雷达组成及原理
雷达

3.雷达假回波 (1)旁瓣回波 只有近距离反射雷达电磁波能力很强的物标,对旁瓣发射的电磁波 能量反射较强时,才有可能在雷达荧光屏上出现旁瓣假回波。 旁瓣回波的特点:在真回波的相同距离位置左右出现对称的假回 波,回波强度比真回波弱的多。 消除旁瓣回波的方法是调节“增益”旋钮或使用“海浪干扰抑制” 旋钮,降低回波强度。
(4)明暗扇形干扰回波 当雷达使用“自动频率跟踪(AFT)”时,若自动频率跟踪电路失调, 雷达荧光屏上将出现有规律的明暗扇形干扰回波。 消除方法:将“自动频率跟踪”转换为“手动频率跟踪”。 (5)背景噪声干扰(草波)回波 当雷达的视频放大倍数太大、物标回波太强等原因,使雷达荧光屏上回波处 电子辐射出后又重新落回到回波附近,使回波变大,造成荧光屏上出现成片的背 景噪声干扰回波。 可以通过调扫描亮度和调小增益的方法,消除背景 噪声干扰回波,但不能影响小物标回波的观测。
原因:是大气中存在一层温暖的反射层(逆温层)。
三、雷达回波识别 1.定位物标回波识别 可以用于雷达定位的物标主要有孤立的小岛、岬角、突出陡峭的海 岸、雷达应答标(racon)等。其回波的主要识别方法有: (1)根据雷达荧光屏上物标回波形状与海图上物标形状比较进行识 别。 直观,简便易行。 (2)根据已知准确船位识别。 准确,操作复杂。 (3)根据雷达航标特点识别。 直观,准确,识别方便。
6)雷达电磁波的异常传播
雷达电磁波的异常传播是在特殊环境和特殊大气条件下的传播特性。
(1)分折射(二次折射) 雷达电磁波折射系数减小,使传播方向上翘, 雷达地平能见距离减小的 现象称为分折射。 原因:在冬季冷空气移到温度较高的海面上,温差大(20℃以上),气温随高度激烈 下降或大气中相对湿度增加。 (2)过折射(超折射) 雷达电磁波折射系数增加,使电磁波的传播方向向下弯曲,雷达能见地平距离增 加的现象称为雷达电磁波的过折射。 原因:在夏季干燥的暖空气移到水温较低的海面上时,气温随高度下降变化 剧烈或相对湿度降低。 (3)大气波导 大气波导是雷达电磁波过强的超折射,形成大气层与海面循环往复的折射传 播现象,可使电磁波能量传播的很远。
雷达的工作原理

雷达的工作原理雷达是一种利用电磁波进行探测和测量的仪器。
它可以通过发射电磁波并依据波的反射情况来确定目标的位置、速度和其他相关信息。
雷达在军事、气象、导航等领域都有着广泛的应用。
雷达的工作原理基于电磁波的特性。
电磁波是由电场和磁场组成的,通过空间传播,具有一定的速度和频率。
雷达通常使用的是无线电波或者微波作为探测介质。
无线电波是一种电磁波,可以在空气中传播,并且可以被大气中一些物质(如云、水滴等)反射、散射或者吸收。
雷达由三个主要部分组成:发射机、接收机和显示设备。
发射机负责发射电磁波,接收机负责接收反射的波,并将其转化为有用的信息,显示设备则用于显示结果。
当雷达开始工作时,发射机会产生一束电磁波并将其发射出去。
这束电磁波会朝着预定方向传播,直到遇到目标或者被地物等障碍物反射回来。
当反射波回到雷达时,接收机会接收到这些波,并将其转换成电信号。
在雷达中,发射和接收都是由一个共同的天线完成的。
天线既可以用来发射电磁波,也可以用来接收反射回来的波。
雷达系统中的天线通常由一个或多个指向性的发射和接收元件组成,以便能够在特定的方向上进行探测。
接收到的反射波经过放大和处理后,可以提供目标的位置、速度、大小等相关信息。
雷达通过测量从发射到接收的时间来确定目标的距离。
速度可以通过测量反射波的频率变化来确定,而目标的大小和形状可以根据反射波的幅度和形态来推断。
雷达的探测范围受到波的频率、功率和天线的特性等多种因素的影响。
通常来说,更高频率的波具有更高的分辨率,但也更容易被地物散射吸收,限制了其探测范围。
同时,雷达的探测范围还受到天线高度、大气传播条件和目标表面反射能力等因素的影响。
雷达技术的不断发展使其在军事、气象、导航、交通等领域得到了广泛应用。
例如,在军事领域,雷达被用于目标探测、导航、火控等方面。
在气象领域,雷达可以用于检测降水、探测风暴等。
在导航和交通控制中,雷达可以用于飞行器和船只的导航和交通管制。
总之,雷达是一种利用电磁波进行探测和测量的仪器。
雷达原理及测试方法

雷达原理及测试方案1雷达组成和测量原理雷达(Radar)是RadioDetectionandRanging的缩写,原意“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。
现代雷达的任务不仅是测量目标的距离、方位和仰角,而且还包括测量目标速度,以及从目标回波中获取更多有关目标的信息。
1.1雷达组成1.2雷达测量原理1)目标斜距的测量图3雷达接收时域波形在雷达系统测试中需要测试雷达到目标的距离和目标速度,雷达到目标的距离是由电磁波从发射到接收所需的时间来确定,雷达接收波形参见图3,雷达到达目标的距离R为:R=0.5×c×tr式(2)式中c=3×108m/s,tr为来回传播时间2)目标角位置的测量目标角指方位角或仰角,这两个角位置基本上是利用天线的方向性来实现。
雷达天线将电磁能汇集在窄波束内,当天线对准目标时,回波信号最强。
回波的角位置还可以用测量两个分离接收天线收到信号的相位差来决定。
3)4)max t e min式中Pt 为发射机功率,G为天线增益,Ae为天线有效接收面积,σ为雷达回波功率截面积,Smin为雷达最小可探测信号。
雷达方程可以正确反映雷达各参数对其检测能力影响的程度,不能充分反映实际雷达的性能。
因为许多影响作用距离的环境和实际因素在方程中没有包括。
1.4雷达分类军用雷达主要分类:不能满足复杂雷达信号测试需求。
更为重要的是,雷达在实际工作过程中接收到的信号并不是纯净的发射回波,它包含各种杂波和多普勒效应,特别是在地形复杂或海面各种时,接收机接收到的杂波比需要探测的物体回波大的多,而这一切目前没有通用测量设备来生成雷达接收机所接收到的实际波形。
因此各个雷达研制单位投入大量人力、物力研制各种雷达模拟器,但这些模拟器往往受各种设计因素影响,只是实际雷达波形的简化,并只考虑到典型的应用,对复杂的应用环境无法模拟。
这样无法及时发现雷达研制和使用过程中问题和隐患。
简述激光雷达的结构原理分类及特点

简述激光雷达的结构原理分类及特点激光雷达(Lidar)是一种利用激光技术进行距离测量的雷达系统。
其原理是通过向周围环境发射激光脉冲,然后根据激光的反射时间和强度来计算目标物体的距离和其他相关信息。
激光雷达的结构主要包括激光器、光电探测器、转台和数据处理器等组件。
激光器负责发射激光脉冲,光电探测器用于接收激光的反射信号,转台则负责控制激光束的方向。
数据处理器则负责处理和分析接收到的信号,计算目标物体的位置、速度等信息。
激光雷达的工作原理是利用光的速度是已知的而目标物体的距离就是激光反射的时间与光速的乘积,从而计算目标物体的距离。
当激光束发射出去后,它会遇到目标物体并被反射回来。
激光雷达的光电探测器会接收到反射回来的光信号,并测量其时间。
通过将时间与光速相乘,就可以得到目标物体的距离。
根据不同的应用需求和工作原理,激光雷达可以分为以下几种类型:1.机械式激光雷达:机械式激光雷达使用旋转转台来扫描激光束的方向,从而获得周围环境的三维点云数据。
机械式激光雷达具有扫描速度较快,成本相对较低等特点,但由于机械部件的限制,其可靠性和寿命相对较低。
2.固态激光雷达:固态激光雷达是使用固态光电元件来控制激光束的方向,而不需要机械转台。
固态激光雷达具有较高的可靠性和寿命,并且可以实现更高的扫描速度和分辨率。
3.接收器式激光雷达:接收器式激光雷达是将激光发射器和接收器集成在一个设备中,可以在较短距离内测量目标物体的距离和速度,适用于自动驾驶和安全监测等应用。
激光雷达具有以下几个特点:1.高精度:激光雷达可以实现高精度的距离测量,通常可达到几毫米的级别。
这使得它在自动驾驶、地图绘制等应用中具有重要的作用。
2.高分辨率:激光雷达可以提供高分辨率的三维点云数据,可以对目标物体进行精确的定位和识别。
3.长距离测量:激光雷达可以在较长的距离范围内进行测量,通常可以达到几百米或更远的距离。
4.快速扫描:激光雷达可以实现快速的扫描速度,可以在较短的时间内获取大量的数据。
346雷达原理-概述说明以及解释

346雷达原理-概述说明以及解释1.引言1.1 概述雷达(Radar)是一种利用无线电波进行探测和测量的技术。
它是通过发射电磁波并接收其反射信号来探测目标物体的位置、速度、方向和其他相关信息的一种工具。
雷达技术在军事、航空、天气预报、海洋勘测等领域具有广泛的应用。
雷达的原理很简单,它利用电磁波在空间中传播的特性进行工作。
当雷达发射器发出电磁波时,这些波会在空间中以光速传播,并在遇到目标物体时被反射回来。
接收器会接收到这些反射信号,并通过分析其强度、频率和时间延迟等参数来确定目标物体的位置和其他信息。
雷达系统通常由发射器、接收器、信号处理装置和显示器等组成。
发射器负责产生和发射电磁波,接收器则负责接收反射信号。
信号处理装置用来对接收到的信号进行处理与分析,从而提取出目标物体的相关信息。
最后,这些信息会通过显示器或其他方式展示给操作人员。
雷达技术的应用越来越广泛。
在军事方面,雷达可以用于目标跟踪、无人机探测、导弹防御等任务。
在航空方面,雷达常被用于飞行导航、防撞系统等。
在天气预报和海洋勘测中,雷达可以探测降雨、风暴和海洋浪涌等自然现象。
尽管雷达技术已经非常成熟,但随着科技的不断发展,雷达也在不断更新和改进。
比如,现代雷达系统通常采用多普勒效应,从而可以更准确地测量目标物体的速度。
此外,雷达系统还可以与其他技术结合,比如全球定位系统(GPS),从而提高测量的精度和准确性。
总之,雷达是一种非常重要的探测和测量工具。
它通过利用电磁波与目标物体相互作用的原理,可以获取目标物体的位置、速度和其他相关信息。
随着技术的不断发展,雷达在各个领域的应用也变得越来越广泛。
未来,我们可以期待雷达技术在更多领域发挥更大的作用。
1.2 文章结构文章结构是指文章整体的组织和布局方式,它对于提供清晰而有逻辑的文章表达至关重要。
本文将按照以下结构展开讨论346雷达原理。
首先,在引言部分1.1中,我们将概述346雷达原理的背景和基本概念,以便读者了解文章的背景和目的。
雷达组成及原理

雷达的组成及其原理课程名称:现代阵列并行信号处理技术姓名:杜凯洋教师:王文钦教授示器、(1(2(3(4(5雷达等。
(一)概述1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。
2、收发开关:收发隔离。
3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。
4、接收机:超外差,高频放大,混频,中频放大,检波,视频放大等。
(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。
5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测判决之前完成(MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。
6、显示器(终端):原始视频,或经过处理的信息。
7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式)才有)。
(二)雷达发射机1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)(1(2)(32(1(2(3(4(三)雷达接收机一、超外差雷达接收机的组成优点:灵敏度高、增益高、选择性好、适应性广。
图3-1 超外差式雷达接收机简化框图1、高频部分:(1)T/R 及保护器:发射机工作时,使接收机输入端短路,并对大信号限幅保护。
(2)低噪声高放:提高灵敏度,降低接收机噪声系数,热噪声增益。
(3)Mixer ,LD ,AFC :保证本振频率与发射频率差频为中频,实现变频。
2、中频部分及 AGC :(1)匹配滤波:max (/)o S N(2)AGC :auto gain control.3(1(21、灵敏度d P 时的输完成。
23。
4、中频的选择与滤波特性:02R f f ≥∆ ,中频选择通常选择 30M ~500M ,抑制镜频.实际与发射波形特性,接收机工作带宽有关。
5、工作稳定性和频率稳定度:指当环境变化时,接收机性能参数受到影响的程度,频率稳定度,信号处理,采取频率稳定度、相位稳定度提高的本振,“稳定本振” 。
雷达工作原理及相控阵雷达工作原理

雷达的工作原理雷达(radar)原是“无线电探测与定位”的英文缩写。
雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。
雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。
雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。
天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。
电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。
天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。
由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。
接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。
为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。
根据电磁波的传播速度,可以确定目标的距离公式为:S=CT/2 其中S为目标距离,T为电磁波从雷达发射出去到接收到目标回波的时间,C为光速雷达测定目标的方向是利用天线的方向性来实现的。
通过机械和电气上的组合作用,雷达把天线的小事指向雷达要探测的方向,一旦发现目标,雷达读出些时天线小事的指向角,就是目标的方向角。
两坐标雷达只能测定目标的方位角,三坐标雷达可以测定方位角和俯仰角。
测定目标的运动速度是雷达的一个重要功能,雷达测速利用了物理学中的多普勒原理:当目标和雷达之间存在着相对位置运动时,目标回波的频率就会发生改变,频率的改变量称为多普勒频移,用于确定目标的相对径向速度,通常,具有测速能力的雷达,例如脉冲多普勒雷达,要比一般雷达复杂得多。
雷达的战术指标主要包括作用距离、威力范围、测距分辨力与精度、测角分辨力与精度、测速分辨力与精度、系统机动性等。
其中,作用距离是指雷达刚好能够可靠发现目标的距离。
雷达与声呐工作原理简述

雷达与声呐工作原理简述
雷达与声呐是两种常用的探测技术,它们都有不同的工作原理。
雷达是一种利用电磁波进行探测的技术。
它通过发射电磁波并接收返回信号来检测目标的存在和位置。
雷达系统由发射器、天线和接收器组成。
发射器产生脉冲电磁波并将其发送到目标物体。
当这些波遇到目标物体时,一部分波被反射回来,并被接收器捕捉到。
接收器测量返回信号的时间和功率,并分析这些数据以确定目标的位置和特征。
雷达可以在不同介质中工作,包括空气、水和陆地。
声呐是一种利用声波进行探测的技术。
它通过发射声波脉冲并接收返回信号来检测目标的位置和形态。
声呐系统由发射器、接收器和信号处理器组成。
发射器产生声波脉冲,并将其发送到水下或空中。
当声波遇到目标物体时,一部分波被反射回来,并被接收器接收到。
接收器测量返回信号的时间和强度,并将其发送给信号处理器进行分析。
声波在介质中传播的速度和方向的变化可以提供目标的位置和特征信息。
总之,雷达利用电磁波的特性,声呐利用声波的特性,通过测量返回信号的时间、功率和强度等信息,可以确定目标的位置以及其他相关特征。
这两种技术在不同领域中广泛应用,例如航空、海洋、军事等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷达的组成及其原理课程名称:现代阵列并行信号处理技术姓名:杜凯洋教师:王文钦教授一.简介雷达(Radar,即 radio detecting and ranging),意为无线电搜索和测距。
它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。
在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。
雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。
其中,天线是雷达实现大空域、多功能、多目标的技术关键之一;信号处理器是雷达具有多功能能力的核心组件之雷达种类很多,可按多种方法分类:(1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。
(2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。
(3)按辐射种类可分为:脉冲雷达和连续波雷达。
(4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段雷达。
(5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。
二. 雷达的组成(一)概述1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。
2、收发开关:收发隔离。
3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。
4、接收机:超外差,高频放大,混频,中频放大,检波,视频放大等。
(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。
5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测判决之前完成(MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。
6、显示器(终端):原始视频,或经过处理的信息。
7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式)才有)。
(二)雷达发射机1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)图2-1 单级振荡式发射机(1)定时器提供以T为间隔的脉冲触发信号r(2)脉冲调制器:在触发脉冲信号激励下产生脉宽为τ的大功率视频脉冲信号。
(3)功率射频振荡器:产生大功率射频信号。
特点:简单,廉价,高效,难以产生复杂调制,频率稳定性差,451010---。
2、主振放大式(主控振荡器加上射频放大链):先产生小功率的CW 振荡,再分多级进行调制和放大。
图2-2 主振放大式发射机(1)定时器:给三个脉冲调制器提供不同时间,不同宽度的触发脉冲信号(2)固体微波源:是高稳定度的 CW 振荡器,在脉冲调制下形成输出脉冲(3)中间放大器:在微波源脉冲到达后很短时间处于放大状态,在微波脉冲结束后退出放大状态,受脉冲控制(4)出功率放大器:产生大功率的脉冲射频信号特点:调制准确,能够适应多种复杂调制,系统复杂,昂贵,效率低。
(三)雷达接收机一、 超外差雷达接收机的组成优点:灵敏度高、增益高、选择性好、适应性广。
图3-1 超外差式雷达接收机简化框图1、高频部分:(1)T/R 及保护器:发射机工作时,使接收机输入端短路,并对大信号限幅保护。
(2)低噪声高放:提高灵敏度,降低接收机噪声系数,热噪声增益。
(3)Mixer ,LD ,AFC :保证本振频率与发射频率差频为中频,实现变频。
2、中频部分及 AGC :(1)匹配滤波:max (/)o S N(2)AGC :auto gain control.3、视频部分:(1)检波:包络检波,同步(频)检波(正交两路) ,相位检波。
(2)放大:线形放大,对数放大,动态范围。
雷达接收机的主要质量指标1、灵敏度min i S :用最小可检测信号功率 min i S 表示,检测灵敏度,给定虚警概率 fa P ,达到指定检测概率d P 时的输入端的信号功率:min i S =i S |fa P =const ,d P =const保证下面灵敏所需接收机gain=120-160 dB ,min i S =-120~-140dbw主要由中频完成。
2、工作频带宽度:指瞬时工作频率范围,频率捷变雷达要求的接收机工作频带宽度:10-20% 。
3、动态范围:表示接收机能够正常工作所允许的输入信号强度的变化范围,过载时的iS|min i S,80-120 dB。
4、中频的选择与滤波特性:012Rf f≥∆,中频选择通常选择 30M~500M,抑制镜频.实际与发射波形特性,接收机工作带宽有关。
5、工作稳定性和频率稳定度:指当环境变化时,接收机性能参数受到影响的程度,频率稳定度,信号处理,采取频率稳定度、相位稳定度提高的本振,“稳定本振”。
6、抗干扰能力:杂波干扰(MTI,MTD)、有源干扰、假目标干扰。
7、微电子化和模块化结构。
MMIC 微波单片集成电路、IMIC中频单片集成电路、ASIC 专用集成电路。
四、雷达的终端显示器和录取设备1、距离显示器:图 4.1 显示目标的斜距坐标,用光点在荧光屏上偏转的振幅来表示目标回波的大小,所以又称为偏转调制显示器。
A显:直线扫掠,扫掠线长度和雷达的距离量程相对应,直线的起始点为雷达,回波距离点的长度表示距离,有距离刻度。
A/R 显:A显同上,R显上 A的某一段进行放大。
J 显:圆周扫掠,顶端为雷达圆弧长表示距离,读数精度提高π倍。
2、平面显示器:图4.2,又称 PPI(Plan position indicator)显,显示斜距、方位,是二维显示器,用亮点来显示坐标,属亮度调制显示器。
P显:圆心为雷达,径长表示距离,顶向方位为正北,圆周角表方位,顺时针方向。
偏心式 P显:移动原点,使放大给定方向。
以上两种均为极坐标。
B 式显示:直角坐标,常用微 B 式显示,距离和方位只显示一段。
3、高度显示器:RHI 显示:水平距离和高度、仰角,雷达在左下方。
4.情况显示器:一次信息:雷达二次信息:表格数据、特征符号、地图等。
5.光栅扫描雷达显示器:数字显示技术的应用。
既能显示目标回波的二次信息,也能显示各种二次信息以及背景地图。
三.雷达原理(一)基本雷达方程1、距离R 处任一点处的雷达发射信号功率密度:21222444t PG S S R R Rσσπππ==⋅,t P 雷达发射功率。
2、对于定向天线,考虑到天线增益G ,表示相对于各向同性天线,则'124t PG S R π= 3、以目标为圆心,雷达处散射的功率密度:21222444t PG S S R R R σσπππ==⋅, σ 雷达散射截面积。
4、雷达天线接收面积e A ,收到功率224(4)t e r e PGA P A S Rσπ==. 5、最大测量距离:当雷达接收功率为接收机最小检测功率(即临界灵敏度)时min r P S =时,1/4max 2min [](4)t e PGA R S σπ=6.收发不同天线时,7. 收发共天线时,雷达实际作用距离受目标后向散射截面积σ 、 min i S 、噪声和其他干扰的影响,具有不确定性,服从统计学规律。
(二)雷达距离的测量磁波在均匀介质中以光速匀速直线传播;测量目标回波滞后于发射信号的延迟时间R tt的测量:脉冲雷达采用脉冲法;连续波雷达采用频率法和相位法R确定回波到达的位置:前沿法:以目标回波脉冲的前沿测量到达时间。
特点:物理概念清楚(适用于人工测量)、前沿受回波大小及噪声影响中心法:以回波脉冲的中心测量回波到达时间。
特点:到达时间的测量不受波形的影响、适用于自动跟踪系统,采用专用电路;提高距离分辨力:发射脉宽窄、管子聚焦性要好、降低显示器量程、提高电子束扫描速度提高单值可测距离:降低重复频率、多重频率法、舍脉冲法人工距离跟踪特点:1、锯齿电压法:跟踪范围大,精度低2、相位调制法:跟踪范围小,精度高3、复合法:跟踪范围大,精度高(三)角度测量雷达角度坐标的确定方位角α,高低角β绝对坐标表示法:方位角α——基准为正北,顺时针方向为正。
高低角β——基准为水平面,向上方向为正。
相对坐标表示法:测出目标相对于天线轴线的偏离角,再根据天线轴线的实际角度,计算出目标实际角度。
角度分辨力:雷达将相同距离上相互靠近的两个目标区分的最小角度。
角度分辨力由天线半功率波束宽度决定。
振幅法:利用天线收到的回波信号幅度值进行角度测量。
最大信号法:天线作圆周扫描或扇形扫描时,找出回波脉冲串的最大值(中心值)对应的波束轴线指向角度,即为目标所在方向。
等信号法:采用两个相同且彼此部分重叠的波束,当两个波束收到的回波信号相等时,等信号轴所指方向即为目标方向。
最小信号法:采用两个在零点处相切的波束,转动天线使显示器上的回波消失或最小时,天线零值轴所指方向即为目标的角度。
波束的扫描方法:1、机械扫描:利用整个天线系统或其中一部分机械运动实现波束扫描。
(1)整个天线系统转动(2)馈源不动,反射体摆动(3)反射体不运动,馈源动优点:简单缺点:机械运动惯性大,扫描速度低,精度差2、电扫描:天线系统不做任何机械运动,利用电子技术实现波束扫描。
实现方法:相位法、频率法、时间延迟法特点:无惯性限制,波束控制迅速,方便灵活特别适用于要求波束快速扫描及巨型天线的雷达。
(四)运动目标检测及测速多普勒效应:1、连续波信号的多普勒效应雷达发射信号可表示为:在雷达发射站处接收到由目标反射的回波信号s ()r t 为: 式中,00222()2r R t f R c πωπλ∙==r t = 2R/c ,为回波滞后于发射信号的时间,其中R 为目标和雷达站间的距离;c 为电磁波传播速度,在自由空间传播时它等于光速;k 为回波的衰减系数。
如果目标固定不动, 则距离R 为常数。
回波与发射信号之间有固定相])(cos[)()(0ϕω+-=-=r r r t t kA t t ks t s位差00222()2r R t f R c πωπλ∙==,它是电磁波往返于雷达与目标之间所产生的相位滞后。
动目标显示雷达的基本类型中频全相参(干)动目标显示:当雷达发射机采用主振放大器时, 每次发射脉冲的初相由连续振荡的主振源控制, 发射信号是全相参的, 即发射高频脉冲、本振电压、相参电压之间均有确定的相位关系。
相位检波通常是在中频上进行的, 因为在超外差接收机中, 信号的放大主要依靠中频放大器。
在中频进行相位检波, 仍能保持和高频相位检波相同的相位关系。
锁相相参动目标显示:当雷达发射机采用自激振荡器(如磁控管振荡器)时, 它的每一发射脉冲高频起始相位是随机的。
因此,为了得到与发射脉冲起始相位保持严格关系的基准电压, 应该采用锁相的办法, 也就是使振荡电压的起始相位受外加电压相位的控制。