最值等性质中有重要应用,在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用.同时函数单调性概念的建立过程中蕴涵诸多数学思想方法,比如数形结合的思想,类比的思想等等.这对于进一步探索、研究函数的其他性质有很强的启发与示范作用.
2.教学重点:形成增(减)函数的形式化定义.
3.教学难点:形成增(减)函数概念的过程中,如何从对图象升降的直观认识过渡到用严谨的数学语言来描述函数增(减)的定义;另外根据定义证明函数的单调性也是本节课的难点.
二. 目标分析:
1.知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法.
2.过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合与类比的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.
3.情感态度与价值观要使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.
三.教法学法:
1.教法与教法分析
教学方法:启发引导---自主探究-- 合作讨论式
在这样的教学方法下, 既有教师的讲授与指导又有学生的独立思考空间,教师真正成为课堂教学的引导者、组织者,是学生学习的合作者,同时来自于生活的朴素而有
效的问题情景对学生产生一种情感上的感召力,增强了学生参与的自觉性、积极性和主动性,通过观察、思考、合作交流等学习活动过程使学生体会到了探索的乐趣和成功的愉悦.
2.学法与学法分析
学习方法:独立思考-自主探索-合作交流-阅读自学
在新课改的理念下,在教师的逐步引导下,学生的学习方式慢慢发生了改变,不再是单纯的模仿与机械的记忆,在独立思考与自主探索中学生体会到了探索的乐趣,在合作交流中培养了学生的团队精神与合作意识,通过阅读自学学生学会了学习学会了阅读,增强了对事物的理解能力.
3. 教具使用
配合多媒体、实物投影等辅助教学
4.学情分析学生已有的认知基础是,初中初步认识到函数是一个刻画某些运动变化数量关系的数学概念;进入高中以后,又进一步学习了函数的概念,认识到函数是两个数集之间的一种对应.学生还了解到函数有三种表示方法,特别是可以借助图象对函数特征加以直观考察.此外,学生还学习过一次函数、二次函数、反比例函数的图象及性质.尤其值得注意的是,学生有利用函数性质进行两个数大小比较的经验.四.教学过程:
流程:
观察这张气温变化图:
教师引导学生对这两个学过的函数观察图形特征针对以下问题合作讨论得出一些结论
问题1.函数f(x)=x,在整个定义域内
是增函数还

的值唯一吗?
五.板书设计
(见后页)。

相关文档
最新文档