光纤通信系统
简述光纤通信系统的组成和优点。

简述光纤通信系统的组成和优点。
光纤通信系统由光源、光纤传输介质、光电转换器、光纤连接器和光纤收发器等组成。
1. 光源:产生光信号的装置,一般使用激光器或发光二极管。
2. 光纤传输介质:用于传输光信号的细长光纤,由玻璃或塑料制成。
3. 光电转换器:将光信号转换为电信号的装置,一般使用光电二极管或光电倍增管。
4. 光纤连接器:用于连接光纤的装置,保证光信号的传输。
5. 光纤收发器:将电信号转换为光信号并进行发送和接收的装置,一般包括光电转换器和光源。
光纤通信系统的优点包括:
1. 大带宽:光纤传输介质具有很高的传输带宽,可以同时传输大量的数据。
2. 低损耗:与传统的电缆相比,光纤传输的信号损耗很小,可以实现远距离传输。
3. 抗干扰性强:光纤通信系统对电磁干扰和信号衰减的抗干扰能力较强,传输质量稳定可靠。
4. 安全性高:光纤通信采用光信号传输,不会产生电磁辐射,不易被窃听和干扰,保障通信的安全性。
5. 体积小、重量轻:光纤通信系统的设备相对较小巧轻便,便于安装和维护。
6. 适用范围广:光纤通信系统适用于各种通信需求,包括电话、互联网、电视信号传输等。
光纤通信系统

系统中仅具有原则旳电接口,而无原则旳光接口。 • 但在SDH系统中,SDH信号速率与其线路速率是相同
旳。
4
4.1.2 IM-DD光纤通信系统旳构 造
1.光发射机 2.光接受机 3.光纤通信系统
5
1.光发射机
(1) 光源旳调制特征 • 光源所采用旳调制方式涉及内调制和外调制
第4章 光纤通信系统
4.1 IM-DD光纤通信系统 4.2 衰减和色散队中继距离旳影响 4.3 噪声及敏捷度分析
1
4.1 IM-DD光纤通信系统
4.1.1 光纤通信中旳线路码型 4.1.2 IM-DD光纤通信系统旳构造
2
4.1.1 光纤通信中旳线路码型
• 在数字光纤通信系统中所传播旳信号是数字信 号,而由互换机送来旳电信号符合ITU-T所要求 旳脉冲编码调制(PCM)通信系统中旳接口码速 率和码型 。
36
2.光接受机
⑥ 光接受机旳动态范围和自动增益控制 • 光接受机旳自动增益控制(AGC)就是用反馈环路来控
制主放大器旳增益,在采用雪崩管旳光接受机中还经 过控制雪崩管旳高压来控制雪崩管旳雪崩增益。
37
2.光接受机
• 图4-23 自动增益控制工作原理方框图
38
2.光接受机
⑦ 解扰、解复用和码型变换电路 • 在光发射机中首先进行码型变换。 • 在光发射机中对数字码流进行扰码处理。 • 还需将判决器输出旳信号进行解扰码和码型变
21
2.光接受机
② 前置放大器 • 因为这个放大器与光电检测器紧紧相连,故称前置放
大器。 • 对多数放大器旳前级提出尤其旳要求是非常必要旳,
它应具有低噪声、高增益旳特征,这么才干得到较大 旳信噪比。 • 因为跨阻型前置放大器不但具有宽频带、低噪声旳优 点,而且其动态范围也比高阻型前置放大器改善诸多, 所以在光纤通信中得到广泛旳使用。
光纤通信系统的组成

光纤通信系统的组成
光纤通信系统是一种高速、高带宽、可靠性强的通信方式,由多个组件构成。
下面将介绍光纤通信系统的主要组成部分:
1. 光纤传输介质:光纤传输介质是光纤通信系统的核心,是传输光信号的媒介。
光纤通信系统中,采用的是光纤传输,光纤传输的优点是传输距离远、传输速度快、带宽大、信号损耗小等优点。
2. 光发射器:光发射器是将电信号转化为光信号的设备,它能将电信号通过调制方式转化成脉冲光信号,再通过光纤传输到接收端。
3. 光接收器:光接收器是将光信号转化为电信号的设备,它可以将光信号转化为电信号,再通过解调方式转化为原始的电信号。
4. 光纤收发器:光纤收发器是将光纤接收器和光发射器集成在一起的设备,将光信号转化为电信号,再通过光纤传输到接收端。
5. 光纤连接器:光纤连接器是将光纤连接在一起的设备,它可以将不同的光纤连接起来,实现光纤通信系统的扩展和连接。
6. 光纤交换机:光纤交换机是一种网络设备,它可以将光纤通信系统中不同的光信号进行转换、分发和管理,实现不同光纤之间的通信和交换。
以上是光纤通信系统的主要组成部分,其中光纤传输介质是光纤通信系统的核心,其他组件都是为了实现光信号的传输、转换和管理等功能而存在的。
随着技术的不断发展,光纤通信系统将会变得更加智能化、高速化和可靠化。
- 1 -。
光纤通信系统

第一节 光纤通信旳发展概况
光波旳波长在微米级,频率为10^14 HZ数 量级.由电磁波谱中能够看出,紫外线、可见光、 红外线均属于光波旳范围.
目前光纤通信使用旳波长范围是在近红外区 内,即波长为0.8~1.8um.可分为短波长和长 波长波段,短波段是指波长为0.85um,长波长 段是指1.31um和1.55um,这是目前所采用旳三 个通信窗口.
光缆
电端机
光端机 光源
电端机
中继器
光检测器
光源
光端机 光检测器
一、光源和光电检测器
1、光源 38页
在光纤通信系统中光源是光发送部分
旳“心脏”,是实现光纤通信旳主要器件之
一.对光源旳要求是:寿命长;有足够旳
输出光功率;电光转换效率应不低于目前
半导体电子器件旳转换率(约10﹪);发射
波长必须在低损耗传播窗口附近;发光面
4、可靠性较高.
LD和LED旳比较
1、激光器优于发光二极管旳方面是:
1)激光器旳响应速度快,可用于较高旳调制速度;
2)激光器旳光谱较窄,应用于单模光纤时,光在光 纤中旳传播引起旳色散小,可用于大容量通信;
3)耦合到光纤中旳功率高,传播旳距离远。 LD不足于LED旳方面是: 1)温度特征差; 2)易损坏,寿命短; 3)激光器旳成本高,价格昂贵。发光二极管便宜; 4)LD旳调制线不如LED. 所以大容量、远距离光纤通信宜用激光管;小容量、
二、按光纤旳模式分类
1、多模光纤通信系统,采用石英多模梯度光纤作为传播线,因 传播频率受到限制,一般应用于140Mbit/s下列旳系统.
2 、单模光纤通信系统,采用石英单模光纤作为传播线,传播容 量大,距离长,目前建设旳光纤通信系统都是这一类型旳.
光纤通信系统

形成光缆
5
中继器
中继器
由于光纤的传输损耗和散射 效应,光信号在传输过程中 会逐渐衰减,因此需要使用 中继器来放大和整形光信号,
以实现长距离传输
中继器通常由掺铒光纤放大 器(EDFA)和光-电-光转换器
组成
掺铒光纤放大器可以对光信 号进行放大,提高光信号的 能量
光纤通信系统主要由光发信机、 光收信机、光缆、中继器等组
成
2
光发信机
光发信机
光发信机是实现电信 号转换为光信号的设 备,主要由光源、驱 动电路和调制电路组
成
光源是发信机的核 心器件,目前常用 的光源有半导体激 光器和发光二极管
驱动电路的作用是 为光源提供足够的 电流,使其发出稳
定的光信号
调制电路的作用是 将电信号加载到光 信号上,实现电信
的可靠性和效率
5
绿色光纤:在光纤的制造和使用过程中,需要注重环保和 节能,推动光纤通信系统的绿色发展
光纤通信系统的关键技术和发展趋势
总的来说,光纤通信系统将继续向着高速、大容量、智 能化、环保等方向发展
未来,随着技术的不断进步和应用需求的不断增加,光 纤通信系统将会得到更加广泛的应用和推广,为人们提
光纤通信系统
-
1 概述 2 光发信机 3 光收信机 4 光缆 5 中继器 6 光纤通信系统的优点和缺点 7 光纤通信系统的应用和发展趋势 8 光纤通信系统的前景展望 9 光纤通信系统的关键技术和发展趋势
1
概述
概述
光纤通信系统是一种利用光波 在光纤中传输信息的通信方式
由于光纤具有传输容量大、抗 干扰能力强、传输距离长等优 点,光纤通信系统已成为现代 通信网的主要传输方式之一
光纤通信系统

什么是光纤通信系统什么是光纤通信系统?本文将从光纤通信系统的构成,发展,优点,光纤通信技术的发展趋势方面来进行阐述。
光纤即为光导纤维的简称。
光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。
从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。
光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。
传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。
光导纤维通信简称光纤通信。
可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。
实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。
光纤通信系统的构成一个实用的光纤通信系统,配置各种功能的电路、设备和辅助设施,如接口电路、复用设备、管理系统以及供电设施等,才能投入运行。
要根据用户需求、要传输的业务种类和所采用传输体制的技术水平等来确定具体的系统结构。
因此,光纤通信系统结构的形式是多种多样的,但其基本结构仍然是确定的。
有种通信系统主要是由3部分组成:光发射机、光纤光缆和光接收机。
由于光纤只能传光信号不能传电信号,因此,这种通信系统在发送端必须先把电信号变成光信号,在接收端再把光信号变为电信号,即电/光和光/电变换。
其电/光和光/电变换的基本方式是直接强度调制和直接检波。
实现过程如下:输入的电信号既可以是模拟信号(如视频信号、电视信号),也可以是数字信号(如计算机数据、PCM 信号);调制器将输入的电信号转换成适合驱动光源器件的电流信号并用来驱动光源器件,对光源器件进行直接强度调制,完成电/光变换的功能;光源输出的光信号直接耦合到传输光纤中,经一定长度的光纤传输后送达接收端;在接收端,光电检测器对输入的光信号进行直接检波,将光信号转换成相应的电信号,再经过放大恢复等电处理过程,弥补线路传输过程中带来的信号损伤(如损耗、波形畸变),最后输出和原始输入信号相一致的电信号,从而完成整个传输过程。
简述光纤通信系统的结构和各部分功能

简述光纤通信系统的结构和各部分功能光纤通信系统是一种基于光纤传输信号的通信系统,由多个部分组成,每个部分都有各自的功能。
下面将对光纤通信系统的结构和各部分功能进行简述。
一、光纤通信系统的结构光纤通信系统一般由光发射器、光纤传输介质、光接收器和光网络设备组成。
1. 光发射器:光发射器是光纤通信系统中的发送端,它将电信号转换成光信号并通过光纤传输介质发送出去。
光发射器的主要功能是将电信号转换为适合光纤传输的光信号,并能够调节光信号的强度和频率。
2. 光纤传输介质:光纤传输介质是光纤通信系统中的传输媒介,它能够将光信号传输到目标地点。
光纤传输介质具有高带宽、低损耗和抗干扰等特点,使得光信号能够在长距离传输过程中保持较高的质量。
3. 光接收器:光接收器是光纤通信系统中的接收端,它接收光纤传输介质中传输的光信号,并将其转换为电信号。
光接收器的主要功能是将光信号转换为电信号,并能够对电信号进行放大和解调等处理。
4. 光网络设备:光网络设备包括光纤交换机、光开关等,它们用于光纤通信系统的网络管理和控制。
光网络设备的主要功能是实现光信号的路由选择、调度和管理,以及对光信号进行调制和解调等处理。
二、各部分功能的详细描述1. 光发射器的功能:光发射器主要负责将电信号转换为适合光纤传输的光信号,并能够调节光信号的强度和频率。
它包括以下几个主要功能:- 光源发生器:产生光信号的光源,常见的有激光二极管、LED等。
- 调制电路:对电信号进行调制,将其转换为光信号。
- 驱动电路:控制光源的开关和调节光信号的强度。
2. 光纤传输介质的功能:光纤传输介质主要负责将光信号传输到目标地点,具有高带宽、低损耗和抗干扰等特点。
其主要功能包括:- 光纤芯:传输光信号的核心部分,由高折射率的材料构成。
- 光纤包层:包裹光纤芯,起到保护和传导光信号的作用。
- 光纤护套:保护光纤传输介质免受外界环境的影响。
3. 光接收器的功能:光接收器主要负责接收光纤传输介质中传输的光信号,并将其转换为电信号。
光纤通信系统的基本概念、组成及特点。

光纤通信系统的基本概念、组成及特点。
光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。
光纤通信系统由三部分组成:光发射机、光接收机和光纤链路。
光发射机由模拟或数字电接口、电压—电流驱动电路和光源组件组成。
模拟或数字电接的作用是实现口阻抗匹配和信号电平匹配(限制输入信号的振幅)作用。
光源—光纤耦合器的作用是把光源发出的光耦合到光纤或光缆中。
光接收机由光检测器组件、放大电路和模拟或数字电接口组成。
光检测器组件包括一段光纤(尾纤或光纤跳线)、光纤—光检波器耦合器、光检测器和电流—电压转换器。
光检测器将光信号转化为电流信号。
然后再通过电流—电压转换器,变成电压信号输出。
模拟或数字电接口对输出电路其阻抗匹配和信号电平匹配作用。
光纤链路由光纤光缆、光纤连接器、光缆终端盒、光缆线路盒和中继器等组成。
光纤光缆由石英或塑料光纤、金属包层和外套管组成。
光纤通信系统的特点有:1.频带宽、传输容量大,损耗小、中继距离长,重量轻、体积小,抗电磁干扰性能好,泄漏小、保密性好,节约金属材料,有利于资源合理使用。
2.传输损耗小:在光纤通信系统中,由于采用了石英等材质作为光纤材料,其传输损耗比普通金属线要小得多。
3.传输容量大:由于光纤通信系统采用光信号传输,因此其传输容量比普通金属线要大得多。
4.抗电磁干扰性能好:由于光纤通信系统采用光信号传输,因此其抗电磁干扰性能比普通金属线要好得多。
5.保密性好:由于光纤通信系统采用光信号传输,因此其保密性比普通金属线要好得多。
6.节约金属材料:由于光纤通信系统采用石英等材质作为光纤材料,因此可以节约大量的金属材料。
7.易于安装和维护:由于光纤通信系统采用光信号传输,因此其安装和维护相对容易。
8.适用于远距离传输:由于光纤通信系统采用石英等材质作为光纤材料,因此可以适用于远距离传输。
9.适用于大规模网络:由于光纤通信系统采用光信号传输,因此可以适用于大规模网络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 重量轻、
光纤重量很轻,直径很小。即使做成光缆,在 芯数相同的条件下,其重量还是比电缆轻得多, 体积也小得多。
4.
光纤由电绝缘的石英材料制成,光纤通信线路不 受各种电磁场的干扰和闪电雷击的损坏。无金属光 缆非常适合于存在强电磁场干扰的高压电力线路周 围和油田、煤矿等易燃易爆环境中使用。光纤(复合) 架空地线(Optical Fiber Overhead Ground Wire, OPGW)是光纤与电力输送系统的地线组合而成的通 信光缆,已在电力系统的通信中发挥重要作用。
由于没有找到稳定可靠和低损耗的传输介 质,对光通信的研究曾一度走入了低潮。
✓光导纤维
1966年,英籍华裔学者高锟和霍克哈姆 发表了关于传输介质新概念的论文《用于 光频的光纤表面波导》, 指出了利用光纤 (Optical Fiber)进行信息传输的可能性和技 术途径,奠定了现代光通信——光纤通信的 基础。
光纤通信的光波波谱
光纤通信的波谱在1.67×1014Hz~3.75×1014Hz之间, 即波长在0.8μm~1.8μm之间,属于红外波段,将 0.8μm~0.9μm称为短波长,1.0μm~1.8μm称为长波长, 2.0μm以上称为超长波长。
表1-1 各种单位的换算公式
c=3×108m/s λ=c/f 1μm(微米)=10-6m 1nm(纳米)=10 −9 m
1Å(埃)=10 −10 m
1MHz(兆赫)=106 Hz 1GHz(吉赫)=109 Hz 1THz(太赫)=1012Hz 1PHz(拍赫)=1015 Hz
2、光纤通信的发展历程
光电话机 红宝石激光器 光导纤维
• 1880年,美国人贝尔(Bell)发明了用光 波作载波传送话音的“光电话”。
这种光电话利用太阳光或弧光灯作光源, 通过透镜把光束聚焦在送话器前的振动镜片 上,使光强度随话音的变化而变化,实现话 音对光强度的调制。
✓红宝石激光器
• 1960年,美国人梅曼(Maiman)发明了第一 台红宝石激光器, 给光通信带来了新的希望。
激光具有波谱宽度窄,方向性极好,亮度 极高的良好特性。激光是一种高度相干光,它 的特性和无线电波相似,是一种理想的光载波。
激光器的发明和应用,使沉ห้องสมุดไป่ตู้了80年的光 通信进入一个崭新的阶段。
大气光通信 激光器一问世,人们就模拟无线电通信进
光纤通信发明家高锟(左) 1998年在英国接受 IEE 授予的奖章
1970年,光纤研制取得了重大突破
• 1970年,美国康宁(Corning)公司研制 成功损耗 20dB/km 的石英光纤。把光纤通 信的研究开发推向一个新阶段。
• 1972年,康宁公司高纯石英多模光纤 损耗降低到 4 dB/km。
人们通常把应用石英光纤的有线光通信 简称为光纤通信(optical fiber communication)
光通信 ≠ 光纤通信
电磁频谱:电磁波的波长范围
光波是电磁波,光波范围包括红外线、可见光、紫外线,其波长范围为: 300μm~6×10−3μm。
发送信号的频率越高(波长越短), 可载送的信息量就越多
960
中继距离/km 50
1000 km内中继器 个数
20
小同轴
960
4
250
中同轴
1800
6
1600
光缆
1920
30
33
光缆
14000(1Gb/s)
84
11
光缆
6000(445MB/S)
134
7
2. 损耗很小,中继距离很长且误码率很小。
目前,实用的光纤通信系统使用的光纤多为 石英光纤,此类光纤在1.55μm波长区的损耗可 低到0.18dB/km,比已知的其他通信线路的损 耗都低得多,因此,由其组成的光纤通信系统 的中继距离也较其它介质构成的系统长得多。
光纤之父: 英籍华人高锟(K.C.Kao)博士 工作地点:英国标准电信研究所
高锟(K.C.Kao)博士深入研究了光在石英玻璃纤维中的严重损耗 问题,发现这种玻璃纤维引起光损耗的主要原因是其中含有过 量的铬、铜、铁与锰等金属离子和其他杂质,其次是拉制光纤 时工艺技术造成了芯、包层分界面不均匀及其所引起的折射率 不均匀,他还发现一些玻璃纤维在红外光区的损耗较小。
3、光纤通信的特点与应用
1、频带很宽,传输容量很大 光纤的容量大——“超高速公路”
马路越宽,容许通过的车辆越 多,交通运输能力也越大。 如果把通信线路比作马路,那 么应该说是通信线路的频带越 宽,容许传输的信息越多,通 信容量就越大。
光纤通信与电缆或微波通信传输能力的比较
通信手段 微波无线电
传输容量(话 路)/条
• 1973年,美国贝尔(Bell)实验室的光 纤损耗降低到 2.5dB/km。
• 1976年,日本电报电话(NTT)公司将 光纤损耗降低到 0.47 dB/km 。
• 在以后的 10 年中,波长为1.55μm 的 光纤损耗:
1979年是 0.20 dB/km; 1984年是 0.157 dB/km; 1986年是 0.154 dB/km,接近了光纤 最低损耗的理论极限。
5. 泄漏小,保密性能好
在光纤中传输的光泄漏非常微弱,即使在弯曲地段也无法 窃听。没有专用的特殊工具,光纤不能分接,因此信息在光纤 中传输非常安全。
行了大气激光通信的研究。
实验证明:用承载信息的光波,通过大气 的传播,实现点对点的通信是可行的,但是通 信能力和质量受气候影响十分严重。
由于雨、雾、雪和大气灰尘的吸收和散射, 光波能量衰减很大。
例如,雨能造成 30 dB/km的衰减,浓雾 衰减高达 120 dB/km。另一方面,大气的密度 和温度不均匀,造成折射率的变化,使光束位 置发生偏移。因而通信的距离和稳定性都受到 极大的限制。
在接收端,用抛物面反射镜把从大气传 来的光束反射到硅光电池上,使光信号变换 为电流,传送到受话器。
由于当时没有理想的光源和传输介 质, 这种光电话的传输距离很短,并没 有实际应用价值,因而进展很慢。
然而,光电话仍是一项伟大的发明, 它证明了用光波作为载波传送信息的可 行性。
因此,可以说贝尔光电话是现代光 通信的雏型。